
L2/22-072R

Proposal for amendments to UAX#9 and UAX#31
To: Properties & algorithms group, UTC
From: Robin Leroy, Mark Davis, Peter Constable, Source code ad hoc working group
Date: 2022-03-31

The source code ad hoc working group recommends amendments to non-normative text in
Unicode Standard Annexes #9 and #31.

Consolidated working drafts of the Unicode Standard Annexes incorporating these amendments
may be found at the following URLs:

— UAX#9: https://www.unicode.org/reports/tr9/tr9-45.html, document L2/22-089;
— UAX#31: https://www.unicode.org/reports/tr31/tr31-36.html, document L2/22-090.

Proposed amendment to UAX#9

The working group recommends that the note in Section 4 “Bidirectional Conformance”, Clause
UAX9-C2, be amended as follows:

Current:

Note: Use of higher-level protocols is discouraged, because it introduces interchange
problems and can lead to security problems. For more information, see Unicode Technical
Report #36, “Unicode Security Considerations” [UTR36].

Proposed:

Note: The use of higher-level protocols introduces interchange problems, since the text may
be displayed differently as plain text; see Section 6.5, Conversion to Plain Text. This can
have security implications. However, where the semantics of segment order are more
significant than those of displayed order, as is the case for source text, higher-level protocols
are recommended. For detailed examples for which use of HL4 would be recommended,
see Section 4.3.1, HL4 Example 1 for XML and Section 4.3.2, HL4 Example 2 for Program
Text. For more information, see Unicode Technical Report #36, “Unicode Security
Considerations” [UTR36].

The working group recommends that the existing example of the application of HL4 in Section 4.3
“Higher-Level Protocols” be given the section number and title “4.3.1 HL4 Example 1 for XML”,
and that the following example be added after it:

4.3.2 HL4 Example 2 for Program Text

Consider the following two lines:

(1) x + tav == 1
(2) x + 1==תו

1

https://www.unicode.org/reports/tr9/tr9-45.html
https://www.unicode.org/L2/L2022/22089-uax-9-45-draft.pdf
https://www.unicode.org/reports/tr31/tr31-36.html
https://www.unicode.org/L2/L2022/22090-uax-31-36-draft.pdf
https://unicode.org/reports/tr9/#C2
https://unicode.org/reports/tr9/#C2
https://www.unicode.org/reports/tr41/tr41-28.html#UTR36
https://www.unicode.org/reports/tr41/tr41-28.html#UTR36
https://www.unicode.org/reports/tr9/tr9-44.html#Higher-Level_Protocols
https://www.unicode.org/reports/tr9/tr9-44.html#Higher-Level_Protocols

Internally, they are the same except that the ASCII identifier tav in line (1) is replaced by
the Hebrew identifier תו in line (2). However, with a plain text display (with left-to-right
paragraph direction) the user will be misled, thinking that line (2) is a comparison between
(x + 1) and ,תו whereas it is actually a comparison between (x + (תו and 1. The
misleading rendering of (2) occurs because the directionality of the identifier תו influences
subsequent weakly-directional tokens, so that the entire sequence “ 1==תו ” is at a higher
resolved level. This is illustrated in the first row of the following table, wherein characters at
a resolved level higher than the embedding level are highlighted. Note that while the RTL
display of that expression (second row) is not misleading, as the left-to-right directionality
of x does not influence the subsequent text, a similar issue would arise if the terms were
swapped (third row).

Paragraph direction Underlying representation Display

LTR x + ת ו = = 1 x + 1==תו

RTL x + ת ו = = 1 x+1==תו

RTL ת ו + x = = 1 x+תו == 1

It is better to apply protocol HL4 when displaying these expressions, treating each
identifier as a separate segment, thus isolating it from the rest of the source text, and then
ordering the segments in a consistent direction, as shown in the following table.

Segment order Segments Display

LTR x + תו == 1 x + ‎תו == 1

RTL x + תו == 1 x+1==תו

RTL תו + x == 1 1==‏x+תו

[Editor’s note: the “Display” column in the preceding table ought to be implemented in HTML
using tags with dir attributes around each segment.]

Proposed amendment to UAX#31

The working group recommends that the first sentence of Section 4 “Pattern Syntax” be reworded
as follows:

Current:

There are many circumstances where software interprets patterns that are a mixture of
literal characters, whitespace, and syntax characters.

Proposed:

Most programming languages have a concept of whitespace as part of their lexical structure,
as well as some set of characters that are disallowed in identifiers but have syntactic use,

2

https://unicode.org/reports/tr31/#Pattern_Syntax

such as arithmetic operators. Beyond general programming languages, there are also many
circumstances where software interprets patterns that are a mixture of literal characters,
whitespace, and syntax characters.

The working group recommends that the following note and example be added to Section 4
“Pattern Syntax”, Clause UAX31-R3, after the existing note:

Note: This requirement is relevant even for languages that do not use immutable
identifiers, or that have lexical structure outside of the categories of syntax and whitespace
characters. In particular, the set of Pattern_White_Space characters is chosen to make it
possible to correct bidirectional ordering issues that can arise in a wide range of
programming languages, visually obfuscating the logic of expressions. In the absence of
higher-level protocols (see Section 4.3, Higher-Level Protocols, in [UAX9]), tokens may be
visually reordered by the Unicode Bidi Algorithm in bidirectional source text, producing a
visual result that conveys a different logical intent. To remedy that, two implicit directional
marks are among Pattern_White_Space characters; if these can be freely inserted between
tokens, implicit directional marks consistent with the paragraph direction can be used to
ensure that the visual order of tokens matches their logical order.

Since the implicit directional marks are nonspacing, where a syntax requires a sequence of
spaces (such as between identifiers), it should require that at least one of those be neither
LEFT-TO-RIGHT MARK nor RIGHT-TO-LEFT MARK. The visual appearance would
otherwise be too confusing to readers: “else⟨LRM⟩if” would be seen by the user as
“elseif” but parsed by the compiler as “else if”, whereas “else⟨LRM⟩ if” would
be seen and parsed as “else if” and be harmless.

Example: Consider the following two lines:

(3) x + tav == 1
(4) x + 1==תו

Internally, they are the same except that the ASCII identifier tav in line (1) is replaced by
the Hebrew identifier תו in line (2). However, with a plain text display (with left-to-right
paragraph direction) the user will be misled, thinking that line (2) is a comparison between
(x + 1) and ,תו whereas it is actually a comparison between (x + (תו and 1. The
misleading rendering of (2) occurs because the directionality of the identifier תו influences
subsequent weakly-directional tokens; inserting a left-to-right mark after the identifier תו
stops it from influencing the remainder of the line, and thus yields a better rendering in
plain text with left-to-right paragraph direction, as demonstrated in the following table,
wherein characters whose ordering is affected by that identifier have been highlighted.

Underlying representation Display (LTR paragraph direction)

x + ת ו = = 1 x + 1==תו

x + ת ו ⟨LRM⟩ = = 1 x + ‎תו == 1

3

https://unicode.org/reports/tr31/#R3
https://unicode.org/reports/tr31/#R3
https://unicode.org/reports/tr41/tr41-28.html#UAX9

The simplest automatic mechanism for placement of LRM characters is around every
identifier, string literal, and comment that contains RTL characters. However, this can also
be reduced in some cases.

Note: Left-to-right marks are used for this purpose when the main direction is
left–to-right. Correspondingly, right-to-left marks are used when the main direction is
right-to-left.

Rationale

While the working group has yet to define the specifics of the desired rendering of source code, and
of the means by which this rendering may be achieved, some broad outlines are already clear.
Future guidance will make use of some mechanisms already described in these annexes, some of
which have been standardized for very similar purposes; indeed these mechanisms are already in use
in existing implementations: Visual Studio implements UAX#9 HL41; multiple syntaxes defined by
the Locale Data Markup Language2, Ada 20123 and later, Rust4 1.9 and later allow for implicit
directional marks wherever whitespace is allowed.

Context for the possible applications of those mechanisms is however lacking in the annexes. The
proposed amendments provide that context.

Specifically:

1. The current note in UAX9-C2 discourages what is a very promising mitigation to a
security issue—and one that has been in use for a long time in a major editor (Visual
Studio).

2. The current example for HL4 (4.3.1 with the proposed numbering) is focused on markup
languages, so that it may not be obvious that it applies to general programming languages;
it also fails to illustrate the problems with not using higher-level protocols.

3. UAX#31 defines requirement UAX31-R3 and the usage of Pattern_White_Space as
whitespace in the context of “patterns that are a mixture of literal characters, whitespace,
and syntax characters”, but, while general programming languages were not the focus when
that was defined, the intent was not to limit its applicability so strictly. This is evidenced by
the existing note in UAX31-R3, which refers to identifiers: those are not literals,
whitespace, nor syntax. Indeed, the editor of UAX#31 went on5 to make use of
Pattern_White_Space in the plural rules syntax in UTS#35, even though the plural rules
syntax does not fit that definition of pattern. Other non-pattern languages have made use
of Pattern_White_Space, see, e.g., Rust, which even claims conformance to UAX31-R3.
However, the wording of Section 4 has led to confusion about the applicability of
UAX31-R3 to a wider domain, including general programming languages.

5 See Mark Davis, UTS#35 version 1.7.2, Section C.11 “Language Plural Rules” (2009-12-09).

4 See The Rust Reference, 2.5.

3 ISO/IEC 8652:2012; see the Annotated Ada Reference Manual, 2.2(7.1/3).

2 See, e.g., the syntaxes for UnicodeSet, plural rules, collation rules.

1 Visual Studio treats each token, including identifiers, string literals and comments, as a separate segment.

4

https://github.com/rust-lang/rfcs/blob/master/text/2457-non-ascii-idents.md#conformance-statement
https://unicode.org/reports/tr35/tr35-10.html#Language_Plural_Rules
https://doc.rust-lang.org/stable/reference/whitespace.html
https://www.adaic.org/resources/add_content/standards/12aarm/html/AA-2-2.html#p7.1
https://www.unicode.org/reports/tr35/#Unicode_Sets
https://unicode-org.github.io/cldr/ldml/tr35-numbers.html#Plural_rules_syntax
https://www.unicode.org/reports/tr35/tr35-collation.html#Rules

4. UAX#31 provides no rationale for the set of characters in Pattern_White_Space, in
particular for the two nonspacing characters therein, nor guidance for the proper use of
implicit directional marks.

The proposed changes are non-normative: we are merely documenting long-standing mechanisms,
rather than defining new ones. In particular, this means that an implementation which makes
normative references to earlier versions of Unicode should be able to make use of these
mechanisms.

5

