
L2/22-180

Inline Emotes Ad-Hoc Session (UTC#172)

From: Sean Stewart (with significant review and edits by Jennifer Daniel) on behalf of

the Emoji Subcommittee (ESC)

To: Unicode Technical Committee

Date: 2022-06-27

Background

Since 2016, the ESC has explored alternative means of interchanging arbitrary,

emoji-like images that can be embedded directly within Unicode-encoded text. UTS#51

(Section 8) discusses the high-level goal of this exploration—that future “...

implementations [of emoji] should be to support embedded graphics, in addition to the

emoji characters”. The realization of such an implementation of course is not without

its challenges, some of which are also identified by Section 8 and are further

underlined by other documents referenced herein.

A number of documents have explored the future of emoji encoding including but not

limited to:

● Coded Hashes of Arbitrary Images (L2/16-105R)

○ Proposes the use of guaranteed unique, SHA-256 identifiers generated

from raw image data serving as custom emoji.

● Unicode-Specified Emoji Customizations (L2/16-008R​3)

○ Proposes a reasonably extensible grammar consisting of key-value pairs

that associate with specific presentation modification features, all of

which are encoded in Emoji Tag characters.

● Recent QID documents (chiefly PRI#408, L2/19-082)

○ Proposes the delegation of generation of unique identifiers to the

Wikimedia Foundation; these unique identifiers can serve as a

discoverable key in a registry for not-yet-standardized emoji concepts.

However, at the time these forward-thinking thought experiments:

● Lacked a “complete story” detailing the end-to-end technological implementation

and experience¹,

● Lacked sufficient solutions to inherent challenges,

● Or, lacked vendor interest/support.

The consistency at which this topic comes up indicates a need to evolve not just to

meet the demands of the public but to create a long runway for the future.

1. Davis, Mark: L2/18-203 https://www.unicode.org/L2/L2018/18203-coded-hashes.pdf. 2018.

1

https://unicode.org/reports/tr51/#Longer_Term
https://unicode.org/reports/tr51/#Longer_Term
https://www.unicode.org/L2/L2016/16105r-unicode-image-hash.pdf
https://www.unicode.org/L2/L2016/16008r3-custom-emoji.pdf
https://www.unicode.org/review/pri408/
http://www.unicode.org/L2/L2019/19082-qid-emoji.pdf
https://www.unicode.org/L2/L2018/18203-coded-hashes.pdf
Sean Stewart

Introduction

Operating at the speed of language these days is a different beast than it was a

thousand years ago or even thirty years ago. Over the past ten years many apps have

employed popular custom-emote experiences (e.g. Discord, Slack, etc.) which has put

ESC vendors responsible for the entire operating system experience in a position where

they are unable to achieve interoperability for their customers. To do this, ESC

vendors are actively invested in finding ways to evolve the underlying

technology within the near future that help solve open-ended challenges of

this nature.

In addition to vendor goals, the ever-increasing customer demand for custom emotes

motivates this effort as well: language is a low bandwidth technology for us to express

our seemingly infinite prismatic feelings. While emoji encoded into the Unicode

Standard are intended for a global audience, the world is made up of subcultures with

their own rules, inside jokes, rituals, clothing, and practices. Language is fluid and

transient but emoji are “forever”. Reconciling the methodical formal process of the

Unicode Technical Committee with the ever changing looseness that is human minds

interacting with each other is increasingly important in a digital first world.

ESC vendors realize that encoding all possible, recognizable concepts as emoji within

the closed-ended Unicode standard is infeasible. Instead, ESC vendors wish to establish

an interchange where these “custom emoji” can be embedded directly within text—like

the experience already afforded by numerous chat platforms from varying vendors and

software publishers.

Therefore, the principal goal of this ad-hoc session is to discuss the prototyped

candidate mechanisms that will enable this enhanced emoji experience. The ESC

wishes to verbally review these mechanisms before vendor resources are allocated to

continued prototyping. Ultimately, we wish to converge on a standardized,

cross-platform, Unicode-compatible embedded image interchange to enable this

enhanced emoji experience both throughout and between adopting vendor

platforms.

Session Goals

1. Discuss new candidate mechanisms enabling custom emoji presentations

2. Aggregate feedback before embarking on drafting full-fledged proposals

3. Identify potential performance challenges in existing infrastructure impacted by

candidate mechanisms

4. Identify suitable image encodings and size restrictions for interchange (PNG,

SVG, native font-representations, etc.)

5. Identify appropriate compression if any (zlib, LZFSE, etc.)

2

6. Identify reasonable fall-back and “exception” experiences (emails, URLs, file

names, etc.)

7. Discuss any alternative mechanisms, improvements, or concerns not listed

High-Level Breakdown of Previous Investigations

Each of the previous investigations into mechanisms that enable “custom emoji” both

expressed appealing, forward-thinking directions while also uncovered certain

challenges including but not limited to extensibility, interoperability, stability, or

fall-back experience to name a few. This section breaks down the high-level benefits

and challenges belonging to the three discrete investigations that have already been

published and reviewed:

1. Unicode-Specified Emoji Customizations (L2/16-008R​3)

Overview: Establish a relatively extensible, light-weight, key-value-based

grammar using a reserved block of SMP tag characters that will supercede the

existing mechanisms present in UTS#51 for gender, skintone, and hair color

presentation modification.

a. Benefits

i. Supports a moderately extensible key/value syntax

ii. Encodes presentation customizations via Unicode-compatible tag

characters reserved specifically for the emoji feature

iii. Enables ESC to iterate on some emoji presentation features without

necessarily needing additional codepoint allocations from UTC

iv. Touches on then bleeding-edge compositional font features

b. Challenges

i. Sequence length currently limited to 16 tag characters

ii. Potentially confusing end-user fall-back experience when certain

key-values are not supported within a platform

iii. Some proposed keys still quantize presentation modification of

identity into gradated values (e.g. 6 hair styles) to save font space

with respect to glyph mappings

iv. Certain keys and values can be associated with only certain bases,

adding complexity around which emoji support which

customizations

v. Still technically requires a base “recommended general

interchange” and a registry of which presentation features are

supported by which vendors

3

https://www.unicode.org/L2/L2016/16008r3-custom-emoji.pdf

2. Coded Hashes of Arbitrary Images (L2/15-105R)

Overview: Establish a cryptographically-secure, SHA-256-hash-based,

unforgeable, global unique identifier representing an arbitrary, emoji-sized

image alongside its associated metadata that can be interchanged using a

sequence of 32 SMP tag characters.

a. Benefits

i. Enables fully open-ended emoji customization by relying on

(bitmap) image technologies

ii. Reasonable fall-back experience using existing emoji characters as

bases

b. Challenges

i. Raw image data is always in a separate location from the base

emoji

ii. Requires external registry of image mappings, pushing emoji

selection challenges to a third party entity or otherwise requires

vendor interoperability agreements

iii. Provides no accessibility guidelines for reading modified emoji

sequences

iv. Provides no “full picture” of how vendors should implement the

technology end-to-end

3. QID Emoji (PRI#408)

Overview: Establish a reasonably static unique identifier based on keys

consisting of numeric values allocated to unique concepts captured in the

semantic ontologies managed by Wikidata. These identifiers (called QIDs) can

be interchanged via SMP tag characters as a means to represent unique emoji

concepts that remain unstandardized by Unicode.

a. Benefits

i. Enables a discoverable means of representing numerous concepts

that may never become standardized emoji

ii. Leverages pre-existing semantic databases that assigns reasonably

stable, reasonably sized globally unique identifiers that also avoids

collision

4

https://www.unicode.org/L2/L2016/16105r-unicode-image-hash.pdf
https://www.unicode.org/review/pri408/
https://www.wikidata.org/wiki/Q43649390

iii. Provides potential solution to challenge of enforcing appropriate

base character fallback associations by citing “first-mover”

advantage (passes the onus to vendors)

b. Challenges

i. Delegates ID-to-concept mapping to the Wikimedia organization

ii. Demonstrates ID stability concerns

iii. Defines complexity around “visually despicable entities” (i.e. some

concepts make for good emoji; others may not)

iv. Lacks a means to modify presentation of generic concepts (i.e. a

QID may exist for a generic “teacher” profession but a specific QID

for a “male teacher” may not exist.)

v. Proposes potentially complex migration from open-ended QID

representation to Unicode-standardized RGI

vi. Provides several options for fall-back experience; several of which

are confusing to the end-user

Breakdown of New Candidate Mechanisms

The following mechanisms attempt to cherry-pick the most appealing aspects of these

prior investigations while also addressing some of their inherent issues by establishing

two discrete “custom emoji” representations: one for interchange, the other serves as

a lighter-weight reference.

The candidate mechanisms are still not without their own challenges however. One

major challenge remains related to the impact on string length resulting from

embedding raw image data. Without establishing a third-party image registrar, it

appears the only way forward to a future with “custom emoji” is to establish a

transport/encoding that enables the embedding of raw image data. To limit this

impact, an ancillary goal of these candidate mechanisms is to provide a secondary,

more preferred, lighter-weight, reference-based variant that platforms can use in place

of the full-fledged representation once the platform encounters a custom emoji.

5

1.🆕 External Representation of Emoji Customizations

Overview: When a document (or plainly, text) containing in-line custom emoji

is serialized (i.e. when text must be committed to storage or when text is

reasonably expected to escape a user’s device), this mechanism is used. The

Base64-encoded, raw image data is serialized by means of sequences of SMP

tag characters alongside a related base emoji and other necessary metadata.

This data is wholly encoded directly in the plain text, Unicode-encoded string.

This mechanism is not intended to be used everywhere a custom emoji is

shown: it is instead designed to be used as a platform-to-platform interchange

or during serialization only.

a. Benefits

i. Raw image data for custom emoji always accompanies base emoji

ii. Specification could still allow for URIs to remote resources if

deemed necessary

iii. Alleviates the need to establish third-party ID-to-image mappings

iv. Alleviates stability challenges inherent to delegating the generation

of a concept’s unique identifier to a third party

v. Demonstrates a reasonable fall-back mechanism by requiring

reasonably related emoji (sequences) used as base

vi. Has good fallback for accessibility technologies, by requiring

reasonably related emoji (sequences) used as base

vii. Enables open-ended customization through bitmaps, not requiring

presentation features be exhaustively added to Unicode

b. Challenges

i. Impact to string length resulting from embedded bitmap images

can be considerable as compared to outgoing emoji technologies

ii. Adds complexity around converting between “external” (more

expensive) and “internal” (light-weight) custom emoji

representations

iii. Stresses the notion of “plain text”

Encoding

If a modification to definition ED-14a emoji tag-sequence (ETS) allows for ZWJ

sequences present in the RGI, embedded customizations to most emoji tokens would

be possible. More encoding definitions used below are listed in UTS#51. It’s also

reasonable to discuss allowing customization of non-RGI ZWJ sequences, striking a

6

https://unicode.org/reports/tr51/#def_emoji_tag_sequence
https://unicode.org/reports/tr51/#Definitions

balance of open-ended customization while also being able to rely on standardized

characters for accessibility and fall-back support.

Example

raw_image_data := [\x{E0020}-\x{E007E}]+
custom_emoji_sequence := emoji_character | emoji_modifier_sequence |
emoji_presentation_sequence | emoji_zwj_sequence raw_image_data \x{E007F}

Prototype Information

Custom emoji PNG image

Resolution: 250px by 250px

Size: 10,653 bytes (~12KB)

Serialized directly within the string using

tag characters.

Base “toy” emoji-like character s⃣

External representation length Approx. 12KB⚠️

* This information was obtained through the analysis of a working prototype that

implements the External Representation. This specific toy example was created due to

image licensing concerns and the author’s inability to design good iconography.

7

2.🆕 Internal Representation of Emoji Customizations

Overview: Once a custom emoji has entered a user’s device by means of

instant message, email, or general document deserialization, the raw image

data representing custom emoji present in the document’s text are sent to an

on-demand emoji image cache maintained by the platform’s operating system.

A lighter-weight, time-based GUID is then assigned to the custom emoji, and in

place of the raw image data, this GUID can subsequently be used as a reference

to the cached custom emoji. The GUID, similarly, is represented by sequences

of SMP tag characters overall limiting the footprint of custom emojis by treating

their raw image data as “singleton” resources throughout the operating system.

This mechanism can only be used within the confines of a user’s device: once a

custom emoji is expected to leave the device, the more expensive, external

representation mechanism must be used.

a. Benefits

i. Mirrors all benefits of the External Representation above

ii. Presents a smaller footprint by using shorter identifiers that

reference singleton instances of the raw image data as opposed to

embedding the raw image data everywhere

iii. Slightly relieves the stress on the notion of “plain text” inherent to

the “external” representation

b. Challenges

i. Adds complexity around converting between “external” (more

expensive) and “internal” (light-weight) custom emoji

representations

ii. Requires a novel service maintained by platform that caches emoji

image content and assigns unique identifiers

Encoding

Similar to the “External Representation” above, this mechanism will make use of emoji

tag-sequences (ED-14a), but instead these tag sequences will encode the 128-bit

(16-byte) time-based GUID associated with the singleton raw image data stored in a

device-specific cache. Instead of the raw image data accompanying the base emoji

sequence, a “pointer” (the GUID) is used instead to minimize the impact of exchanging

raw image data.

8

https://unicode.org/reports/tr51/#def_emoji_tag_sequence

Example

image_uuid_pointer := \xE0003 [\x{E0020}-\x{E007E}]{32}
custom_emoji_sequence := emoji_character | emoji_modifier_sequence |
emoji_presentation_sequence | image_uuid_pointer \x{E007F}

The example will require more control / signal characters to distinguish the raw image

data from a UUID reference (as examples). So more thought must be given to the

example; it however suffices for the ad-hoc discussion to use U+E0003 to delimit the

beginning of a reference.

Prototype Information

Custom emoji PNG image

Resolution: 250px by 250px

Size: 10,653 bytes (~12KB)

Stored in some sort of highly-available

image cache in the platform.

Base “toy” emoji-like character s⃣

External representation length Approx. 144 bytes (36 UTF-32 chars)✅

Other Requirements

Custom Emote Image Cache

In order to alleviate the size-impact of transmitting embedded image data within text,

some sort of operating system service (daemon) that would ideally cache the image

data for these emotes. This same service would assign guaranteed unique identifiers

that serve as references (or pointers) to this singleton data, and when queried would

provide the original raw image data so that operating systems can render the

customizations.

This type of service is a new infrastructure that would likely not currently exist in

Unicode-compliant platforms.

9

