
 L2/22-087

 Pro�le Changes in UAX #31 / UTS #39
 To: UTC
 From: Robin Leroy, Mark Davis, Source code working group
 Date: 2022-04-14

 While the source code ad hoc working group has not �nished their work, there is agreement that
 additional changes could be made to UAX #31 and UTS #39 to avoid some problems with
 identi�er pro�les, and especially those that allow for ZWJ/ZWNJ.

 I. Proposed changes to UAX #31

 1. In Section 2 Default Identi�ers of UAX #31, just before R1a, add:

 Beyond such minor modi�cations, pro�les can be used to signi�cantly extend the character set
 available in identi�ers. In so doing, care must be taken not to unintentionally include undesired
 characters, or to violate important invariants.

 A property-based set should only be added in a pro�le if it corresponds to the intent.

 For instance, consider a pro�le that adds subscript and superscript digits and operators in order
 to support technical notations (e.g. , identi�ers such as the Assyriological dun₃⁺ , the chemical
 Ca²⁺_concentration , the mathematical xₖ₊₁ or f⁽⁴⁾ , or the phonetic daan⁶). That
 pro�le may be described as adding the following set to XID_Continue:

 [⁽₍⁾₎⁺₊⁼₌⁻₋⁰₀¹₁²₂³₃⁴₄⁵₅⁶₆⁷₇⁸₈⁹₉] .

 It may seem more principled, instead of listing these characters in a targeted fashion, to include
 them via properties or combinations of properties that include the desired ones. This is
 unadvisable, however.

 For instance, \p{General_Category=Other_Number} is the general category set
 containing the subscript and superscript digits. But it also includes the compatibility characters
 [⑴🄂⒈] , which do not serve the aforementioned technical notations, and are very likely
 inappropriate for identi�ers—on multiple counts. A language that allows currency symbols in
 identi�ers could have \p{General_Category=Currency_Symbol} as a pro�le, since that
 property matches the intent.

 Similarly, a pro�le based on adding entire blocks is sure to include unintended characters, or to
 miss ones that are desired; on the use of blocks see Annex A, Character Blocks , in [UTS18].

https://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/22-087
https://unicode.org/reports/tr31/#Default_Identifier_Syntax
https://unicode.org/reports/tr41/#UTS18

 De�ning a pro�le by use of a property also needs to take account of the fact that unless the
 property is designed to be stable (such as XID_Continue), code points could be removed in a
 future version of Unicode. If the pro�le is also to have stable identi�ers (backwards compatible),
 then measures need to be taken to support that. See UAX31-R1b . Stable Identifiers.

 When de�ning a pro�le, it is also critical to ensure that it is compatible with the normalization
 chosen for the identi�ers. The example of subscripts and superscripts above preserves identi�er
 closure under Normalization Forms C and D, but not KC and KD. Under NFKC and NFKD,
 the subscript and superscript parentheses and operators normalize to their ASCII counterparts.
 A language using that pro�le should conform to UAX31-R4 using NFC, not NFKC.

 Implementations de�ning a pro�le that includes the ZERO-WIDTH JOINER or
 ZERO-WIDTH NON JOINER characters should implement requirement UAX31-R1a .

 2. In the section R1a. Restricted Format Characters of UAX #31, reword the requirement as
 follows:

 UAX31-R1a . Restricted Format Characters: To meet this requirement, an implementation
 shall define a profile for UAX31-R1 which allows format characters , but shall restrict their use to
 the contexts A1 , A2 , and B defined as described in Section 2.3, Layout and Format Control
 Characters .

 3. In R1a, just before R1b, add:

 Note that the ZWJ and ZWNJ characters in R1a are not in XID_Continue, and that meeting
 the requirement R1. Default Identi�ers does not require supporting R1a. Restricted Format
 Characters (or for that matter, R1b. Stable Identi�ers).

 These ZWJ and ZWNJ characters are invisible in most contexts, and only added to Default
 Identi�ers in a declared pro�le. They have security and usability implications that make them
 inappropriate for implementations that do not carefully consider those implications. For
 example, they should not be added via a pro�le where spoo�ng concerns are paramount, such as
 top-level domain names.

 The purpose for R1a is to describe how to restrict the usage of ZWJ and ZWNJ to reduce the
 impact, for those implementations that choose to support them.

 4. 2.3 Layout and Format Control Characters Make the following change in Paragraph 1:

 Note that the ZWJ and ZWNJ characters in R1a are not in XID_Continue, and that meeting
 the requirement R1. Default Identi�ers does not require supporting R1a. Restricted Format
 Characters (or for that matter, R1b. Stable Identi�ers).

https://unicode.org/reports/tr31/#R1b
https://unicode.org/reports/tr31/#R4
https://unicode.org/reports/tr31/#R1a
https://unicode.org/reports/tr31/#R1a
https://unicode.org/reports/tr31/#R1a
https://unicode.org/reports/tr31/#R1
https://unicode.org/reports/tr31/#A1
https://unicode.org/reports/tr31/#A2
https://unicode.org/reports/tr31/#B
https://unicode.org/reports/tr31/#Layout_and_Format_Control_Characters
https://unicode.org/reports/tr31/#Layout_and_Format_Control_Characters
https://unicode.org/reports/tr31/#R1a
https://unicode.org/reports/tr31/#R1
https://unicode.org/reports/tr31/#R1a
https://unicode.org/reports/tr31/#R1a
https://unicode.org/reports/tr31/#R1b
https://unicode.org/reports/tr31/#Layout_and_Format_Control_Characters
https://unicode.org/reports/tr31/#R1a
https://unicode.org/reports/tr31/#R1
https://unicode.org/reports/tr31/#R1a
https://unicode.org/reports/tr31/#R1a
https://unicode.org/reports/tr31/#R1b

 These ZWJ and ZWNJ characters are invisible in most contexts, and only added to Default
 Identi�ers in a declared pro�le. They have security and usability implications that make them
 inappropriate for implementations that do not carefully consider those implications. For
 example, they should not be added via a pro�le where spoo�ng concerns are paramount, such as
 top-level domain names.

 The purpose for R1a is to describe how to restrict the usage of ZWJ and ZWNJ to reduce the
 impact, for those implementations that choose to support them.

 5. Before Section 2.3.1 Limitations , insert the following note:

 Note: The restrictions in A1 , A2 , and B are similar to the CONTEXTJ rules de�ned in
 Appendix A, Contextual Rules Registry , in The Unicode Code Points and Internationalized
 Domain Names for Applications (IDNA) [IDNA2008].

 II. Proposed changes to properties

 6. In the property �les Identi�erStatus.txt and Identi�erType.txt, remove the Joiner_Control
 characters ZWJ and ZWNJ from Identi�er_Type=Inclusion and
 Identi�er_Status=Allowed.

 ○ This will result in their reverting to Identi�er_Type=Default_Ignorable, and
 thereby Identi�er_Status=Restricted.

 III. Proposed changes to UTS #39

 7. Below Table 1. Identi�er_Status and Identi�er_Type of UTS #39, add the following notes:

 Note: In Unicode 15.0, the Joiner_Control characters (ZWJ/ZWNJ) have been removed from
 Identi�er_Type= Inclusion . They thereby have the properties
 Identi�er_Type= Default_Ignorable and Identi�er_Status= Restricted .

 Their inclusion in programming language identi�er pro�les has usability and security
 implications. Moving them to Restricted can help to avoid problems for implementations that
 simply add the characters in Identi�er_Status=Allowed to an identi�er pro�le.

 This step does not prevent them from being included in an identi�er pro�le as per [UAX31],
 but lessens the likelihood that they are inadvertently included, without proper consideration.

 [Review Note:
 Further changes may be made to Identi�er_Type= Inclusion in the future, based on ongoing
 work to provide guidance to implementation on avoiding source code spoo�ng issues.]

https://unicode.org/reports/tr31/#Limitations
https://unicode.org/reports/tr31/#A1
https://unicode.org/reports/tr31/#A2
https://unicode.org/reports/tr31/#B
https://www.rfc-editor.org/rfc/rfc5892.txt
https://www.rfc-editor.org/rfc/rfc5892.txt
https://unicode.org/reports/tr39/#Identifier_Status_and_Type
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Identifier_Type=Inclusion:]
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Identifier_Type=Default_Ignorable:]
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Identifier_Status=Restricted:]
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Identifier_Type=Inclusion:]

 For example, that could result in other changes to Identi�er_Type= Inclusion . Most of these
 characters are less dangerous than the Joiner_Controls, but still should only be used in identi�ers
 by implementations that accept a broader spectrum of characters, and understand the security
 and usability implications.]

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Identifier_Type=Inclusion:]

 IV. Rationale

 On the need for guidance about pro�les

 There is very little guidance given in UAX #31 on the way in which one should de�ne pro�les for
 default identi�ers that substantially alter the identi�er space; instead the examples focus on pro�les
 addressing compatibility concerns, and pro�les that are minor adjustments such as allowing a
 leading low line. Many programming languages have however found a need for such extensions.

 With the concrete example of subscripts and superscripts (inspired by existing practice, see below),
 we showcase the fact that properties do not usually make for good pro�les.

 Another example of disparate set which should generally not be used as a pro�le by programming
 languages is the set Identi�er_Type=Inclusion ; its name should certainly not be taken to mean that
 it is recommended to use the complete set as a pro�le in default identi�ers: indeed that would be
 di�cult for most programming languages, as that set contains the ASCII Pattern_Syntax characters
 [-:.'] .

 However, within that set, ZWJ and ZWNJ still stand out as having speci�c usability and security
 implications that the other characters do not.

 On ZWJ and ZWNJ in identi�ers

 As described in Section 2.3 Layout and Format Control Characters of UAX #31 , these characters
 have a visible e�ect in some contexts, and no visible e�ect in others.

 The source code ad hoc working group found that it is a problem

 1. if visually equivalent identi�ers are logically distinct,

 but also

 2. if logically equivalent identi�ers are visually distinct.

 UAX #31 currently recommends that when allowed in identi�ers, ZWJ and ZWNJ be ignored
 when comparing identi�ers. Failing to follow that recommendation leads to problems of the �rst
 kind. However, even following that recommendation and ignoring them addresses the �rst kind of
 problem, but leads to problems of the second kind. Indeed, consider the following program:

 std::string نامھای ; // ̀names`.
 { // Narrower scope.

 std::string نامھ ای ; // ̀a letter`.
 ;"Mark" =+ نامھای

 }

 It looks like "Mark" is being added to the variable ای ھ نام (names), but if ZWNJ is ignored when
 comparing identi�ers, it is actually being added to the variable ای ھ نام (a letter), which unexpectedly
 shadows ای ھ نام (names)!

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AIdentifier_Type%3DInclusion%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AIdentifier_Type%3DInclusion%3A%5D%26%5B%3AASCII%3A%5D%26%5B%3APattern_Syntax%3A%5D&g=&i=
https://unicode.org/reports/tr31/#Layout_and_Format_Control_Characters

 These issues, which can have security as well as usability implications, are speci�c to the ZWJ and
 ZWNJ, and are not shared by the other Identi�er_Type=Inclusion characters. For that reason, the
 working group recommends that ZWJ and ZWNJ be removed from Identi�er_Type=Inclusion
 and thus from Identi�er_Status=Allowed.

 On the example of subscripts and superscripts

 The de�nition of XID_Start and XID_Continue is ultimately based on general categories, so that
 the subscript and superscript digits, being [:No:] rather than [:Nd:], were excluded, whereas
 subscript and superscript letters, being [:Lm:], and mathematical alphanumerics, being [:Lo:] and
 [:Ln:], were included.

 However, these digits, along with the subscript and superscript operators, are used in a variety of
 technical notations (homophone indices in Assyriology, atom numbers and ionization states in
 chemistry, indexing, powers, derivatives, and more in mathematics, tone numbers in various
 phonetic notations, etc.). Some programming languages have therefore seen �t to include them in
 their de�nition of identi�ers.

 Notably, C++11 through C++20 allows them ; speci�cally its de�nition of identi�ers allows ranges
 of the Latin-1 Supplement which include the characters [¹²³] , as well as the range U+2070
 through U+218F, which starts with the entirety of the Superscripts and Subscripts block. The Julia
 programming language also allows these, by having Other Numbers as part of its Continue set , and
 explicitly allowing the subscript and superscript operators and parentheses.

 While both the block-based approach and the general category approach end up including far more
 characters than is desirable (indeed, both languages end up allowing “ ⑴ ” in identi�ers), the
 characters in the example pro�le are in actual use in identi�ers in these languages, see, e.g., the
 following GitHub searches 1 :

 — x₂ (Julia , C++);
 — χ² (Julia , C++);
 — aᵢ₊₁ (Julia)
 — xₖ₊₁ (C++ , Julia);
 — xₙ₊₁ (Julia).

 As programming language designers use non-trivial pro�les in order to support these usages, we
 need to provide better guidance on constructing pro�les that better match their intent, and on the
 potential for complications involved, in advance of the more extensive work in development by the
 working group.

 1 Note that GitHub does not support lexical analysis in searches, so that comments are found as well as identi�ers. All
 searches listed �nd identi�ers. Note also that, since GitHub does not support regular expressions in search, one needs
 to look for speci�c expressions, leading to small numbers.

https://timsong-cpp.github.io/cppwp/n4868/lex.name
https://github.com/JuliaLang/julia/blob/87ded5a9aa502cfc4e03cbf230cb9bba86c85cc1/src/flisp/julia_extensions.c#L148
https://github.com/JuliaLang/julia/blob/87ded5a9aa502cfc4e03cbf230cb9bba86c85cc1/src/flisp/julia_extensions.c#L111-L113
https://github.com/search?l=Julia&q=x%E2%82%82&type=Code
https://github.com/search?l=C%2B%2B&q=x%E2%82%82&type=Code
https://github.com/search?l=Julia&q=%CF%87%C2%B2&type=Code
https://github.com/search?l=C%2B%2B&q=%CF%87%C2%B2&type=Code
https://github.com/search?l=Julia&q=a%E1%B5%A2%E2%82%8A%E2%82%81&type=Code
https://github.com/search?l=C%2B%2B&q=x%E2%82%96%E2%82%8A%E2%82%81&type=Code
https://github.com/search?l=Julia&q=x%E2%82%96%E2%82%8A%E2%82%81&type=Code
https://github.com/search?l=Julia&q=x%E2%82%99%E2%82%8A%E2%82%81&type=Code

