
 L2/22-229

 Proposed changes to Unicode properties and reports for source code handling

 To: PAG, ESC, UTC
 From: Robin Leroy, Mark Davis, Source code ad hoc working group
 Date: 2022-10-20

 The source code ad hoc working group was created by consensus 170-C2 of the UTC, on the
 recommendation of the Properties & Algorithms Group, as described in document L2/22-007R2 , section
 “Proposed Plan”, with Mark Davis as the chair.

 Its goals are the following (goals whose completion had already been reported at UTC #172 are struck
 through).

 A. Engage with MITRE to get more accurate wording into the CVE records.
 B. Assemble documentation providing guidance for avoiding spoo�ng issues. Make that available for

 review and feedback.
 C. Produce Unicode documentation, such as draft proposed updates of UAX #9 (“Bidi”, aka UBA), UAX

 #31 (“Identi�ers”), UTR #36 (“Security”), and UTS #39 (“Security Mechanisms”) using the
 information in B, and post for comment.

 D. In ICU, respond to tickets �led, and provide code snippets and/or APIs to implement utility functions
 that could be used directly to help avoid problems. (The implementations could also be ported to other
 languages.)

 E. Examine whether new properties and/or property values, or changes to values, would be useful.

 This document consists of proposed changes to properties, proposed changes to Unicode reports, and a
 proposed new Unicode Technical Standard. It ful�lls goals B, C, and E. Goal D will require the involvement
 of ICU-TC; we note however that work is in progress to provide reference implementations independent
 from ICU for some of the algorithms; this is alluded to in Section 5, Reference Implementations , in the
 proposed UTS #55.

https://www.unicode.org/L2/L2022/22016.htm#170-C2
https://www.unicode.org/L2/L2022/22007r2-avoiding-spoof.pdf

 2 Proposed changes to Unicode properties and reports for source code handling

 Contents
 Contents 2

 P. Proposed changes to properties 5

 Proposed changes to existing technical reports 6
 #9. Proposed changes to Unicode Standard Annex #9 7

 4 Bidirectional Conformance 7
 6.5 Conversion to Plain Text 7

 #14. Proposed changes to Unicode Standard Annex #14 8
 BK: Mandatory Break (A) (Non-tailorable) 8

 #31. Proposed changes to Unicode Standard Annex #31 9
 1 Introduction 9

 1.4 Conformance 10
 2 Default Identi�ers 10

 2.3 Layout and Format Control Characters 13
 2.3.1 Limited Contexts for Joining Controls 14
 2.3.2 Limitations 14

 3 Immutable Identi�ers 15
 4 Pattern Whitespace and Syntax 16

 4.1 Whitespace 17
 4.1.1 Bidirectional Ordering 18

 4.1.2 Required Spaces 19
 4.1.3 Contexts for Ignorable Format Controls 19

 4.2 Syntax 20
 4.2.1 User-De�ned Operators 21

 4.3 Pattern syntax 22
 7 Standard Pro�les 22

 7.1 Mathematical notation pro�le 23
 7.2 Emoji pro�le 23
 7.3 Default ignorable exclusion pro�le 25

 #39. Proposed changes to Unicode Technical Standard #39 26
 3.1.1 Joining Controls 26

 3.1.1.1 Limited Contexts for Joining Controls 27
 3.1.1.2 Limitations 27

 4 Confusable Detection 27
 #51. Proposed changes to Unicode Technical Standard #51 31

 4 Presentation Style 31

 #55. Proposed Unicode Technical Standard #55 33
 1. Introduction 33

 L2/22-229 3

 1.1 Source code spoo�ng 34
 1.1.1 Line break spoo�ng 34
 1.1.2 Spoo�ng using lookalike glyphs 35
 1.1.3 Spoo�ng using bidirectional reordering 36

 1.2 Usability issues 36
 1.2.1 Usability issues arising from lookalike glyphs 37
 1.2.2 Usability issues arising from bidirectional reordering 37

 1.3 Conformance 38
 2. Computer Language Speci�cations 38

 2.1 Identi�ers 38
 2.1.1 Normalization and Case 39
 2.1.2 Semantics Based on Case 40

 2.2 Whitespace and Syntax 41
 2.3 Language Evolution 43

 2.2.1 Changing Identi�er De�nitions 43
 2.2.2 Changing Normalization and Case 44

 3. Source code display 45
 3.1 Bidirectional Ordering 45

 3.1.1 Atoms 45
 3.1.2 Basic ordering 47

 3.1.2.1 Equivalent Isolate Insertion for the Basic Ordering 49
 3.1.3 Embedded languages 50
 3.1.4 Ordering for Literal Text with Interspersed Syntax 50

 3.1.4.1 Equivalent Isolate Insertion for the Ordering for Literal Text with Interspersed
 Syntax 53

 3.2 Blank and Invisible Characters 53
 3.2.1 Suggested representations for joiner controls and variation selectors 54
 3.2.2 Suggested representations for directional formatting characters 55

 3.3 Confusables 57
 3.4 Syntax Highlighting 57

 4. Tooling and diagnostics 58
 4.1 Confusability Mitigation Diagnostics 58

 4.1.1 Confusable Detection 58
 4.1.2 Mixed-Script Detection 60

 4.1.2.1 Identi�er chunks 60
 4.1.2.2 Mixed-script detection in identi�er chunks 61

 4.1.3 General Security Pro�le 62
 4.1.4 Multiple visual forms 62
 4.1.5 Extent of block comments 63
 4.1.6 Directional formatting characters 64

 4 Proposed changes to Unicode properties and reports for source code handling

 4.2 Conversion to Plain Text 64
 4.2.1 Unpaired brackets 66

 4.3 Identi�er Styles 67
 5. Reference Implementations 68

 L2/22-229 5

 P. Proposed changes to properties

 P/(A) Add the code points U+200C ZERO WIDTH NON-JOINER and U+200D ZERO WIDTH
 JOINER to Other_ID_Continue.

 Rationale: XID_Continue includes many invisible Default Ignorable characters . Notably, all 256 variation selectors
 are XID_Continue, and most of these have no visible e�ect in almost all contexts. See also L2/22-110R Addressing
 inconsistencies in UAX #31 .

 The ZWJ and ZWNJ characters are likewise invisible in most contexts, but they have important linguistic use. They
 were excluded from XID_Continue only because they happened to have General_Category Cf rather than Mn. Due to
 their linguistic usefulness in identi�ers, and to not being expected to terminate identi�ers or to be used in syntax, as
 punctuation and other general categories might, these characters belong in the default de�nition.

 Having them singled out in UAX #31 with a recommendation to add them only when applying contextual checks
 falsely suggests that default identi�ers do not otherwise contain invisible characters; it incentivizes implementers to not
 allow these characters in identi�ers, even though they allow the other default ignorables (this has been the case, among
 others, of Rust and Python).

 See also the review note under #31/2(C) in this document.

 Security implications: Any implementation that uses default identi�ers but does not apply the mechanisms described
 in UTS #39 is already a�ected by the spoo�ng potential of default ignorable XID_Continue characters such as
 variation selectors. By the stability policy, these characters must stay in XID_Continue. Adding ZWJ and ZWNJ does
 not meaningfully change the picture here.

 Following L2/22-087 Profile Changes in UAX #31 / UTS #39 , which moved ZWJ and ZWNJ out of the General
 Security Pro�le, any implementation which guards against Identi�er_Status=Restricted characters will mitigate issues
 arising from ZWJ and ZWNJ just as well as they already mitigate issues arising from variation selectors. For instance,
 the Rust compiler warns on such characters. Making such implementations allow these characters is therefore not a
 security risk.

 P/(B) Add the following code points to emoji-variation-sequences.txt: ⏫ ⏬ ⏰ ⛎ ✅ ✊ ✋ ✨ ❌
 ❎ ❔ ❕ ➕ ➖ ➗ ➰ ➿ (in the terminology of https://unicode.org/emoji/charts/text-style.html ,
 make them +EPSq).

 Rationale: These code points have the stable Pattern_Syntax property since Unicode Version 4.1.0 (2005), so they
 have been set aside for syntactic use. Having them emoji-only creates a compatibility problem when attempting to treat
 emoji consistently in the lexical structure of computer languages; see the proposed Section 7.2 of UAX #31 in this
 document. Many of these characters are supported by non-emoji fonts; for instance, the hands are supported by EB
 Garamond (✊ ✋), and all are supported by Segoe UI Symbol (⏫ ⏬ ⏰ ⛎ ✅ ✊ ✋ ✨ ❌ ❎ ❔ ❕ ➕ ➖ ➗ ➰ ➿).
 Many of them are also similar to characters that are +EPSq: compare ⏫ ⏬ (currently -EPSq) and ⏩ ⏪ (+EPSq), or ⛎
 (-EPSq) and ♈ ♉ ♊ ♋ ♌ ♍ ♎ ♏ ♐ ♑ ♒ ♓ (+EPSq).

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AXID_Continue%3A%5D%26%5B%3ADefault_Ignorable_Code_Point%3A%5D&g=&i=
https://www.unicode.org/L2/L2022/22110r-uax31-inconsistencies.pdf
https://www.unicode.org/L2/L2022/22087-uax31-uts39-profile-chg.pdf
https://unicode.org/emoji/charts/text-style.html

 6 Proposed changes to Unicode properties and reports for source code handling

 Proposed changes to existing technical reports

 In the following sections:

 Text from the reports is indented; proposed text additions are shown with yellow background , and
 text removals are struck through on a yellow background .

 L2/22-229 7

 #9. Proposed changes to Unicode Standard Annex #9

 4 Bidirectional Conformance

 Editor’s note: 4 unchanged paragraphs omitted.

 UAX9-C2 . The only permissible higher-level protocols are those listed in Section 4.3, Higher-Level
 Protocols . They are HL1 , HL2 , HL3 , HL4 , HL5 , and HL6 .

 #9/4 In Section 4, Bidirectional Conformance, amend the note under clause UAX9-C2 to refer to the new
 UTS, as follows.

 Note: The use of higher-level protocols introduces interchange problems, since the
 text may be displayed di�erently as plain text; see Section 6.5, Conversion to Plain
 Text . This can have security implications. Higher-level protocols are recommended
 wherever the semantics of segment order are more signi�cant than those of displayed
 order, as is the case for source text. For detailed examples for which use of HL4 would
 be recommended, see Section 4.3.1, HL4 Example1 for XML and Section 4.3.2, HL4
 Example2 for Program Text . For more information, see Section 3.1, Bidirectional
 Ordering, in Unicode Technical Standard #55, “Unicode Source Code Handling”
 [UTS55], as well as Unicode Technical Report #36, “Unicode Security
 Considerations” [UTR36].

 #9/6.5 Amend Section 6.5, Conversion to Plain Text to refer to the new UTS, as follows.

 6.5 Conversion to Plain Text

 For consistent appearance, when bidirectional text subject to a higher-level protocol is to be
 converted to Unicode plain text, formatting characters should be inserted to ensure that the display
 order resulting from the application of the Unicode Bidirectional Algorithm matches that speci�ed
 by the higher-level protocol. The same principle should be followed whenever text using a
 higher-level protocol is converted to marked-up text that is unaware of the higher-level protocol. For
 example, if a higher-level protocol sets the paragraph direction to 1 (R) based on the number of L
 versus R/AL characters, when converted to plain text the paragraph would be embedded in a
 bracketing pair of RLE..PDF formatting characters. If the same text were converted to HTML4.0
 the attribute dir = "rtl" would be added to the paragraph element.

 For program text, whose proper display is subject to higher-level protocols, such a conversion to
 plain text needs to be performed in a way that does not change the semantics of the program. It is
 recommended that computer languages allow for the insertion of some formatting characters in
 appropriate locations without changing the meaning of a program; for computer languages that
 allow this insertion, a procedure is speci�ed for conversion to plain text. See Section 4.1, Whitespace ,
 in Unicode Standard Annex #31, Identifiers and Syntax , and Section 4.2, Conversion to Plain Text ,
 in Unicode Technical Standard #55, Unicode Source Code Handling .

https://www.unicode.org/reports/tr9/#Bidirectional_Conformance
https://www.unicode.org/reports/tr9/#C2
https://www.unicode.org/reports/tr9/#Higher-Level_Protocols
https://www.unicode.org/reports/tr9/#Higher-Level_Protocols
https://www.unicode.org/reports/tr9/#HL1
https://www.unicode.org/reports/tr9/#HL2
https://www.unicode.org/reports/tr9/#HL3
https://www.unicode.org/reports/tr9/#HL4
https://www.unicode.org/reports/tr9/#HL5
https://www.unicode.org/reports/tr9/#HL6
https://www.unicode.org/reports/tr9/#Conversion_to_Plain_Text
https://www.unicode.org/reports/tr9/#Conversion_to_Plain_Text
https://www.unicode.org/reports/tr9/#HL4Example1
https://www.unicode.org/reports/tr9/#HL4Example2
https://www.unicode.org/reports/tr9/#HL4Example2
https://www.unicode.org/reports/tr41/tr41-30.html#UTR36
https://www.unicode.org/reports/tr9/#Conversion_to_Plain_Text

 8 Proposed changes to Unicode properties and reports for source code handling

 #14. Proposed changes to Unicode Standard Annex #14

 #31/5.1 In Section 5.1, Description of Line Breaking Properties, at the end of the description of class BK,
 add a note describing the security implications of line breaking behavior when displaying source code, and
 recommending that source code editors support all of class BK, as well as class NL.

 BK : Mandatory Break (A) (Non-tailorable)

 Explicit breaks act independently of the surrounding characters. No characters can be added to the
 BK class as part of tailoring, but implementations are not required to support the VT character.

 000B LINE TABULATION (VT)

 000C FORM FEED (FF)

 000B LINE TABULATION (VT)

 FORM FEED separates pages. The text on the new page starts at the beginning of the line. In some
 layout modes there may be no visible advance to a new “page”.

 2028 LINE SEPARATOR

 The text after the LINE SEPARATOR starts at the beginning of the line. This is similar to HTML

.

 2029 PARAGRAPH SEPARATOR

 The text of the new paragraph starts at the beginning of the line. This character de�nes a paragraph
 break, causing suitable formatting to be applied, for example, inter - paragraph spacing or �rst line
 indentation. LINE SEPARATOR, FF, VT as well as CR , LF and NL do not de�ne a paragraph
 break.

 Note: When displaying source code, failing to support all forms of the new line function
 can have security implications; for instance, executable code can appear commented out. It
 is therefore strongly recommended that source code editors support the VT character
 within the BK class, and support the NEL character within the NL class. See Unicode
 Technical Standard #55, Unicode Source Code Handling [UTS55].

https://www.unicode.org/reports/tr14/#BK
https://www.unicode.org/reports/tr14/#BK
https://www.unicode.org/reports/tr14/#CR
https://www.unicode.org/reports/tr14/#LF
https://www.unicode.org/reports/tr14/#NL

 L2/22-229 9

 #31. Proposed changes to Unicode Standard Annex #31

 #31/(A) Rename Unicode Standard Annex #31:

 UNICODE IDENTIFIER S AND PATTERN SYNTAX

 Rationale: “identi�ers and patterns” is an odd combination, and the scope of the annex is broader anyway. As clari�ed
 in L2/22-072R , that scope includes restricting the set of characters with syntactic use in any programming language.
 The UAX also includes hashtags; while it terms these “hashtag identi�ers”, “identi�ers” is not where most readers
 would look when trying to �nd a de�nition of hashtags.

 #31/1 Add a paragraph to the introduction clarifying that the scope extends to lexical analysis of computer
 languages writ large, not just identi�ers.

 1 Introduction

 A common task facing an implementer of the Unicode Standard is the provision of a parsing and/or
 lexing engine for identi�ers, such as programming language variables or domain names. There are
 also realms where identi�ers need to be de�ned with an extended set of characters to align better
 with what end users expect, such as in hashtags.

 To assist in the standard treatment of identi�ers in Unicode character-based parsers and lexical
 analyzers, a set of speci�cations is provided here as a basis for parsing identi�ers that contain
 Unicode characters. These speci�cations include:

 ● Default Identi�ers: a recommended default for the de�nition of identi�ers.
 ● Immutable Identi�ers: for environments that need a de�nition of identi�ers that does not

 change across versions of Unicode.
 ● Hashtag Identi�ers: for identi�ers that need a broader set of characters, principally for

 hashtags.

 These guidelines follow the typical pattern of identi�er syntax rules in common programming
 languages, by de�ning an ID_Start class and an ID_Continue class and using a simple BNF rule for
 identi�ers based on those classes; however, the composition of those classes is more complex and
 contains additional types of characters, due to the universal scope of the Unicode Standard.

 This annex also provides guidelines for the use of normalization and case insensitivity with
 identi�ers, expanding on a section that was originally in Unicode Standard Annex #15, “Unicode
 Normalization Forms” [UAX15].

 Lexical analysis of computer languages is also concerned with lexical elements other than identi�ers,
 and with white space and line breaks that separate them. This annex provides guidelines for the sets
 of characters that have such lexical signi�cance outside of identi�ers.

 The speci�cation in this annex provides a de�nition of identi�ers that is guaranteed to be backward
 compatible with each successive release of Unicode, but also allows any appropriate new Unicode
 characters to become available in identi�ers. In addition, Unicode character properties for stable
 pattern syntax are provided. The resulting pattern syntax is backward compatible and forward

https://www.unicode.org/L2/L2022/22072r-uax9-uax31-amd.pdf

 10 Proposed changes to Unicode properties and reports for source code handling

 compatible over future versions of the Unicode Standard. These properties can either be used alone
 or in conjunction with the identi�er characters.

 #31/1.4 Update the conformance section as follows.

 1.4 Conformance

 The following describes the possible ways that an implementation can claim conformance to this
 speci�cation.

 UAX31-C1 . An implementation claiming conformance to this specification shall identify the version
 of this specification.

 UAX31-C2 . An implementation claiming conformance to this specification shall describe which of the
 following requirements it observes:

 ● R1. Default Identi�ers
 ● R1a. Restricted Format Characters
 ● R1b. Stable Identi�ers
 ● R2. Immutable Identi�ers
 ● R3. Pattern_White_Space and Pattern_Syntax Characters
 ● R3a. Pattern_White_Space Characters
 ● R3b. Pattern_Syntax Characters
 ● R3c. Operator Identi�ers
 ● R4. Equivalent Normalized Identi�ers
 ● R5. Equivalent Case-Insensitive Identi�ers
 ● R6. Filtered Normalized Identi�ers
 ● R7. Filtered Case-Insensitive Identi�ers
 ● R8. Hashtag Identi�ers

 Note: Meeting requirement R3 is equivalent to meeting requirements R3a and R3b.

 2 Default Identi�ers

 Editor’s note: 11 unchanged paragraphs and Table 2 omitted.

 #31/2(A) Explicitly allow for character sequences in the sets used by default identi�ers. Refer to standard
 pro�les.

 UAX31-R1 . Default Identifiers: To meet this requirement, to determine whether a string is an
 identifier an implementation shall choose either UAX31-R1-1 or UAX31-R1-2.

 UAX31-R1-1 . Use definition UAX31-D1, setting Start and Continue to the properties XID_Start
 and XID_Continue, respectively, and leaving Medial empty.

 UAX31-R1-2 . Declare that it uses a profile of UAX31-R1-1 and define that profile with a precise
 specification of the characters and character sequences that are added to or removed from Start,
 Continue, and Medial and/or provide a list of additional constraints on identifiers.

 L2/22-229 11

 Note : Such a speci�cation may incorporate a reference to one or more of the
 standard pro�les described in Section 7, Standard Profiles .

 One such pro�le may be to use the contents of ID_Start and ID_Continue in place of XID_Start
 and XID_Continue, for backward compatibility.

 Another such pro�le would be to include some set of the optional characters, for example:

 ● Start := XID_Start, plus some characters from Table 3

 ● Continue := Start + XID_Continue, plus some characters from Table 3b

 ● Medial := some characters from Table 3a

 Note: Characters in the Medial class must not overlap with those in either the Start
 or Continue classes. Thus, any characters added to the Medial class from Table 3a
 must be be checked to ensure they do not also occur in either the newly de�ned
 Start class or Continue class.

 Beyond such minor modi�cations, pro�les could also be used to signi�cantly extend the character
 set available in identi�ers. In so doing, care must be taken not to unintentionally include undesired
 characters, or to violate important invariants.

 An implementation should be careful when adding a property-based set to a pro�le.

 For example, consider a pro�le that adds subscript and superscript digits and operators in order to
 support technical notations (for example, identi�ers such as the Assyriological dun₃⁺, the chemical
 Ca²⁺_concentration, the mathematical xₖ₊₁ or f⁽⁴⁾, or the phonetic daan⁶). That pro�le may be
 described as adding the following set to XID_Continue:

 [⁽₍⁾₎⁺₊⁼₌⁻₋⁰₀¹₁²₂³₃⁴₄⁵₅⁶₆⁷₇⁸₈⁹₉].

 Note: The above list is for illustration only. A standard pro�le is provided to
 support the use of mathematical notation in identi�ers. See Section 7.1,
 Mathematical notation profile .

 If instead of listing these characters explicitly, the pro�le had chosen to use properties or
 combinations of properties, that might result in including undesired characters.

 For example, \p{General_Category=Other_Number} is the general category set containing the
 subscript and superscript digits. But it also includes the compatibility characters [⑴🄂⒈], which are
 not needed for technical notations, and are very likely inappropriate for identi�ers—on multiple
 counts.

 On the other hand, a language that allows currency symbols in identi�ers could have
 \p{General_Category=Currency_Symbol} as a pro�le, since that property matches the intent.

 Similarly, a pro�le based on adding entire blocks is likely to include unintended characters, or to
 miss ones that are desired. For the use of blocks see Annex A, Character Blocks , in [UTS18].

 De�ning a pro�le by use of a property also needs to take account of the fact that unless the property
 is designed to be stable (such as XID_Continue), code points could be removed in a future version

 12 Proposed changes to Unicode properties and reports for source code handling

 of Unicode. If the pro�le also needs stable identi�ers (backwards compatible), then it must take
 additional measures. See UAX31-R1b Stable Identifiers .

 #31/2(B) Qualify the need for closure under normalization.

 Implementations that require identi�er closure under normalization should ensure that any custom
 pro�le preserves identi�er closure under the chosen normalization form. See Section 5.1.3, Identifier
 Closure Under Normalization . When de�ning a pro�le, it is also critical to ensure that it is
 compatible with the normalization form chosen for the identi�ers. The example cited above
 regarding subscripts and superscripts preserves identi�er closure under Normalization Forms C and
 D, but not under Forms KC and KD. Under NFKC and NFKD, the subscript and superscript
 parentheses and operators normalize to their ASCII counterparts. If an implementation that uses
 this pro�le relies on identi�er closure under normalization, it A language using that pro�le should
 conform to UAX31-R4 using NFC, not NFKC.

 #31/2(C) Remove requirement UAX31-R1a. Restricted Format Characters, and the reference to it in the
 discussion of pro�les of UAX31-R1. Add a note about spoo�ng.

 Note: While default identi�ers are less open-ended than immutable identi�ers, they
 are still subject to spoo�ng issues arising from invisible characters, visually identical
 characters, or bidirectional reordering causing distinct sequences to appear in the
 same order. Where spoo�ng concerns are relevant, the mechanisms described in
 Unicode Technical Standard #39, Unicode Security Mechanisms [UTS39], should
 be used. For the speci�c case of programming languages, recommendations are
 provided in Unicode Technical Standard #55, Unicode Source Code Handling
 [UTS55].

 Implementations de�ning a pro�le that includes the ZERO WIDTH JOINER or ZERO WIDTH
 NON-JOINER characters should implement the requirement UAX31-R1a .

 UAX31-R1a . Restricted Format Characters: This clause has been removed. This requirement
 remains as part of the more comprehensive General Security Profile defined in Unicode Tehnical
 Specification #39, Unicode Security Mechanisms. To meet this requirement, an implementation shall
 choose either UAX31-R1a-1 or UAX31-R1a-2 .

 UAX31-R1a-1 . dDefine a profile for UAX31-R1 which allows format characters, but restricts their
 use to the contexts A1 , A2 , and B defined in Section 2.3.1, Limited Contexts for Joining Controls
 Layout and Format Control Characters .

 UAX31-R1a-2 . Define a profile for UAX31-R1 which allows format characters, but imposes further
 restrictions on the context for ZWJ or ZWNJ in addition to those required by UAX31-R1a-1 , such as
 by limiting the scripts allowed or limiting the occurrence of ZWJ or ZWNJ to specific character
 combinations, supplying a clear specification for such further restrictions.

 Note: The ZWJ and ZWNJ characters in UAX31-R1a are not in XID_Continue;
 as a result, meeting the requirement UAX31-R1 Default Identifiers does not require
 supporting UAX31-R1a Restricted Format Characters .

 The ZWJ and ZWNJ characters are invisible in most contexts, and are only added
 to Default Identi�ers in a declared pro�le. They have security and usability

 L2/22-229 13

 implications that make them inappropriate for implementations that do not
 carefully consider those implications. For example, they should not be added via a
 pro�le where spoo�ng concerns are paramount, such as top-level domain names.

 Review note: Requirement R1a was unusually complex compared to the other requirements and to
 rules usually expressed in lexical analysis. At the same time, it did not meaningfully address security
 concerns unless it was paired with other mechanisms, such as the exclusion of default ignorable code
 points (default ignorables include the variation selectors, which are part of default identifiers). The
 recommendation is to make use of the mechanisms defined in UTS #39, which include the restrictions
 from UAX31-R1a.

 #31/2.3(A) Adapt the discussion of joining controls to re�ect the changes to properties and the removal of
 requirement R1a. This change resolves action item 165-A42 .

 2.3 Layout and Format Control Characters

 Certain Unicode characters are known as Default_Ignorable_Code_Points. These include variation
 selectors and characters used to control joining behavior, bidirectional ordering control, and
 alternative formats for display (having the General_Category value of Cf). The recommendation is
 to permit them in identi�ers only in special cases, listed below. The use of default-ignorable
 characters in identi�ers is problematic al , �rst because the e�ects they represent are stylistic or
 otherwise out of scope for identi�ers, and second because the characters themselves often have no
 visible display. It is also possible to misapply these characters such that users can create strings that
 look the same but actually contain di�erent characters, which can create security problems. In such
 environments where spoo�ng concerns are paramount, such as top-level domain names , identi�ers
 should also be limited to characters that are case-folded and normalized with the NFKC_Casefold
 operation. For more information, see Section 5, Normalization and Case and UTR #36: Unicode
 Security Considerations [UTR36].

 While not all Default_Ignorable_Code_Points are in XID_Continue, the variation selectors and
 joining controls are included in XID_Continue. The se variation selectors are used in standardized
 variation sequences, sequences from the Ideographic Variation Database, and emoji variation
 sequences. The joining controls are used in the orthographies of some languages, as well as in emoji
 ZWJ sequences. However, these characters they are subject to the same considerations as for other
 Default_Ignorable_Code_Points listed above. Because variation selectors and joining controls
 request a di�erence in display but do not guarantee it, they do not work well in general-purpose
 identi�ers. A pro�le should be used to remove them from general-purpose identi�ers (along with
 other Default_Ignorable_Code_Points), unless their use is required in a particular domain, such as
 in a pro�le that includes emoji. For such a pro�le it may be useful to explicitly retain or even add
 certain Default_Ignorable_Code_Points in the identi�er syntax.

 For programming language identi�ers, spoo�ng issues are more comprehensively addressed by
 higher-level diagnostics rather than at the syntactic level. See Unicode Technical Standard #55,
 Source Code Handling [UTS55].

 Comparison. In any environment where the display form for identi�ers di�ers from the form used
 to compare them, Default_Ignorable_Code_Points should be ignored for comparison. For
 example, this applies to case-insensitive identi�ers . , and in particular, for any For more information,
 see Section 1.3, Display Format .

https://www.unicode.org/cgi-bin/GetL2Ref.pl?165-A42

 14 Proposed changes to Unicode properties and reports for source code handling

 Review note: The last clause of the penultimate sentence of the paragraph above was turned into the
 note below.

 Note: An implementation of UAX31-R4 and UAX31-R5 (Equivalent Case and
 Compatibility-Insensitive Identi�ers) that uses the NFKC_Casefold operation , which for
 comparison ignores Default_Ignorable_Code_Points.

 The General Security Pro�le de�ned in Section 3.1, General Security Pro�le for Identi�ers, in UTS
 #39, Unicode Security Mechanisms [UTS39], excludes all Default_Ignorable_Code_Points by
 default, including variation selectors.

 In addition, a standard pro�le is provided to exclude all Default_Ignorable_Code_Points; see
 Section 7, Standard Profiles . Note however that, even if Default_Ignorable_Code_Points are
 excluded, spoo�ng issues remain unless the mechanisms in UTS #39 are utilized.

 #31/2.3(B) Remove the transition to Section 2.3.1, as well as Section 2.3.1 and Section 2.3.2, which are
 moved to UTS #39.

 For the above reasons, default-ignorable characters are normally excluded from Unicode identi�ers.
 However, visible distinctions created by certain format characters (particularly the Join_Control
 characters) are necessary in certain languages. A blanket exclusion of these characters makes it
 impossible to create identi�ers with the correct visual appearance for common words or phrases in
 those languages.

 Identi�er systems that attempt to provide more natural representations of terms in "modern,
 customary usage" should allow these characters in input and display, but limit them to contexts in
 which they are necessary. The term modern customary usage includes characters that are in common
 use in newspapers, journals, lay publications; on street signs; in commercial signage; and as part of
 common geographic names and company names, and so on. It does not include technical or
 academic usage such as in mathematical expressions, using archaic scripts or words, or pedagogical
 use (such as illustration of half-forms or joining forms in isolation), or liturgical use.

 The goals for such a restriction of format characters to particular contexts are to:

 ● Allow the use of these characters where required in normal text

 ● Exclude as many cases as possible where no visible distinction results

 ● Be simple enough to be easily implemented with standard mechanisms such as regular
 expressions

 2.3.1 Limited Contexts for Joining Controls

 Editor’s note: Remove the entirety of Section 2.3.1, omitted here for the sake of brevity.

 2.3.2 Limitations

 While the restrictions in A1 , A2 , and B greatly limit visual confusability, they do not prevent it. For
 example, because Tamil only uses a Join_Control character in one speci�c case, most of the
 sequences these rules allow in Tamil are, in fact, visually confusable. Therefore based on their
 knowledge of the script concerned, implementations may choose to have tighter restrictions than

 L2/22-229 15

 speci�ed in Section 2.3.1, Limited Contexts for Joining Controls . There are also cases where a joiner
 preceding a virama makes a visual distinction in some scripts. It is currently unclear whether this
 distinction is important enough in identi�ers to warrant retention of a joiner. For more
 information, see UTR #36: Unicode Security Considerations [UTR36].

 Performance. Parsing identi�ers can be a performance-sensitive task. However, these characters are
 quite rare in practice, thus the regular expressions (or equivalent processing) only rarely would need
 to be invoked. Thus these tests should not add any signi�cant performance cost overall.

 Comparison. Typically the identi�ers with and without these characters should compare as
 equivalent, to prevent security issues. See Section 2.4, Specific Character Adjustments .

 #31/2.4 Remove references to the Join_Control characters from Section 2.4.

 Rationale: These characters are now part of default identi�ers.

 #31/3(A) Change the de�nition of “pro�le” in UAX31-R2 to allow for arbitrary customization, as in
 UAX31-R1.

 3 Immutable Identi�ers

 Editor’s note: six unchanged paragraphs omitted.

 UAX31-R2 . Immutable Identifiers: To meet this requirement, an implementation shall choose
 either UAX31-R2-1 or UAX31-R2-2.

 UAX31-R2-1 . Define identifiers to be any non-empty string of characters that contains no character
 having any of the following property values:

 ● Pattern_White_Space=True
 ● Pattern_Syntax=True
 ● General_Category=Private_Use, Surrogate, or Control
 ● Noncharacter_Code_Point=True

 UAX31-R2-2 . Declare that it uses a profile of UAX31-R2-1 and define that profile with a precise
 specification of the characters and character sequences that are added to or removed from the sets of code
 points defined by these properties and/or provide a list of additional constraints on identifiers .

 #31/3(B) Add a note to UAX31-R2, recommending care when migrating from immutable identi�ers to
 default identi�ers.

 Note: The expectation from an implementation meeting requirement UAX31-R2
 Immutable Identi�ers is that it will never change its de�nition of identi�ers; in particular,
 that it will not switch to UAX31-R1 Default Identi�ers. However, the downsides of
 normalization issues and the inapplicability of measures guarding against spoo�ng attacks
 may warrant such a change in de�nition. In such circumstances, a pro�le should be used to
 extend XID_Start and XID_Continue to cover likely existing usages. See Section 2.3,
 Language Evolution , in Unicode Technical Standard #55, Unicode Source Code Handling
 [UTS55].

 16 Proposed changes to Unicode properties and reports for source code handling

 #31/4(A) Rename section 4:

 4 Pattern Whitespace and Syntax

 Most programming languages have a concept of whitespace as part of their lexical structure, as well
 as some set of characters that are disallowed in identi�ers but have syntactic use, such as arithmetic
 operators. Beyond general programming languages, there are also many circumstances where
 software interprets patterns that are a mixture of literal characters, whitespace, and syntax
 characters. Examples include regular expressions, Java collation rules, Excel or ICU number
 formats, and many others. In the past, regular expressions and other formal languages have been
 forced to use clumsy combinations of ASCII characters for their syntax. As Unicode becomes
 ubiquitous, some of these will start to use non-ASCII characters for their syntax: �rst as more
 readable optional alternatives, then eventually as the standard syntax.

 #31/4(B) Change its second paragraph as follows:

 For forward and backward compatibility, it is advantageous to have a �xed set of whitespace and
 syntax code points for use in patterns . This follows the recommendations that the Unicode
 Consortium has made regarding completely stable identi�ers, and the practice that is seen in XML
 1.0, 5th Edition or later [XML]. (In particular, the Unicode Consortium is committed to not
 allocating characters suitable for identi�ers in the range U+2190..U+2BFF, which is being used by
 XML 1.0, 5th Edition.)

 #31/4(C) Move the following two paragraphs from further down in the section to after the second
 paragraph, and amend the resulting �fth paragraph, as follows:

 Review note: the following two paragraphs have been moved up from what is now section 4.3.

 As of Unicode 4.1, two Unicode character properties are de�ned to provide for stable syntax:
 Pattern_White_Space and Pattern_Syntax. Particular pattern languages may, of course, override
 these recommendations, for example, by adding or removing other characters for compatibility with
 ASCII usage.

 For stability, the values of these properties are absolutely invariant, not changing with successive
 versions of Unicode. Of course, this does not limit the ability of the Unicode Standard to encode
 more symbol or whitespace characters, but the syntax and whitespace code points recommended for
 use in formal languages patterns will not change.

 #31/4(D) Split UAX31-R3 into a whitespace and a syntax part, each treated in its own section, 4.1 and 4.2
 respectively.

 UAX31-R3 . Pattern_White_Space and Pattern_Syntax Characters: To meet this
 requirement, an implementation shall meet both UAX31-R3a and UAX31-R3b.

 Note: When meeting this requirement UAX31-R3 with no pro�le , all characters
 except those that have the Pattern_White_Space or Pattern_Syntax properties are
 available for use as in the de�nition of identi�ers or literals.

 L2/22-229 17

 Review note: the baseline shown for each of the UAX31-R3a and UAX31-R3b requirements is the
 relevant part of the former UAX31-R3; as there is some overlap, some text that was replicated is
 marked as unmodified.

 4.1 Whitespace

 #31/4.1(A) Clarify the meaning of “interpreted as whitespace”, as follows.

 Many formal languages treat two categories of whitespace di�erently: horizontal space (such as the
 ASCII horizontal tabulation and space), and ends of line.

 When a syntax supports non-ASCII characters, it is useful to consider a third category: ignorable
 format controls. Ignorable format controls may be inserted between lexical elements in order to
 resolve bidirectional ordering issues, as described in Section 4.1.1, Bidirectional Ordering . The
 insertion of these characters does not change the meaning of the program; in particular, they are
 not spacing characters. See Section 4.1.2, Required Spaces .

 Note: Allowing for the insertion of ignorable format controls does not prevent spoo�ng
 based on bidirectional reordering. In order to guard against such spoo�ng,
 implementations should make use of the higher-level protocols and conversion to plain text
 described in Unicode Standard Annex #9 Unicode Bidirectional Algorithm [UAX9]. See
 Unicode Technical Standard #55, Unicode Source Code Handling [UTS55].

 Note: Since these characters are allowed only where a boundary would, in their absence,
 exist between lexical elements, an implementation could ignore them when lexing, and
 then consider as illegal any lexical element that contains them. An exception must be made
 for comments and strings, which should be able to freely contain these characters.

 Implementations should also allow these characters in other contexts where reordering issues could
 arise. See Unicode Technical Standard #55, Unicode Source Code Handling [UTS55].

 UAX31-R3 a . Pattern_White_Space Characters: To meet this requirement, an implementation
 shall choose either UAX31-R3 a -1 or UAX31-R3 a -2.

 UAX31-R3 a -1 . Use Pattern_White_Space characters as all and only those the set of characters
 interpreted as whitespace in parsing . , as follows:

 1. A sequence of one or more of any of the following characters shall be interpreted as a sequence
 of one or more end of line:

 a. U+000A (line feed);
 b. U+000B (vertical tabulation);
 c. U+000C (form feed);
 d. U+000D (carriage return);
 e. U+0085 (next line);
 f. U+2028 LINE SEPARATOR;
 g. U+2029 PARAGRAPH SEPARATOR.

 2. The Pattern_White_Space characters with the property Default_Ignorable_Code_Point shall
 be treated as ignorable format controls; they shall be allowed in the contexts I1 , I2 , and I3
 defined in Section 4.1.3, Contexts for Ignorable Format Controls, where their insertion shall
 have no effect on the meaning of the program.

 18 Proposed changes to Unicode properties and reports for source code handling

 3. All other characters in Pattern_White_Space shall be interpreted as horizontal space.

 UAX31-R3 a -2 . Declare that it uses a profile of UAX31-R3 a -1 and define that profile with a precise
 specification of the characters that are added to or removed from the set s of code points defined by these
 properties the Pattern_White_Space property, and of any changes to the criteria under which a
 character or sequence of characters is interpreted as an end of line, as ignorable format controls, or as
 horizontal space .

 Note: The characters to be treated as ignorable format controls under item 2 of
 UAX31-R3a-1 are U+200E LEFT-TO-RIGHT MARK and U+200F RIGHT-TO-LEFT
 MARK. The characters to be treated as horizontal space under item 4 of UAX31-R3a-1
 are U+0020 SPACE and U+0009 (horizontal tabulation).

 Note: The characters LEFT-TO-RIGHT MARK and RIGHT-TO-LEFT MARK are two
 of the Implicit Directional Marks de�ned by Section 2.6, Implicit Directional Marks , in
 Unicode Standard Annex #9, Unicode Bidirectional Algorithm [UAX9]. The third one,
 ARABIC LETTER MARK, is used far less frequently than the others, even in Arabic text;
 its behavior di�ers subtly from RIGHT-TO-LEFT MARK in ways that are not usually
 relevant to the ordering of source code. If it is added to the set of whitespace characters by a
 pro�le, it is interpreted as an ignorable format control.

 Note: Failing to interpret all characters listed in item 1 of UAX31-R3a-1 as line
 terminators would lead to spoo�ng issues; see Unicode Technical Standard #55, Unicode
 Source Code Handling [UTS55].

 #31/4.1(B) Promote the long note about bidirectional ordering into two subsections of 4.1.

 4.1.1 Bidirectional Ordering

 Note: This r R equirement UAX31-R3a is relevant even for languages that do not use immutable
 identi�ers, or that have lexical structure outside of the categories of syntax and whitespace
 characters. In particular, the set of Pattern_White_Space characters is chosen to make it possible to
 correct bidirectional ordering issues that can arise in a wide range of programming languages,
 visually obfuscating the logic of expressions. In the absence of higher-level protocols (see Section
 4.3, Higher-Level Protocols, in [UAX9]), tokens may be visually reordered by the Unicode Bidi
 Algorithm in bidirectional source text, producing a visual result that conveys a di�erent logical
 intent. To remedy that, two implicit directional marks are among Pattern_White_Space characters;
 if these can be freely inserted between tokens, implicit directional marks consistent with the
 paragraph direction can be used to ensure that the visual order of tokens matches their logical order.

 Review note: one paragraph moved to 4.1.2.

 Example: Consider the following two lines:

 (1) x + tav == 1

 (2) x + 1 == תו

 Internally, they are the same except that the ASCII identi�er tav in line (1) is replaced by the
 Hebrew identi�er תו in line (2). However, with a plain text display (with left-to-right paragraph
 direction) the user will be misled, thinking that line (2) is a comparison between (x + 1) and תו ,

 L2/22-229 19

 whereas it is actually a comparison between (x + תו) and 1. The misleading rendering of (2) occurs
 because the directionality of the identi�er תו in�uences subsequent weakly-directional tokens;
 inserting a left-to-right mark after the identi�er תו stops it from in�uencing the remainder of the
 line, and thus yields a better rendering in plain text with left-to-right paragraph direction, as
 demonstrated in the following table, wherein characters whose ordering is a�ected by that identi�er
 have been highlighted.

 Underlying representation Display (LTR
 paragraph direction)

 x + 1 = = ו ת x + 1 == תו

 x + ו ת ⟨LRM⟩ = = 1 x + 1 == תו

 The simplest automatic mechanism for placement of LRM characters is around every identi�er,
 string literal, and comment that contains RTL characters. However, this can also be reduced in
 some cases. See Section 4.2, Conversion to Plain Text , in Unicode Technical Standard #55, Unicode
 Source Code Handling .

 Note: Left-to-right marks are used for this purpose when the main direction is
 left–to-right. Correspondingly, right-to-left marks are used when the main direction is
 right-to-left.

 4.1.2 Required Spaces

 Review note: This paragraph was moved from 4.1.1.

 Since the implicit directional marks are nonspacing, where a syntax requires a sequence of spaces
 (such as between identi�ers), it should require that at least one of those be neither
 LEFT-TO-RIGHT MARK nor RIGHT-TO-LEFT MARK. The visual appearance would
 otherwise be too confusing to readers: “else⟨LRM⟩if” would be seen by the user as “elseif” but
 parsed by the compiler as “else if”, whereas “else⟨LRM⟩ if” would be seen and parsed as “else if” and
 be harmless.

 4.1.3 Contexts for Ignorable Format Controls

 Implementations should at least allow for the insertion of ignorable format controls in the
 following contexts, illustrated by examples wherein the ignorable format control is represented by
 ⟨LRM⟩.

 I1 . Adjacent to lexical horizontal space.

 Example: Between the following keywords separated by a space:

 else ⟨LRM⟩ if

 Note: The phrase “lexical horizontal space” refers to characters that are not merely in the
 set of horizontal space characters, but are also in a context where they are lexically spaces.
 For instance, it does not include horizontal space characters in string literals.
 Implementations should permit these characters in string literals, but in such a literal, their
 insertion has an e�ect on the meaning of the program, as they are then present in the string
 represented by that literal.

 20 Proposed changes to Unicode properties and reports for source code handling

 I2 . As optional space, that is, wherever horizontal space could be inserted without changing the
 meaning of the program.

 Example: Before the plus sign in the following arithmetic expression:

 x ⟨LRM⟩ +1

 I3 . At the start and end of a lexical line.

 Example: Before the word import in the following line of Python:

 ⟨LRM⟩ import unicodedata

 Note: As is the case for I1, the start and end of a “lexical line” in I3 does not include the
 start and end of a line in a multiline string literal, respectively. This context is distinct from
 I2 in languages where leading or trailing spaces are meaningful.

 #31/4.2(A) Clarify the meaning of “syntactic use”, as follows.

 4.2 Syntax

 The lexical structure of formal languages involves characters that are not allowed in identi�ers and
 are not whitespace, but that have some special lexical signi�cance other than being literal characters
 (such as in string literals) or ignored (such as in comments). These are referred to in this document
 as characters with syntactic use .

 Examples of characters with syntactic use include:

 ● decimal marks in numeric literals;
 ● arithmetic operators, such as +, -, *, /;
 ● parentheses and other brackets;
 ● characters in comment delimiters, such as #, /*, --, or ⍝;
 ● quotation marks delimiting strings;
 ● characters such as \ introducing escape sequences.

 It is useful to bound the set of characters with syntactic use. In particular, this allows for backward
 compatibility of literals (including patterns), as described in Section 4.3, Pattern Syntax . It also
 provides a stable set of characters that can be used for user-de�ned operators.

 UAX31-R3 b . Pattern_Syntax Characters: To meet this requirement, an implementation shall
 choose either UAX31-R3 b -1 or UAX31-R3 a -2.

 UAX31-R3 b -1 . and u U se Pattern_Syntax characters as all and only those the set of characters with
 syntactic use. The following sets shall be disjoint:

 1. characters allowed in identifiers;
 2. characters treated as whitespace;
 3. characters with syntactic use;

 UAX31-R3 b -2 . Declare that it uses a profile of UAX31-R3-1 and define that profile with a precise
 specification of the characters that are added to or removed from the set s of code points defined by the
 Pattern_Syntax property these properties .

 L2/22-229 21

 Note: When meeting requirement UAX31-R3b, characters allowed in identi�ers may be
 given special signi�cance in the syntax even when they are not part of identi�ers.

 For instance, in a language which uses the C syntax for hexadecimal literals and meets
 requirement UAX31-R1, the literal 0xDEADBEEF consists entirely of identi�er characters,
 yet the 0x has special signi�cance in the syntax, and the characters after that pre�x are
 subject to special restrictions (only 0 through 9 and A through F are allowed).

 However, characters outside of those allowed in identi�ers, those treated as whitespace, and
 the set [:Pattern_Syntax:] cannot be given special signi�cance in the syntax. For instance, if
 a language meets requirements UAX31-R1 and UAX31-R3 with no pro�le and allows for
 user-de�ned operators, that language cannot allow the user to de�ne an operator 🐈.

 Characters outside of those allowed in identi�ers, those treated as whitespace, and the set
 [:Pattern_Syntax:] can still be allowed in a program, for instance, as part of string literals or
 comments.

 4.2.1 User-De�ned Operators

 Some programming languages allow for user-de�ned operators. When meeting requirement
 UAX31-R3b, the set of characters that can be allowed in operators is limited; however, that leaves
 open the exact de�nition of operators. In order to avoid ambiguities in lexical analysis, operators
 should not be allowed to contain characters that may be found at the beginning of an identi�er or
 literal; for instance, +1 or −x should not be operators.

 The following de�nition avoids such interactions with default identi�ers and with numbers.

 UAX31-R3c. Operator Identifiers: To meet this requirement, an implementation shall meet
 requirement UAX31-R3b Pattern_Syntax Characters, and, to determine whether a string is an
 operator, it shall choose either UAX31-R3c-1 or UAX31-R3c-2.

 UAX31-R3c-1. Use definition UAX31-D1, setting Start to be the set of characters with syntactic use,
 setting Continue to be the union of the set of characters with syntactic use and the set of characters with
 General_Category Mn, and leaving Medial empty.

 UAX31-R3c-2. Declare that it uses a profile of UAX31-R3c-1 and define that profile with a precise
 specification of the characters and character sequences that are added to or removed from Start,
 Continue, and Medial and/or provide a list of additional constraints on operators.

 Note: The set of Pattern_Syntax characters, which is the default for characters with
 syntactic use, contains some emoji. Implementations may wish to remove them, either to
 allow for their use in identi�ers, or to reduce potential confusion arising from ⚽ being an
 operator but 🏉 not being one. This may be done using the standard pro�le for
 UAX31-R3b Pattern_Syntax Characters de�ned in Section 7.2, Emoji Pro�le.

 Nonspacing marks are included in Continue because they are part of the representation for
 many operators, such as some of the negated operators.

 When meeting this requirement, a pro�le is likely to be needed depending on the speci�cs of the
 syntax. For instance, a programming language wherein string literals start with " should remove that
 character from the characters allowed in operators.

 22 Proposed changes to Unicode properties and reports for source code handling

 #31/4.3 Move the discussion speci�c to pattern languages to a new subsection titled accordingly.

 4.3 Pattern syntax

 With a �xed set of whitespace and syntax code points, a pattern language can then have a policy
 requiring all possible syntax characters (even ones currently unused) to be quoted if they are literals.
 Using this policy preserves the freedom to extend the syntax in the future by using those characters.
 Past patterns on future systems will always work; future patterns on past systems will signal an error
 instead of silently producing the wrong results. Consider the following scenario, for example.

 In version 1.0 of program X, '≈' is a reserved syntax character; that is, it does not perform
 an operation, and it needs to be quoted. In this example, '\' quotes the next character; that
 is, it causes it to be treated as a literal instead of a syntax character. In version 2.0 of
 program X, '≈' is given a real meaning—for example, “uppercase the subsequent
 characters”.

 ● The pattern abc...\≈...xyz works on both versions 1.0 and 2.0, and refers to the
 literal character because it is quoted in both cases.

 ● The pattern abc...≈...xyz works on version 2.0 and uppercases the following
 characters. On version 1.0, the engine (rightfully) has no idea what to do with ≈.
 Rather than silently fail (by ignoring ≈ or turning it into a literal), it has the
 opportunity to signal an error.

 Review note: The two paragraphs starting with “As of Unicode 4.1…” and “For stability…” have been
 moved from here.

 When generating rules or patterns, all whitespace and syntax code points that are to be literals
 require quoting, using whatever quoting mechanism is available. For readability, it is recommended
 practice to quote or escape all literal whitespace and default ignorable code points as well.

 Consider the following example, where the items in angle brackets indicate literal
 characters:

 a<SPACE>b → x<ZERO WIDTH SPACE>y + z;

 Because <SPACE> is a Pattern_White_Space character, it requires quoting. Because
 <ZERO WIDTH SPACE> is a default ignorable character, it should also be quoted for
 readability. So in this example, if \uXXXX is used for a code point literal, but is resolved
 before quoting, and if single quotes are used for quoting, this example might be expressed
 as:

 'a\u0020b' → 'x\u200By' + z;

 #31/7 Add a Section 7.

 7 Standard Pro�les

 Two standard pro�les for default identi�ers are provided to cater to common patterns of use
 observed in programming languages with less restrictive identi�er syntaxes, including those that use

 L2/22-229 23

 UAX31-R2 default identi�ers: the inclusion of characters suitable for mathematical usage in
 identi�ers, and the inclusion of emoji in identi�ers.

 These pro�les are associated with pro�les for requirements UAX31-R3b.

 Further, a standard pro�le is provided to exclude default ignorable code points from identi�ers.
 Having no visible e�ect in most contexts, these characters can lead to spoo�ng issues; see Section 2.3,
 Layout and Format Control Characters .

 For guidance on the applicability of these pro�les to programming languages, see Unicode
 Technical Standard #55, Unicode Source Code Handling [UTS55].

 7.1 Mathematical notation pro�le

 The mathematical notation pro�le for default identi�ers consists in the addition of the set
 Math_Start to the set Start , and the set Math_Continue to the set Continue , in de�nition
 UAX31-D1 . These sets are de�ned as follows, where the expressions in brackets are in UnicodeSet
 notation :

 Math_Start ≔ [∂𝛛𝜕𝝏𝞉𝟃∇𝛁𝛻𝜵𝝯𝞩∞]

 Math_Continue ≔ Math_Start ∪ [⁽₍⁾₎⁺₊⁼₌⁻₋⁰₀¹₁²₂³₃⁴₄⁵₅⁶₆⁷₇⁸₈⁹₉]

 It is associated with a pro�le for UAX31-R3b , which consists in removing the characters ∂, ∇, and
 ∞ from the set of characters with syntactic use (these are the characters in [:Pattern_Syntax:] ∖
 Math_Continue).

 Editor’s note: a separate document (L2/22-230) provides a detailed rationale for these sets.

 7.2 Emoji pro�le

 The emoji identi�er pro�le provides for the inclusion of Emoji characters and sequences in
 identi�ers. A large subset of emoji are already supported in some programming languages, but this
 pro�le provides a mechanism for treating them consistently as part of the lexical structure of a
 language.

 The emoji pro�le for default identi�ers consists in the addition of the RGI emoji set de�ned by
 ED-27 in UTS-51 Unicode emoji for a given version of Unicode to the sets Start and Continue in
 de�nition UAX31-D1 .

 Note: The emoji pro�le requires the use of character sequences, rather than individual
 code points, in the sets Start and Continue de�ned by UAX31-D1. When using this
 pro�le, U+002A asterisk (*), U+203C double exclamation mark (‼), or U+263A white
 smiling face (☺) are not legal identi�ers, but the sequences (U+002A, U+FE0F, U+20E3)
 � , (U+203C, U+FE0F) ‼ , and (U+263A, U+FE0F) ☺ are allowed in identi�ers. This
 would require some changes to lexers: when they hit an emoji character they will (logically)
 switch to a di�erent mechanism for parsing.

 The emoji pro�le includes characters that are in Pattern_Syntax; it is therefore associated with a
 pro�le for UAX31-R3b, which consists in replacing each of a certain set of emoji characters in
 Pattern_Syntax by its text presentation sequence (ED-8a) :

https://unicode.org/reports/tr31/#D1
https://www.unicode.org/reports/tr35/tr35-66/tr35.html#Unicode_Sets
https://www.unicode.org/reports/tr35/tr35-66/tr35.html#Unicode_Sets
https://unicode.org/reports/tr31/#R3
https://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/22-230
https://unicode.org/reports/tr51/#def_rgi_set
https://unicode.org/reports/tr31/#D1
https://unicode.org/reports/tr51/#def_text_presentation_sequence

 24 Proposed changes to Unicode properties and reports for source code handling

 1. Removing the characters in the following set PSEP from the set of characters with
 syntactic use:

 PSEP ≔ [[:Pattern_Syntax:]&[:Emoji_Presentation:]]

 2. For all C in PSEP, adding the sequence consisting of C followed by variation selector-15
 (the Text Presentation Selector) to the set of characters with syntactic use.

 Note : These are the characters removed from the set of characters with syntactic use,
 separated by spaces:

 ✋ ✊ ☕ ⛪ ⛲ ⛺ ⛽ ⚓ ⛵ ⌛ ⏳ ⌚ ⏰ ⭐ ⛅ ☔ ⚡ ⛄ ✨ ⚽ ⚾ ⛳
 ♿ ⛔ ♈ ♉ ♊ ♋ ♌ ♍ ♎ ♏ ♐ ♑ ♒ ♓ ⛎ ⏩ ⏪ ⏫ ⏬ ➕
 ➖ ➗ ❓ ❔ ❕ ❗ ⭕ ✅ ❌ ❎ ➰ ➿ ⚫ ⚪ ⬛ ⬜ ◾ ◽

 These are the sequences added to that set, separated by spaces:

 ✋ ✊ ☕ ⛪ ⛲ ⛺ ⛽ ⚓ ⛵ ⌛ ⏳ ⌚ ⏰ ⭐ ⛅ ☔ ⚡ ⛄ ✨ ⚽ ⚾ ⛳ ♿ ⛔ ♈ ♉ ♊ ♋ ♌ ♍ ♎ ♏ ♐
 ♑ ♒ ♓ ⛎ ⏩ ⏪ ⏫ ⏬ ➕ ➖ ➗ ❓ ❔ ❕ ❗ ⭕ ✅ ❌ ❎ ➰ ➿ ⚫ ⚪ ⏹ ⬜ ◾ ◽

 Review note: some of these sequences are currently nonstandard. See P/(B) in this document which
 proposes standardizing them.

 This change means that if some of the Pattern_Syntax characters with the Emoji_Presentation
 property were in syntactic use (e.g. , in operators) prior to adopting the emoji pro�le, they become
 identi�ers once the pro�le is adopted, but can be turned back into operators by adding
 variation-selector-15, allowing for a migration path.

 Of course, if a programming language only uses a subset of the Pattern_Syntax characters that
 doesn’t include these characters, no action needs to be taken.

 Some other characters in Pattern_Syntax (such as ↔) are used in emoji (such as ↔), but they are
 not emoji on their own, so that they do not need to be removed from the set of characters with
 syntactic use as long as lexical analysis properly takes sequences into account.

 The emoji sequences require 98 default-ignorable characters:

 ● U+200D ZERO WIDTH JOINER (aka ZWJ)
 ● U+FE0F VARIATION SELECTOR-16 (aka emoji presentation selector = EPS)
 ● U+E0020..U+E007F 98 TAG characters

 Thus if this pro�le is combined with any pro�le that removes default-ignorable characters, such as
 the default-ignorable exclusion pro�le, those characters need to be retained in the context of emoji
 sequences.

 Consider the following examples:
 Sequence Appear. Status Reason

 A+ZWJ+B A B Illegal ZWJ is not part of an emoji sequence

 U+1F408 + ZWJ + U+2B1B � Legal ZWJ is part of an emoji sequence
 (for black cat)

 BIG + U+1F408 + ZWJ + U+2B1B BIG � Legal

 L2/22-229 25

 7.3 Default ignorable exclusion pro�le

 The default ignorable exclusion pro�le for default identi�ers consists in the exclusion of the code
 points with property Default_Ignorable_Code_Point from the sets Start and Continue in
 de�nition UAX31-D1 .

 Note: While it reduces the attack surface, excluding default ignorable code points does not prevent
 spoo�ng issues. More comprehensive mechanisms are described in Unicode Technical Standard #39,
 Unicode Security Mechanisms [UTS39]; in particular, the exclusion of default ignorable code points
 is part of the General for Pro�le for Identi�ers.

 Note: Where higher level diagnostics are available, such as in programming environments, more
 targeted measures can be taken in order to still allow for the legitimate use of these characters. See
 Unicode Technical Standard #55, Source Code Handling [UTS55].

https://unicode.org/reports/tr31/#D1

 26 Proposed changes to Unicode properties and reports for source code handling

 #39. Proposed changes to Unicode Technical Standard #39

 #31/3.1.1 Move some text from Section 2.3 from UAX #31 into Section 3.1.1 of UTS #39, as follows.

 3.1.1 Joining Controls

 However, v V isible distinctions created by certain format characters excluded by the General
 Security Pro�le because their Identi�er_Type is Default_Ignorable (particularly the Join_Control
 characters) are necessary in certain languages. A blanket exclusion of these characters makes it
 impossible to create identi�ers with the correct visual appearance for common words or phrases in
 those languages.

 Identi�er systems that attempt to provide more natural representations of terms in "modern,
 customary usage" should allow these characters in input and display, but limit them to contexts in
 which they are necessary. The term modern customary usage includes characters that are in
 common use in newspapers, journals, lay publications; on street signs; in commercial signage; and as
 part of common geographic names and company names, and so on. It does not include technical or
 academic usage such as in mathematical expressions, using archaic scripts or words, or pedagogical
 use (such as illustration of half-forms or joining forms in isolation), or liturgical use.

 The goals for such a restriction of format characters to particular contexts are to:
 ● Allow the use of these characters where required in normal text
 ● Exclude as many cases as possible where no visible distinction results
 ● Be simple enough to be easily implemented with standard mechanisms such as regular

 expressions

 Review note: The above paragraphs have been moved from Section 2.3 of UAX #31.

 An implementation following the General Security Pro�le that allows the additional characters
 ZWJ and ZWNJ shall only permit them where they satisfy the conditions A1, A2, and B in Section
 3.1.1.1 2.3.1 , Limited Contexts for Joiner Controls of [UAX31] , unless it documents the additional
 contexts where it allows them.

 More advanced implementations may use script-speci�c information for more detailed testing. In
 particular, they can:

 1. Disallow joining controls in sequences that meet the conditions of A1, A2, and B, where in
 common fonts the resulting appearance of the sequence is normally not distinct from appearance in
 the same sequences with the joining controls removed.

 2. Allow joining controls in sequences that don't meet the conditions of A1, A2, and B (such as the
 following), where in common fonts the resulting appearance of the sequence is normally distinct
 from the appearance in the same sequences with the joining controls removed.

 /$L ZWNJ $V $L/

 /$L ZWJ $V $L/

https://www.unicode.org/reports/tr39/#UAX31

 L2/22-229 27

 The notation is from [UAX31].

 #31/3.1.1.1 Move Section 2.3.1 of UAX #31 as Section 3.1.1.1 of UTS #39.

 3.1.1.1 Limited Contexts for Joining Controls

 Review note: This section has been moved from Section 2.3.1 of UAX #31.

 An implementation that attempts to provide more natural representations of terms in "modern,
 customary usage" should allow the following Join_Control characters in the limited contexts
 speci�ed in A1 , A2 , and B below.

 U+200C ZERO WIDTH NON-JOINER (ZWNJ)

 U+200D ZERO WIDTH JOINER (ZWJ)

 Editor’s note: Remainder omitted for brevity .

 #31/3.1.1.2 Move Section 2.3.2 of UAX #31 as Section 3.1.1.2 of UTS #39, except for the paragraph titled
 Comparison .

 3.1.1.2 Limitations

 Review note: This section has been moved from Section 2.3.2 of UAX #31.

 While the restrictions in A1 , A2 , and B greatly limit visual confusability, they do not prevent it. For
 example, because Tamil only uses a Join_Control character in one speci�c case, most of the
 sequences these rules allow in Tamil are, in fact, visually confusable. Therefore based on their
 knowledge of the script concerned, implementations may choose to have tighter restrictions than
 speci�ed in Section 3.1.1.1 2.3.1 , Limited Contexts for Joining Controls . There are also cases where a
 joiner preceding a virama makes a visual distinction in some scripts. It is currently unclear whether
 this distinction is important enough in identi�ers to warrant retention of a joiner. For more
 information, see UTR #36: Unicode Security Considerations [UTR36].

 Performance. Parsing identi�ers can be a performance-sensitive task. However, these characters are
 quite rare in practice, thus the regular expressions (or equivalent processing) only rarely would need
 to be invoked. Thus these tests should not add any signi�cant performance cost overall.

 4 Confusable Detection

 Editor’s note: 3 unchanged paragraphs omitted.

 #31/4(A) Change the de�nition of the skeleton operation to exclude default ignorables, as follows.

 For an input string X, de�ne skeleton (X) to be the following transformation on the string:

 1. Convert X to NFD format, as described in [UAX15].
 2. Remove any characters in X that have the property Default_Ignorable_Code_Point.
 3. Concatenate the prototypes for each character in X according to the speci�ed data,

 producing a string of exemplar characters.

https://www.unicode.org/reports/tr39/#UAX31
https://www.unicode.org/reports/tr31/#A1
https://www.unicode.org/reports/tr31/#A2
https://www.unicode.org/reports/tr31/#B
https://www.unicode.org/reports/tr39/#def-skeleton
https://www.unicode.org/reports/tr39/#UAX15

 28 Proposed changes to Unicode properties and reports for source code handling

 4. Reapply NFD.

 The strings X and Y are de�ned to be confusable if and only if skeleton(X) = skeleton(Y). This is
 abbreviated as X ≅ Y.

 This mechanism imposes transitivity on the data, so if X ≅ Y and Y ≅ Z, then X ≅ Z. It is possible
 to provide a more sophisticated confusable detection, by providing a metric between given
 characters, indicating their "closeness." However, that is computationally much more expensive,
 and requires more sophisticated data, so at this point in time the simpler mechanism has been
 chosen. That means that in some cases the test may be overly inclusive.

 Note: The strings skeleton (X) and skeleton (Y) are not intended for display, storage or
 transmission. They should be thought of as an intermediate processing form, similar to a
 hashcode. The exemplar characters are not guaranteed to be identi�er characters.

 #31/4(B) De�ne the bidiSkeleton operation and the bidirectional confusability relation as follows.

 For an input string X and a direction 𝑑 ∈ {RTL, LTR, FS}, de�ne bidiSkeleton(𝑑, X) to be the
 following transformation on the string:

 1. Reorder the code points in X for display by applying the rules of the Unicode Bidirectional
 Algorithm [UAX9] up to and including L2, treating X as a single paragraph; if 𝑑≠FS,
 apply protocol HL1 to set the paragraph level to 1 if 𝑑=RTL, and to 0 if 𝑑=LTR; this
 yields the reordered sequence of characters R.

 2. Apply rule L3 of the UBA: move combining marks after their base in Z; this yields the
 sequence R′.

 3. Replace any character whose glyph would be mirrored by rule L4 of the UBA by the value
 of its Bidi_Mirroring_Glyph property, yielding R″.

 4. bidiSkeleton (d, X) is then skeleton (R″).

 The strings X and Y are de�ned to be 𝑑-confusable if and only if bidiSkeleton(𝑑, X) =
 bidiSkeleton(𝑑, Y). This is abbreviated as X ≒ Y (𝑑).

 Like confusability, 𝑑-confusability is an equivalence relation; in particular, it is transitive: if X ≒ Y
 (𝑑) and Y ≒ Z (𝑑), then X ≒ Z (𝑑).

 Note: The operation skeleton may change the Bidi_Class of characters, so it does not
 commute with the reordering and mirroring steps, and needs to be performed after them.

 Example: The sequences of code points S₁ and S₂ are LTR-confusable:

 S₁ ≔ "A1< ׂש " = (LATIN CAPITAL LETTER A, DIGIT ONE, LESS-THAN SIGN,
 HEBREW LETTER SHIN, HEBREW POINT SIN DOT)

 S₂ ≔ "Α <ֹ1 ש " = (GREEK CAPITAL LETTER ALPHA, HEBREW LETTER SHIN,
 HEBREW POINT HOLAM HASER FOR VAV, GREATER-THAN SIGN, DIGIT
 ONE)

 Computation of bidiSkeleton(LTR, S₁):

https://www.unicode.org/reports/tr39/#def-confusable

 L2/22-229 29

 1. R₁ = (LATIN CAPITAL LETTER A, DIGIT ONE, LESS-THAN SIGN,
 HEBREW POINT SIN DOT, HEBREW LETTER SHIN)

 2. R′₁ = (LATIN CAPITAL LETTER A, DIGIT ONE, LESS-THAN SIGN,
 HEBREW LETTER SHIN, HEBREW POINT SIN DOT)

 3. R″₁ = (LATIN CAPITAL LETTER A, DIGIT ONE, LESS-THAN SIGN,
 HEBREW LETTER SHIN, HEBREW POINT SIN DOT)

 4. bidiskeleton(LTR, S₁) = skeleton(R″₁) = (LATIN CAPITAL LETTER A, LATIN
 SMALL LETTER L, LESS-THAN SIGN, HEBREW LETTER SHIN,
 COMBINING DOT ABOVE)

 Computation of bidiSkeleton(LTR, S₂):

 1. R₂ = (GREEK CAPITAL LETTER ALPHA, DIGIT ONE, GREATER-THAN
 SIGN, HEBREW POINT HOLAM HASER FOR VAV, HEBREW LETTER
 SHIN)

 2. R′₂ = (GREEK CAPITAL LETTER ALPHA, DIGIT ONE,
 GREATER-THAN SIGN, HEBREW LETTER SHIN, HEBREW POINT
 HOLAM HASER FOR VAV)

 3. R″₂ = (GREEK CAPITAL LETTER ALPHA, DIGIT ONE, LESS-THAN
 SIGN, HEBREW LETTER SHIN, HEBREW POINT HOLAM HASER FOR
 VAV)

 4. bidiskeleton(LTR, S₂) = skeleton(R″₂) = (LATIN CAPITAL LETTER A,
 LATIN SMALL LETTER L, LESS-THAN SIGN, HEBREW LETTER SHIN,
 COMBINING DOT ABOVE)

 Review note: Consider moving the details of the computation (but not the basic example) to an
 appendix.

 Note that these sequences are not RTL-confusable; indeed in a right-to-left paragraph, the
 strings look distinct:

 S₁ = " A1 ׂש> "

 S₂ = " Α <ֹ1 ש "

 LTR, and RTL, and FS confusability should be used when it is inappropriate to enforce that strings
 be single-script, or at least single-directionality; this is the case in programming language identi�ers.
 See Section 4.1, Confusability Mitigations , in Unicode Technical Standard #55, Unicode Source Code
 Handling [UTS55].

 Bidirectional confusability is costlier to check than confusability, as the bidirectional algorithm
 must be applied. However, a fast path can be used: if d=LTR and X has no characters with bidi
 classes R or AL, bidiSkeleton(X) = skeleton(X).

 Further, if the strings are known not to contain explicit directional formatting characters (as is the
 case for UAX31-R1 Default Identi�ers de�ned in Unicode Standard Annex #31, Identifiers and
 Syntax [UAX31]), the algorithm can be drastically simpli�ed, as the X rules are trivial, obviating the
 need for the directional status stack. The highest possible resolved level is then 2; see Table 5,
 Resolving Implicit Levels , in Unicode Standard Annex #9, Unicode Bidirectional Algorithm [UAX9].

 30 Proposed changes to Unicode properties and reports for source code handling

 Note: As is the case for skeleton , the strings bidiSkeleton (d, X) and bidiSkeleton (d, Y) are
 not intended for display, storage or transmission.

 L2/22-229 31

 #51. Proposed changes to Unicode Technical Standard #51

 #51/4 Add a note in Section 4, Presentation Style , as follows.

 4 Presentation Style

 Certain emoji have de�ned variation sequences, in which an emoji character can be followed by an
 invisible emoji presentation selector or text presentation selector .

 This capability was added in Unicode 6.1 . Some systems may also provide this distinction with
 higher-level markup, rather than variation sequences. For more information on these selectors, see
 Emoji Presentation Sequences [emoji-charts]. For details regarding the use of emoji or text
 presentation selectors in emoji sequences speci�cally, see Section 2.7, Emoji Implementation Notes .

 Implementations should support both styles of presentation for the characters with emoji and text
 presentation sequences, if possible. Most of these characters are emoji that were uni�ed with
 preexisting characters. Because people are now using emoji presentation for a broader set of
 characters, Unicode 9.0 added emoji and text presentation sequences for all emoji with default text
 presentation (see discussion below). These are the characters shown in the column labeled “Default
 Text Style; no VS in U8.0” in the Text vs Emoji chart [emoji-charts].

 However, even for cases in which the emoji and text presentation selectors are available, it had not
 been clear for implementers whether the default presentation for pictographs should be emoji or
 text. That means that a piece of text may show up in a di�erent style than intended when shared
 across platforms. While this is all perfectly legitimate for Unicode characters— presentation style is
 never guaranteed —a shared sense among developers of when to use emoji presentation by default is
 important, so that there are fewer unexpected or jarring presentations. Implementations need to
 know what the generally expected default presentation is, to promote interoperability across
 platforms and applications.

 There had been no clear line for implementers between three categories of Unicode characters:

 1. emoji-default: those expected to have an emoji presentation by default, but can also have a
 text presentation

 2. text-default: those expected to have a text presentation by default, but could also have an
 emoji presentation

 3. text-only: those that should only have a text presentation

 These categories can be distinguished using properties listed in Annex A: Emoji Properties and
 Data Files . The �rst category are characters with Emoji=Yes and Emoji_Presentation=Yes . The
 second category are characters with Emoji=Yes and Emoji_Presentation=No . The third category
 are characters with Emoji=No .

 The presentation of a given emoji character depends on the environment, whether or not there is an
 emoji or text presentation selector, and the default presentation style (emoji versus text). In
 informal environments like texting and chats, it is more appropriate for most emoji characters to
 appear with a colorful emoji presentation, and only get a text presentation with a text presentation
 selector. Conversely, in formal environments such as word processing, it is generally better for emoji

https://www.unicode.org/reports/tr51/#def_emoji_presentation_selector
https://www.unicode.org/reports/tr51/#def_text_presentation_selector
https://blog.unicode.org/2012/01/announcing-unicode-standard-version-61.html
https://www.unicode.org/reports/tr51/#emoji_charts
https://www.unicode.org/reports/tr51/#Emoji_Implementation_Notes
https://www.unicode.org/reports/tr51/#emoji_charts
https://www.unicode.org/reports/tr51/#Emoji_Properties_and_Data_Files
https://www.unicode.org/reports/tr51/#Emoji_Properties_and_Data_Files

 32 Proposed changes to Unicode properties and reports for source code handling

 characters to appear with a text presentation, and only get the colorful emoji presentation with the
 emoji presentation selector.

 Based on those factors, here is typical presentation behavior. However, these guidelines may change
 with changing user expectations.

 Editor’s note: table “ Emoji versus Text Display ” omitted.

 There is an additional complication which has to do with computer language syntaxes. Some code
 points had been reserved for syntactic use in computer languages using the Pattern_Syntax
 property; some of them have been given default emoji presentation. However, all of them have valid
 text presentation sequences which can be used to unambiguously express that they should be
 displayed and interpreted as syntactic characters. See Section 7.2, Emoji Profile , in Unicode Standard
 Annex #31, Unicode Identifiers and Syntax [UAX31].

https://www.unicode.org/reports/tr51/#Emoji_vs_Text_Display

 L2/22-229 33

 #55. Proposed Unicode Technical Standard #55

 Editor’s note: the entirety of the text below forms a new document. For the sake of readability, it has not been
 written on a yellow background nor indented.

 UNICODE SOURCE CODE HANDLING

 1. Introduction

 Source code, that is, plain text meant to be interpreted as a computer language, poses special security and
 usability issues that are absent from ordinary plain text. The reader (who may be the author or a reviewer)
 should be able to ascertain some properties of the underlying representation of the text by visual inspection,
 such as:

 — the extent of lexical elements within the text;
 — the nature of a lexical element (comment, string, or executable text);
 — the order in memory of lexical elements;
 — the equivalence or inequivalence of identi�ers.

 The potential presence in source code of characters from many writing systems, including ones whose
 writing direction is right-to-left, can make it di�cult to ensure these properties are visually recognizable.
 Further, the reader may not be aware of these sources of confusion. These issues should be remedied at
 multiple levels: as part of computer language design, by ensuring that editors and review tools display source
 code in an appropriate manner, and by providing diagnostics that call out likely issues.

 Accordingly, this document provides guidance for multiple levels in the ecosystem of tools and speci�cations
 surrounding a computer language. Section 2, Computer Language Specifications , is aimed at language
 designers; it provides recommendations on the lexical structure, syntax, and semantics of computer
 languages. Section 3, Source Code Display , is aimed at the developers of source code editors and review tools;
 it speci�es appropriate behavior for source code display. Section 4, Tooling and diagnostics , is aimed more
 broadly at developers in the overall ecosystem around a computer language; it provides guidance for
 higher-level diagnostics, such as compiler warnings, lint checks, etc., as well as text transformations
 applicable to pretty-printers and similar tools.

 Note: While, for the sake of brevity, many of the examples in this document make use of
 non-ASCII identi�ers, most of the issues described here apply even if non-ASCII characters are
 con�ned to strings and comments. Further, some of the remedies require allowing speci�c
 non-ASCII characters between lexical elements; see Section 2.2, Whitespace and Syntax .

 Most of the recommendations and speci�cations in this document are relevant to a broad range of computer
 languages, from markup languages such as HTML to general-purpose programming languages such as C.
 Some recommendations are speci�c to certain classes of languages. In particular, some recommendations in
 Section 2, Computer Language Specifications , apply only to general-purpose programming languages, and the
 speci�cations in Section 3, Source code display , have special considerations for the broad class of languages
 consisting of literal text with interspersed syntax (which includes markup languages, but also regular
 expression languages, etc.). This classi�cation is illustrated in Figure 1.

 Note: Programming environments such as Wolfram Mathematica where the intended display of
 source code is rich text (or graphical), rather than plain text highlighted according to its lexical and
 syntactic structure, are outside the scope of this speci�cation.

 34 Proposed changes to Unicode properties and reports for source code handling

 Figure 1. Classi�cation of computer languages used in this speci�cation.

 1.1 Source code spoo�ng

 The basic problem occurs when two di�erent lines of code (in memory) can have the same (or confusingly
 similar) appearance on the screen. That is, the actual text is di�erent from what the reader perceives it to be.
 This allows a contributor to fool a reviewer into believing that some malicious code is actually innocuous.

 Moreover, when a compiler is interpreting the text in a di�erent way than a reader does, inadvertent
 problems can arise even when there is no malicious intent.

 1.1.1 Line break spoo�ng

 The Unicode Standard encompasses multiple representations of the New Line Function (NLF). These are
 described in Section 5.8, Newline Guidelines , of the standard, as well as in Unicode Standard Annex #14,
 Line Breaking Algorithm [UAX14].

 An opportunity for spoo�ng can occur if implementations are not consistent in the supported
 representations of the newline function: multiple logical lines can be displayed as a single line, or a single
 logical line can be displayed as multiple lines.

 For instance, consider the following snippet of C11, as shown in an editor which conforms to the Unicode
 Line Breaking Algorithm:

 1. // Check preconditions.
 2. if (arg == (void *)0) return -1;

 If the line terminator at the end of line 1 is U+2028 Line Separator, which is not recognized as a line
 terminator by the language, the compiler will interpret this as a single line consisting only of a comment; to a
 reviewer, the program is visually indistinguishable from one that has a null check, but that check is really
 absent.

https://www.unicode.org/versions/Unicode15.0.0/ch05.pdf#G10213

 L2/22-229 35

 Conversely, consider the following Ada 2005 program, shown in an editor which conforms to the Unicode
 Line Breaking Algorithm, but does not support the line breaking class NL (whose support is optional for
 conforming implementations).

 1. -- Here we must not yet ␤return null;
 2. -- we need to close the file first.

 While a visible glyph (here ␤) should still be emitted instead of the unsupported control character (see
 Section 5.3, Unknown and Missing Characters , in The Unicode Standard), a reviewer could fail to interpret it
 as a newline, since line comments are expected to extend to the end of the displayed line. However, Ada
 2005 treats U+0085 (next line) as an end of line, so the reviewer would fail to notice that the “comment” is
 actually executable code that does precisely what it says must not be done.

 Note: Since syntax highlighting is typically determined by the editor according to its interpretation
 of line termination—and independently of the compiler’s—it is unlikely to reveal the true extent of
 the comments in such situations. The examples above have been highlighted accordingly.

 The mitigation for this issue includes recommendations for both computer language speci�cations (see
 Section 2.2, Whitespace and Syntax) and source code editors (see Unicode Standard Annex #14, Unicode
 Line Breaking Algorithm [UAX14]) so that they support the same set of representations of the new line
 function.

 1.1.2 Spoo�ng using lookalike glyphs

 The Unicode Standard encodes many characters whose glyphs can be expected to be indistinguishable or
 hard to distinguish, especially across scripts, but sometimes also within scripts. Examples include Cyrillic,
 Latin, and Greek А, A, and Α, Devanagari को (kō) and the “do not use” sequence काे (*kāe), etc.

 These can be used for spoo�ng, for instance, by constructing identi�ers that look like they are the same, but
 are actually di�erent.

 Example: Consider the following C program:

 1. void zero(double ** matrix, int rows, int columns) {
 2. for (int i = 0; i < rows; ++i) {
 3. double * row = matrix[i];
 4. for (int і = 0; і < columns; ++і) {
 5. row[i] = 0.0;
 6. }
 7. }
 8. }

 This program looks like it zeros a rows by columns rectangle, but it actually only zeros a diagonal,
 because the identi�er і on line 4 is a Cyrillic letter, whereas i is the Latin letter everywhere else.

 The recommended solution for this is twofold: in order to address cases where there are multiple valid
 representations of a character, computer languages should use equivalent normalized identi�ers as described
 in Section 2.1.1, Normalization and Case . In order to address other cases, programming language tools
 should implement the mitigations described in Section 4.1, Confusability Mitigation Diagnostics .

 36 Proposed changes to Unicode properties and reports for source code handling

 1.1.3 Spoo�ng using bidirectional reordering

 The Unicode Bidirectional Algorithm, de�ned in Unicode Standard Annex #9, is part of the Unicode
 Standard; it is a necessary part of the display of a number of scripts, such as the Arabic or Hebrew scripts.
 See Logical Order in Chapter 2, General Structure , and conformance requirement C12 in Chapter 3,
 Conformance , in The Unicode Standard.

 Because computer languages have a strong logical structure which di�ers from that of ordinary plain text,
 the plain text display of source code may not re�ect that logical structure. This can lead to possibilities of
 spoo�ng, in particular by using the invisible characters that are used as overrides to the default behavior of
 the Unicode Bidirectional Algorithm; see Section 2, Directional Formatting Characters , in Unicode Standard
 Annex #9, Unicode Bidirectional Algorithm [UAX9].

 Examples:

 C++98 or later:
 std::cerr << "encountered " << (errors == 0 ? " " : " 0 ")

 << "errors" ;
 This program will print “encountered errors” if and only if errors = 0, and “encountered 0 errors”
 otherwise;

 Ada 2005 or later:
 for Hebrew_Letter in Wide_Character range ' 'א .. ת' ' loop

 While it may seem like it loops over the Hebrew alphabet (from alef to tav), this is actually dead
 code (looping over the empty range from tav to alef).

 Rust 1.9 or later:
 return x >> 8 ;

 While this looks like a right shift by eight bits, it is a left shift by eight bits.

 The solution is not to forbid the directional formatting characters; indeed the Ada example above does not
 use these. The recommendation is instead twofold.

 1. Source code editors should display source code according to its lexical structure, as described in
 Section 3.1, Bidirectional Ordering .

 2. In addition, computer languages should allow for the insertion of directional formatting characters
 as described in Section 2.2, Whitespace and Syntax , and implementers should provide tools that
 automatically remove spurious directional formatting characters, and insert the correct ones, as
 described in Section 4.2, Conversion to Plain Text .

 ○ Maintainers of code bases concerned about spoo�ng can then enforce the application of
 this conversion to plain text, so that the code looks as it should wherever it is displayed,
 even in review tools that fail to apply the recommendations for display of source code.

 1.2 Usability issues

 The same issues described in Section 1.1, Source code spoofing , can a�ect usability, as one may be misled by the
 appearance of one’s own code, leading to unexpected behavior, or to compilation errors that cannot be
 explained by reading the source code. There are however additional usability issues that are not identical to
 the spoo�ng issues: the bidirectional display of code treated as plain text can lead to reordering that obscures
 the logical structure of the computer language, making a program illegible.

https://www.unicode.org/versions/Unicode15.0.0/ch02.pdf#G286698
http://www.unicode.org/versions/Unicode15.0.0/ch03.pdf#G23685
https://www.unicode.org/reports/tr9/#Directional_Formatting_Characters

 L2/22-229 37

 1.2.1 Usability issues arising from lookalike glyphs

 When working with multiple scripts, there is a common usability issue whereby one accidentally types some
 letters using the wrong keyboard layout. Consider a user trying to type the de�nition of a class HTTPОтвет
 (HTTPResponse). The user would start typing using a Latin keyboard layout:

 class HTTPOtwe ‸

 Noticing that letters are being typed in the wrong script, the user might then backspace the visibly wrong
 letters, switch keyboard layout, and type the remainder:

 class HTTPO‸ twe

 class HTTPO твет { ‸

 Trying to refer to HTTPОтвет will lead to a compilation error (because it is actually declared as
 HTTPOтвет , with a Latin O). This error can be hard to understand: no amount of time spent looking at
 the code will reveal it.

 A similar issue can occur in a codebase whose identi�ers are restricted to the Latin script, if, for instance,
 comments or string literals are written in a di�erent script; after typing a Cyrillic comment, a user might
 likewise switch layout midway through an attempt declare an ХМLDocument , and get a confusing error
 message, because the resulting identi�er has a Cyrillic Х and М.

 The recommended mitigations for these usability issues are the same as the mitigations for the
 corresponding spoo�ng issues described in Section 1.1.2, Spoofing using lookalike glyphs .

 1.2.2 Usability issues arising from bidirectional reordering

 The presence of strongly right-to-left characters in source code, including in comments and string literals,
 can easily mangle source code into unreadability if it is displayed as plain text, even when the result does not
 look like a valid program, and therefore does not pose a spoo�ng issue.

 Examples:

 C# 1.0 or later:
 Console.WriteLine(" :0 { השתבש { }) 1 "({ , הודעה , this);

 parses—and is typed—as
 Console.WriteLine("Error: {0} ({1})" , message, this);

 Ada 2005 or later:
 . השתבש משהו -- (הודעה); רשם שגיאה>> >>

 parses—and is typed—as
 <<Error>> Log (Message); -- Something went wrong.

 Python 3.0 or later:
 return אינטגרל (lambda :1 ל= , 0 מ= , 2 ** א א)

 parses—and is typed—as
 return integral(lambda a: a ** 2 , from_= 0 , to= 1)

 Rust 1.53.0 or later:
 fn >פ אינטגרל : Fn (f64) -> f64 >(

 } std::ops:: Range < f64 >) -> f64 : קטע , פ אינטגרנד:
 parses—and is typed—as

 38 Proposed changes to Unicode properties and reports for source code handling

 fn integral< F : Fn (f64) -> f64 >(
 integrand: F , interval: std::ops:: Range < f64 >) -> f64 {

 C++11 or later:
 std:: vector < قطة > مواء ;

 parses—and is typed—as
 std:: vector < meow > cat;

 Note that the same can occur if the right-to-left identi�ers are limited to string literals and
 comments; in the same language,

 return u8" "النائب العنصر رسالة // ; مواء .
 parses—and is typed—as

 return u8"meow" ; // Placeholder message.

 The recommended mitigations for these usability issues are the same as the mitigations for the
 corresponding spoo�ng issues described in Section 1.1.3, Spoofing using bidirectional reordering .

 1.3 Conformance

 An implementation claiming conformance to this speci�cation must do so in conformance to the following
 clauses:

 C0 An implementation claiming conformance to this speci�cation shall identify the version of this
 speci�cation.

 C1 An implementation claiming to implement the Basic Ordering for Source Code shall do so in
 accordance with the speci�cations in Section 3.1.2, Basic Ordering .

 C2 An implementation claiming to implement the Ordering for Literal Text with Interspersed Syntax shall
 do so in accordance with the speci�cations in Section 3.1.4, Orderng for Literal Text with Interspersed
 Syntax .

 C3 An implementation claiming to implement Mixed-Script Detection in Identi�er Chunks shall do so in
 accordance with the speci�cations in Section 4.1.2, Mixed-Script Detection in Identifier Chunks .

 C4 An implementation claiming to implement Conversion to Plain Text for Source Code shall do so in
 accordance with the speci�cations in Section 4.2, Conversion to Plain Text .

 C5 An implementation claiming to enforce Unicode Identi�er Styles shall do so in accordance with the
 speci�cations in Section 4.3, Identifier Styles .

 2. Computer Language Speci�cations

 The normative material appropriate for language speci�cations may be found in Unicode Standard Annex
 #31, Identifiers and Syntax [UAX31]. Since that annex has a broader scope than computer
 languages—including usernames, hashtags, etc.—speci�c recommendations for language designers are given
 here.

 2.1 Identi�ers

 Computer languages that require forward compatibility in their identi�er de�nitions should use the
 de�nition of identi�ers given by requirement UAX31-R2 Immutable Identi�ers.

 L2/22-229 39

 Unless they require forward as well as backward compatibility, computer languages should use the de�nition
 of identi�ers given by requirement UAX31-R1 Default Identi�ers.

 Note: The characters having the General_Category Mn or Mc (nonspacing spacing combining
 marks) should not be excluded from default identi�ers by a pro�le; while precomposed characters
 exist for many common combinations in the Latin script, combining marks are critical to many
 other scripts. For instance, word-internal vowels in Indic scripts have the General_Category Mn or
 Mc.

 Pro�les may be needed to adjust to the speci�cs of a language, such as allowing an initial U+005F LOW
 LINE (_).

 General-purpose programming languages should extend the identi�er de�nition using the mathematical
 notation pro�le de�ned in Section 7.1, Mathematical Notation of Unicode Standard Annex #31, Unicode
 Identifiers and Syntax [UAX31]. This is because these languages are used in scienti�c computing, which
 bene�ts from the greater legibility and disambiguation a�orded by allowing these additional characters in
 identi�ers.

 2.1.1 Normalization and Case

 It is recommended that all languages that use default identi�ers meet requirement UAX31-R4 Equivalent
 Normalized Identifiers , with the normalization described in this section.

 Note: Alternatively, languages can meet requirement UAX31-R6 Filtered Normalized Identifiers .
 However, some input methods produce non-normalized text, which can make it di�cult to use a
 language implementing this requirement; in the case of NFKC, �ltered normalized identi�ers can
 impose unnatural restrictions on the visual representation of source code.

 When implementing equivalent normalized identi�ers, implementations should treat identi�ers as
 their normalized forms; for instance, linker symbols should be based on the normalized form. This
 is similar to the situation for case-insensitive languages.

 Case-sensitive languages should meet requirement UAX31-R4 with normalization form C. They should
 not ignore default ignorable code points in identi�er comparison.

 Case-insensitive languages should meet requirement UAX31-R4 with normalization form KC, and
 requirement UAX31-R5 with full case folding. They should ignore default ignorable code points in
 comparison. Conformance with these requirements and ignoring of default ignorable code points may be
 achieved by comparing identi�ers after applying the transformation toNFKC_Casefold.

 Note: Full case folding is preferable to simple case folding, as it better matches expectations of
 case-insensitive equivalence. For compatibility, some implementations may wish to use simple case
 folding; alternatively, they can migrate to full case folding using the processes described in Section
 2.3, Language Evolution .

 Review note: While toCasefold toNFKC is stable , toNFKC_Casefold is not, because
 Default_Ignorable_Code_Point is not. The Default_Ignorable_Code_Point has changed over time for
 already-encoded characters, so we may not want to stabilize it; but it may be possible to stabilize it on
 the set XID_Continue: “once a character is XID_Continue, the value of the
 Default_Ignorable_Code_Point property will never change for that character”.

https://www.unicode.org/policies/stability_policy.html#Case_Folding

 40 Proposed changes to Unicode properties and reports for source code handling

 The reason for these recommendations is that failing to support normalization creates interchange
 problems, as canonically equivalent strings are expected to be interpreted in the same way, and distinctions
 between canonically equivalent sequences are not guaranteed to be preserved in interchange; see Section 2.12,
 Equivalent Sequences , and conformance clause C6 in Section 3.2, Conformance Requirements , subsection
 “Interpretation” in The Unicode Standard .

 If a language supports non-ASCII identi�ers and does not take normalization into account, and implements
 equivalent normalized identi�ers with a normalization other than the recommended one, special
 compatibility considerations apply when switching to the recommended behavior. See Section 2.3, Language
 Evolution .

 The choice between Normalization Form C and Normalization Form KC should match expectations of
 identi�er equivalence for the language.

 In a case-sensitive language, identi�ers are the same if and only if they look the same, so Normalization Form
 C (canonical equivalence) is appropriate, as canonical equivalent sequences should display the same way.

 In a case-insensitive language, the equivalence relation between identi�ers is one of abstract characters; for
 instance, e and E are the same abstract letter. Normalization Form KC (compatibility equivalence) is an
 equivalence between abstract characters.

 Example: In a case-insensitive language, SO and so are the same identi�er; if that language uses
 Normalization Form KC, the identi�ers so and 𝖘𝖔 are likewise identical.

 2.1.2 Semantics Based on Case

 Computer languages should not solely depend on case for semantics; that is, if case indicates a semantic
 distinction in a language, it should be possible to express that distinction in some other way that does not
 involve case, such with a symbol or a dedicated syntax. This is because many writing systems are unicameral
 (that is, they do not have separate lowercase and uppercase letters), so that users of those writing systems
 would have no way of specifying that distinction. See Section 5.18, Case Mappings , in The Unicode
 Standard .

 Note: In general, when placing requirements on case, implementations should disallow the
 unwanted case (e.g. , disallow lowercase), rather than requiring the desired case (e.g. , requiring
 uppercase). See also Section 4.3, Identifier Styles .

 Example: Consider a programming language that meets requirement UAX31-R1, Default
 Identi�ers, with a pro�le that adds _ to the set Start .

 That language should not require identi�ers to start with an uppercase letter (General_Category
 Lu) or a titlecase letter (General_Category Lt) in order to be public (so that Example is public, and
 example or _Example are private), as it would be impossible to create a public identi�er using
 CJKV ideographs.

 That language could, however, achieve a similar e�ect for bicameral scripts by treating identi�ers
 that start with a lowercase letter (General_Category Ll) or a non-letter (General_Category other
 than L, such as _) as private. The identi�er Example would still be public, and example or
 _Example would still be private. However, this de�nition allows the users of unicameral scripts to
 pre�x identi�ers with _ in order to make them private: 例 would be public, and _ 例 would be
 private.

https://www.unicode.org/versions/Unicode14.0.0/ch02.pdf#G287424
https://www.unicode.org/versions/Unicode14.0.0/ch02.pdf#G287424
https://www.unicode.org/versions/Unicode14.0.0/ch03.pdf#G22672
https://www.unicode.org/versions/Unicode14.0.0/ch03.pdf#G22672
https://www.unicode.org/versions/Unicode15.0.0/ch05.pdf#G21180

 L2/22-229 41

 Alternatively, that language could have a syntax to explicitly declare an identi�er as public, which
 would then enforce the case convention in bicameral scripts, but not require it in unicameral
 scripts:

 public Example // OK.
 public example // Error.
 public 例 // OK.
 private 例 // OK.

 Languages that enforce a speci�c case convention should do so according to the speci�cation in Section 4.3,
 Identifier styles .

 2.2 Whitespace and Syntax

 It is recommended that all computer languages meet requirement UAX31-R3a Pattern_White_Space
 Characters , which speci�es the characters to be interpreted as end of line and horizontal space, as well as
 ignorable characters to be allowed between lexical elements, but not treated as spaces.

 Using the speci�ed end of line characters prevents spoo�ng issues; see Section 1.1.1, Line break spoofing .
 Note that the line terminators listed in UAX31-R3a will be interpreted as line terminators by any editor that
 implements the Unicode Line Breaking Algorithm. See Unicode Standard Annex #14, Unicode Line
 Breaking Algorithm [UAX14].

 Note: Alternatively, a language could forbid those of the speci�ed line terminators which it does
 not recognize. Care must be taken to forbid the unrecognized ends of line even in line comments, in
 order to prevent the issues described in Section 1.1.1, Line break spoofing .

 Allowing the speci�ed ignorable format controls between lexical elements allows the author of the program
 to correct its plain-text display by inserting characters where needed, to use a tool to perform these
 insertions as described in Section 4.2, Conversion to plain text . Correct display in plain text is useful, because
 even if all source code editors and review tools were to implement the recommendations for display in
 Section 3.1, Bidirectional Ordering , source code is often cited verbatim in environments that are not aware of
 its lexical structure, such as compiler diagnostics or version control di�s written to the console, patches or
 other code snippets sent via email, etc.

 Industry examples: Ada 2012 has a concept of ignorable format controls, as characters with
 General_Category Cf “are allowed anywhere that a [space] is [and have] no e�ect on the meaning of
 an Ada program”; see the Ada Reference Manual, 2.2(7.1) . It recognizes the speci�ed line
 terminators.

 Rust also allows the left-to-right and right-to-left marks wherever space is allowed; however it treats
 those as spaces, and it only recognizes the line feed as a line terminator.

 Example: Consider the following line of C++11, displayed according to the recommendations in
 Section 3.1, Bidirectional Ordering, and assume the identi�er תו is undeclared:

 if (x + 1 == תו) {

 A compiler might emit the following message:
 <source>:<line>:11: error: use of undeclared identifier ' תו '

 if (x + 1 == תו) {
 ̂

http://www.ada-auth.org/standards/aarm12_w_tc1/html/AA-2-2.html#p7.1

 42 Proposed changes to Unicode properties and reports for source code handling

 As the cited code is being shown by a terminal which is not aware of the lexical structure of the
 language (note, for instance, the lack of syntax highlighting), it is improperly displayed; the
 condition looks like a di�erent one (x plus one equals tav, rather than x plus tav equals one), and the
 caret points to the wrong place.

 Consider now a corresponding line of Rust, where, for clarity, we have made the left-to-right mark
 visible as described in Section 3.2, Suggested representations for directional formatting characters .

 if x + 1 == ▸ תו {

 A compiler might emit the following message:
 error[E0425] : cannot find value ̀ תו ̀ in this scope
 --> <source>:<line>:12

 |
 3 | if x + 1 == תו {

 | ̂^ not found in this scope

 The presence of the left-to-right mark causes the code to be displayed correctly even in the
 language-unaware terminal. Programmers should not be expected to enter these characters
 themselves; instead tools should be provided that implement the mechanism described in Section
 4.2, Conversion to Plain Text.

 Editor’s note: See /z/YcrzTMGnP on gcc.godbolt.org for the C++, and /z/W3YK8jvvM for the Rust
 (and lament the display of LRM as [U+200E]).

 It is further recommended that languages allow the ignorable format controls between atoms, as de�ned in
 Section 3.1, Bidirectional Ordering , to the extent possible, even if the atom boundary occurs within a single
 lexical element.

 Example: In C++11 and later, the following is a user-de�ned string literal, which consists of a
 single token:

 "text" _ מחרוזת

 It is syntactic sugar for the following function call:

 operator "" _ מחרוזת ("text")

 If the text ends with a strongly right-to-left character, the plain text display of the token with
 left-to-right paragraph direction is misleading:

 _מחרוזת א" "

 Inserting a left-to-right mark after the closing quotation mark �xes the issue:

 מחרוזת _ " א "

 However, this requires allowing this character within what is technically a single token. A similar
 issue occurs with Rust su�xes.

 It is recommended that programming languages that allow for user-de�ned operators, as well as languages
 that consist of a mixture of literal characters and syntax, such as pattern or regular expression languages,
 meet requirements UAX31-R3b Pattern_Syntax Characters . It is further recommended that programming

https://gcc.godbolt.org/z/YcrzTMGnP
https://gcc.godbolt.org/z/W3YK8jvvM

 L2/22-229 43

 languages that allow for user-de�ned operators meet requirement UAX31-R3c Operator Identifiers . As in
 the case of programming language identi�ers, operators should be treated as equivalent under
 normalization, that is, these languages should meet requirement UAX31-R4 Equivalent Normalized
 Identifiers for their operators as well as their identi�ers. Normalization Form C, rather than KC should
 always be used for operators rather than. This is because sequences that are equivalent under Normalization
 Form KC may have di�erent appearances, but programming language operators are not expected to have
 diverse appearances. For instance, it would be confusing for an operator ∯ to be the same as an operator ∮∮,
 but these are equivalent under Normalization Form KC.

 Industry example: The Swift programming language uses a de�nition of operators which
 corresponds to UAX31-R3c with a small pro�le.

 Languages that do not allow for user-de�ned operators should nevertheless claim conformance to
 UAX31-R3b, thereby reserving the classes of characters which may be assigned to syntax or identi�ers in
 future versions. This ensures compatibility should they add additional operators or allow for user-de�ned
 operators in future versions. It also allows for better forward compatibility of tools that operate on source
 code but do not need to validate its lexical correctness, such as syntax highlighters, or some linters or
 pretty-printers; unidenti�ed runs of characters neither reserved for whitespace nor syntax can be treated as
 identi�ers, which they might become when the language moves to a newer version of the Unicode Standard.
 See the implementation note in Section 4.2, Conversion to Plain Text .

 Languages that declare a pro�le for identi�ers may need to declare a corresponding pro�le for requirement
 UAX31-R3b. For the standard pro�les de�ned in Section 7, Standard Profiles in Unicode Standard Annex
 #31, Identifiers and Syntax [UAX31], the corresponding pro�le for UAX31-R3b is described if needed.

 2.3 Language Evolution

 The recommendations in the preceding sections apply directly when adding Unicode support to a
 previously ASCII-only language, or when creating a new language. However, when changing a language that
 already supports Unicode identi�ers to align with these recommendations, special compatibility
 considerations come into play.

 2.2.1 Changing Identi�er De�nitions

 As requirements change or become clearer, implementations may need to switch from one de�nition of
 identi�ers to another; for instance, from immutable identi�ers to default identi�ers, if normalization or
 spoo�ng concerns arise with the use immutable identi�ers, and forward compatibility is unneeded; or from
 default identi�ers to immutable identi�ers, if forward compatibility turns out to be needed.

 Switching from default identi�ers to immutable identi�ers does not pose backward compatibility issues.
 However, when switching from immutable to default identi�ers, it is likely that existing programs will be
 a�ected.

 In particular, two likely patterns of use of characters outside of XID_Continue are mathematical notation
 and emoji. Standard pro�les are provided for both of these in Section 7, Standard Profiles , in Unicode
 Standard Annex #31, Unicode Identifiers and Syntax [UAX31]. When switching from immutable to default
 identi�ers, it is recommended to extend the identi�er de�nition using these pro�les if these patterns of use
 are attested. Note that the mathematical notation pro�le is also recommended on its own merits, regardless
 of compatibility concerns; See Section 2.1, Identifiers .

https://docs.swift.org/swift-book/ReferenceManual/LexicalStructure.html#ID418

 44 Proposed changes to Unicode properties and reports for source code handling

 2.2.2 Changing Normalization and Case

 Some languages have introduced support for Unicode identi�ers without taking normalization into
 account. A lack of support of normalization leads to interoperability problems, as canonically equivalent
 strings are expected to be interpreted in the same way, and distinctions between canonically equivalent
 sequences are not guaranteed to be preserved in interchange; see Section 2.12, Equivalent Sequences , and
 conformance clause C6 in Section 3.2, Conformance Requirements , subsection “Interpretation” in The
 Unicode Standard .

 As a result, if a language does not meet requirement UAX31-R4 Equivalent Normalized Identifiers , its
 designers may wish to change its de�nition of identi�er equivalence to meet that requirement.

 Similarly, a language designer may wish to switch between Normalization Form KC and Normalization
 Form C to align with the recommendations in Section 2.1.1, Normalization ; or a language designer may wish
 to switch between case-sensitive and case-insensitive identi�er de�nitions.

 These changes are all subject to backward compatibility issues. In particular, there is a risk that a
 previously-legal program would remain legal, but change behavior, as in the following example:

 1. // Prints documents (consisting of a sequence of lines) to file f,
 2. // and prints the number of lines of each document, as well as the
 3. // total number of lines, to standard output.
 4. // A counter for the total number of lines printed.
 5. int lignes_imprimées = 0; // Decomposed e + ◌.́
 6. for (std::vector<std::string> const & document: documents) {
 7. // A counter for the number of lines in the document.
 8. int lignes_imprimées = document.size(); // Precomposed é.
 9. // Print each line of the document.
 10. for (std::string const & ligne: document.lignes()) {
 11. std::fputs(ligne.c_str(), f);
 12. ++lignes_imprimées; // Decomposed e + ◌.́
 13. }
 14. std::printf("%s : %d lignes imprimées" ,
 15. document.front().c_str(),
 16. lignes_imprimées); // Precomposed é.
 17. }
 18. // Report the total number of lines printed.
 19. std::printf("total : %d lignes imprimées" ,
 20. lignes_imprimées); // Decomposed e + ◌.́

 If normalization is not taken into account, the above program works as commented. If the implementation
 uses UAX31-R4 equivalent normalized identi�ers, the program always reports that 0 lines were printed in
 total, and reports double the actual number of lines for each document: the counter declared on line 8
 shadows the one declared on line 5, so that line 12 increments the counter declared inside the loop over
 documents, rather than the outer counter.

 In order to safely transition from one identi�er equivalence to another, implementations should warn if
 identi�ers exist that are equivalent under the new rules but not under the old rules, or vice-versa. This check
 for coexistence could be limited to scopes, depending on the rules of the language and the capabilities of the
 tool issuing the diagnostic; see the discussion in Section 4.1, Confusability Mitigation Diagnostics .

https://www.unicode.org/versions/Unicode14.0.0/ch02.pdf#G287424
https://www.unicode.org/versions/Unicode14.0.0/ch03.pdf#G22672

 L2/22-229 45

 Note: Confusable detection as described in Section 4.1 encompasses such a warning, as canonically
 equivalent sequences are always confusable. The reverse is however not true: the Latin A, Greek Α,
 and Cyrillic А are confusable but not equivalent.

 Note that this is not necessary if only one of the newly equivalent forms was permitted: no special backward
 compatibility considerations are required when switching from UAX31-R6 Filtered Normalized Identi�ers
 to UAX31-R4 Equivalent Normalized Identi�ers, or from UAX31-R7 Filtered case-insensitive identi�ers
 (lowercase-only identi�ers) to UAX31-R5 Equivalent case-insensitive identi�ers.

 3. Source code display

 Most of the issues described in Section 1 are di�cult to usefully address as part of the lexical structure of a
 language, such as in the de�nition of identi�ers. Language speci�cations, which usually evolve more slowly
 than Unicode, are also ill-equipped to alleviate these issues. At the same time, since they are issues that arise
 from a discrepancy between the visual interpretation of code and its interpretation by a compiler, these
 issues only a�ect source code that is shown to a human; a compiler interpreting generated code should not
 have to implement complex legality rules inspired by visual spoo�ng concerns.

 Instead, diagnostics for these issues are best mitigated by tools in the broader ecosystem of the language; this
 may include compiler warnings, but also linters, pretty-printers, editor highlighting, etc.

 In some cases, such as most of the ordering issues, the issue simply arises from inappropriate display of
 source code; in that case the best remedy is to display the code in a way that is consistent with its lexical or
 syntactic structure. This section provides guidance on the display of source code.

 3.1 Bidirectional Ordering

 The issues arising from bidirectional reordering described in Section 1.1.3, Spoofing using bidirectional
 reordering , and Section 1.2.2, Usability issues arising from bidirectional reordering , are resolved by displaying
 the source code according to its own lexical structure, in application of higher-level protocol HL4 de�ned in
 Section 4.3, Higher-Level Protocols , de�ned in Unicode Standard Annex #9, Unicode Bidirectional Algorithm .

 This section provides more detailed guidance on the application of that protocol to source code.

 3.1.1 Atoms

 In order to apply protocol HL4, the text must be partitioned into segments. These segments should be
 entities whose ordering is part of the syntax of the language. We will refer to these entities as atoms , as they
 must not be split in rendering.

 Token boundaries are always atom boundaries; that is, the ordering of tokens is part of the syntax of a
 computer language. However, there may be atom boundaries inside of tokens. For instance, the lexical
 structures of many languages include delimited tokens such as the following:

 1. -- Line comments.
 2. (* Block comments. *)
 3. "String literals."

 In such tokens, the delimiters are ordered syntactically before and after the contents of the token; each of
 these tokens therefore comprises multiple atoms, as in the following table, where spaces have been made
 visible as · .

 46 Proposed changes to Unicode properties and reports for source code handling

 -- · Line comments.

 (* · Block · comments. · *)

 " String literals. "

 Line boundaries are also atom boundaries, so that the contents of a multiline comment or string consist of
 multiple atoms.

 Note: In order to avoid the issues described in Section 1.1.1, Line break spoofing , source code editors
 should support all characters treated as hard line breaks in Unicode Standard Annex #14, Unicode
 Line Breaking Algorithm [UAX14], including U+000B VT and U+0085 NEL whose support is
 optional for general use.

 While an editor may warn about unexpected line terminator conventions, it should nevertheless
 interpret them as line breaks for display purposes. Under no circumstances should an editor remove
 or ignore unexpected line breaks; see conformance clause C7 in Section 3.2, Conformance
 Requirements , subsection “Modi�cation” in The Unicode Standard . On the other hand, an editor
 could provide a function to transform all line terminators to a consistent convention.

 All hard line breaks should be interpreted as atom boundaries and as line boundaries in algorithms
 that use atoms, even in languages that do not support them. In such languages, line comments
 should be processed as block comments whose termination marker happens to be one of the
 supported line terminators.

 Atoms that are part of a comment, but are not comment delimiters, are called comment content atoms .

 Example: The following three-line C-style block comment consists of �ve atoms:

 1. /* · Author: · Mark · Davis
 2. · * · Date: ··· 2022-09-13
 3. · */

 The atoms are as follows, where atoms (2), (3), and (4) are comment content atoms.

 (1) /*
 (2) · Author: · Mark · Davis
 (3) · * · Date: ··· 2022-09-13
 (4) ·
 (5) */

 Runs of whitespace between tokens constitute atoms; these are called whitespace atoms . Ignorable format
 controls, as de�ned in Section 4.1, Whitespace , in Unicode Standard Annex #31, are part of any adjacent
 whitespace atom; if they are not adjacent to whitespace, they form their own whitespace atoms.

 Example: The following line of Rust consists of thirteen atoms.

 1 2 3 4 5 6 7 8 9 10 11 12 13

 if · x · + · 1 · == ·▸ תו · {

https://www.unicode.org/versions/Unicode15.0.0/ch03.pdf#G2155

 L2/22-229 47

 As a special exception, numeric literals that use the digits 0 through 9, and, for higher bases, the letters from
 the Basic_Latin block, should be treated as single atoms, even if they have inner lexical structure. These
 atoms are called numeric atoms . For instance, the hexadecimal numeric literal 0xDEAD'BEEF should be
 treated as a single atom, not as the sequence of �ve atoms (0 , x , DEAD , ' , BEEF). Likewise 3.14159_26E0
 is a single atom, not seven. This is because ASCII numbers are left-to-right even when used with a
 right-to-left writing system.

 Note: It is not recommended for general-purpose languages to support numbering systems other
 than the digits 0 through 9 in numeric literals (as well as the ASCII letters for hexadecimal). This is
 because the ASCII digits are generally acceptable in technical contexts, and numbering systems
 introduce unique confusability issues (for instance, ৪ is a Bengali digit four, but looks like the digit
 8). At the same time, supporting these numbering systems may be very complex, especially in the
 case of systems that are not positional, such as Chinese or Roman numerals: 1729 = ⼀ 千 七 百 ⼆
 ⼗九 = CDCCXXIX.

 An identi�er, the contents of a single-line string literal, and the contents of a single-line comment should
 each form a single atom.

 Note: In particular, it is not appropriate to treat each character as an atom (which would lead to
 displaying characters left-to-right as if the Unicode Bidirectional Algorithm were not applied), as
 this would render any right-to-left text illegible, or even misleading; for instance, a string rendered
 by forcibly ordering the characters left-to-right as " م ر ح ب ا " looks like it says “welcome” with
 broken shaping, it would actually be printed as “ حرم اب ”, “forbidden father”.

 3.1.2 Basic ordering

 The basic ordering is applicable to computer languages other than marked-up text and pattern languages.

 In the basic ordering, the atoms on each line of a source code document are ordered either left-to-right or
 right-to-left; this order remains the same throughout the document. This atom order may be determined as
 an editor setting, or from the properties or contents of the document; a language speci�cation could also
 de�ne a default order, or a mechanism to specify the order. The determination of atom order is outside the
 scope of this speci�cation.

 Editors are encouraged to support both atom orders, but should at a minimum support the display
 described in this section using left-to-right atom order.

 Each atom should be displayed using the Unicode Bidirectional Algorithm, using protocol HL1 to set the
 paragraph direction consistently with the atom direction, with the following exceptions:

 1. numeric atoms should always have left-to-right paragraph direction, even with right-to-left atom
 order;

 2. comment content atoms should have their directionality set according to rule P2 of the Unicode
 Bidirectional Algorithm (that is, they should have “�rst strong” direction);

 3. when an atom has inner structure, that structure should be taken into account when displaying it,
 as described in Sections 3.1.3, Embedded languages .

 Review note: It is unclear whether using the atom direction is the right choice for the contents of string literals.

 The following alternatives were discussed by the SCWG:

 48 Proposed changes to Unicode properties and reports for source code handling

 1. First-strong. Problems:

 a. The standard technique of inserting a mark to override a first-strong heuristic doesn’t work,
 as that changes the string.

 b. Doesn’t work when converting to plain text (an FSI/PDI pair would need to be inserted,
 which, again, changes the string).

 2. Recommend that language specifications allow stateful characters preceding and following a string
 literal. Problem:

 a. Requires special handling when implementing HL4, so that the effect of these characters
 persists into the string literal.

 b. Manipulating the stateful characters is fiddly, even more so than the stateless characters.

 3. Recommend that language specifications ignore a stateful character immediately after the opening
 quotation mark (and a corresponding pop immediately before the closing quotation mark). Problems:

 a. This would be an incompatible change to existing language specifications.
 b. Manipulating the stateful characters is fiddly, even more so than the stateless characters.

 4. First-strong, and recommend that language specifications ignore an LRM or RLM after the opening
 quote. Problems:

 a. This would be an incompatible change to existing language specifications.
 b. Doesn’t work when converting to plain text (an FSI/PDI pair would need to be inserted).

 5. Recommend that language specifications introduce a dedicated RTL" syntax, which could allow for an
 ignorable RLE or RLI so that it supports conversion to plain text. This is appealing, because it avoids
 all of the issues above, and uses a visible mechanism. However, some questions of language semantics
 need to be investigated more deeply; for instance, would it be useful for such literals to have a dedicated
 type that carries the information “this string wants to be in an RTL span in order to display properly”?

 Implementation note: When source code is displayed using HTML, the basic ordering may be
 achieved as follows, where 𝑑 is atom order (ltr or rtl),

 1. Enclose each atom in a , and apply the attribute dir=𝑑 to it, except that:
 a. numeric atoms have the attribute dir="ltr" regardless of the value of 𝑑;
 b. comment content atoms have the attribute dir="auto" regardless of the value of 𝑑.

 2. Apply the attribute dir=𝑑 to the element containing each line.

 Note that if code is displayed using syntax highlighting, the elements from step 1. are likely
 to already exist; they only need to have their dir attribute set appropriately.

 Example: The Python example from Section 1.2.2, Usability issues arising from bidirectional
 reordering , should be displayed as follows with left-to-right atom order:

 return אינטגרל (lambda 1= ל ,0= מ ,2 ** א : א)

 and as follows with right-to-left atom order:

 return)אינטגרל lambda :1 ל= , 0 מ= , 2 ** א א (

 Editor’s note: in the HTML document, use spans with the dir attribute, as in the implementation note.

 L2/22-229 49

 Industry Example: Microsoft Visual Studio, and Microsoft Visual Studio Code since Version
 1.66, implement the basic ordering, except that they use LTR rather than �rst-strong paragraph
 direction for comments.

 3.1.2.1 Equivalent Isolate Insertion for the Basic Ordering

 This section describes how one would insert isolates into source code in order to have it appear in the right
 direction. The purpose of this is to establish a formal logical description of how text should be ordered. This
 does not mean that isolates should be inserted into a copy of the document for display. Instead higher-level
 protocols should be used to achieve the same display.

 The basic ordering can be formally described in terms of an equivalent insertion of explicit directional
 formatting characters, as in higher-level protocol HL3 of the Unicode Bidirectional Algorithm. That is, a
 document displayed according to the basic ordering must display in the same order as a document that is
 modi�ed according to the procedure below and displayed according to the Basic Display Algorithm of
 Unicode Standard Annex #9, Unicode Bidirectional Algorithm , where each line of source code is treated as a
 paragraph.

 Note: Actually inserting explicit directional formatting is not necessary to implement the basic
 ordering. In particular, when code is displayed using HTML, it is better to make use of the features
 of that language, as described in the implementation note in Section 3.1.2, Basic Ordering . In
 particular, this avoids the need to terminate unmatched isolates.

 This formal speci�cation refers to de�nitions from Unicode Standard Annex #9, Unicode Bidirectional
 Algorithm [UAX9], and makes use of the abbreviations de�ned in Section 2, Directional Formatting
 Characters , in that annex.

 A. Let 𝑑 be the atom direction, either LTR or RTL;
 B. De�ne Atom_Isolate to be the code point LRI if 𝑑=LTR, or RLI if 𝑑=RTL;
 C. Separate the text into lines and each line into atoms, as described in Section 3.1.1, in a

 language-dependent manner;
 D. For each line:

 a. For each atom on the line:
 i. If the atom is known to consist of literal text with interspersed syntax:

 1. Apply the Equivalent Isolate Insertion for the Ordering for Literal Text with
 Interspersed Syntax to the text of the atom, using 𝑑 as the atom direction.

 ii. Otherwise, if the atom is known to consist of text in some other computer language:
 1. Gather the text of all consecutive atoms that are in that computer language,

 including intervening line breaks.
 2. Apply the Equivalent Isolate Insertion for the Basic Ordering to that text, using 𝑑

 as the atom direction.
 3. Continue the loop with the next atom not yet processed.

 iii. Compute 𝑢, the number of isolate initiators in the text of the atom that do not have a
 matching PDI within the text of the atom, as de�ned by BD9 .

 iv. If the atom is a comment content atom:
 1. Insert an FSI character before the atom;

 v. Otherwise, if the atom is a numeric atom:
 1. Insert an LRI character before the atom;

 vi. Otherwise:
 1. Insert Atom_Isolate before the atom;

https://www.unicode.org/reports/tr9/#Directional_Formatting_Characters
https://www.unicode.org/reports/tr9/#Directional_Formatting_Characters
https://www.unicode.org/reports/tr9/#BD9

 50 Proposed changes to Unicode properties and reports for source code handling

 vii. Insert 𝑢+1 PDI characters at the end of the atom;
 b. Insert Atom_Isolate at the beginning of the line;
 c. Insert a PDI character at the end of the line;

 3.1.3 Embedded languages

 If an atom consists of text written in a computer language, and the editor is aware of that structure, the
 internal display of that atom should itself follow either the basic ordering described in Section 3.1.2, Basic
 ordering , or the ordering described in Section 3.1.4, Ordering for Literal Text with Interspersed Syntax , as
 appropriate.

 Example 1: Consider the following C# statement, as displayed by an editor which is unaware of the
 internal structure of the string passed to Parse :

 1. var decomposition_mapping =
 2. System.Text.Json.JsonDocument.Parse(
 ;("{' ⽇ ㏣ ':'4 ',' 1 وسلم','①':' علیھ الله صلى الله عليه وسلم':'صلى '}" .3

 The JSON is reordered without regard to its logical structure, misleading the reader as to the
 identity of keys and values. If the editor is capable of recognizing that the string contains JSON , it
 should instead display it in the following order, applying the basic ordering to the JSON:

 1. var decomposition_mapping =
 2. System.Text.Json.JsonDocument.Parse(
 ;(" { ' ⽇ ㏣ ' : '4 ' , '1' : '①' , ' وسلم علیھ الله صلى ' : ' صلى الله عليه وسلم ' } " .3

 Example 2: Consider the following lines of Python, as displayed by an editor which is unaware of
 the internal structure of the string passed to re.sub :

 1. # Replace translations of “Google, Ltd.”.
 2. terms = re.sub(r' גוגל ,?\s+ בע[״"]מ ' , "Google LLC" , terms)

 The reordering obscures the structure of the regular expression, so that it looks like it replaces the
 text גוגל בע״מ “Ltd. Google”. If the editor is capable of recognizing the string as a regular expression,
 it should instead display it in the following order; see also Example 1 of Section 3.1.4.

 1. # Replace translations of “Google, Ltd.”.
 2. terms = re.sub(r' גוגל , ? \s + מ] ״" [בע ' , "Google LLC" , terms)

 3.1.4 Ordering for Literal Text with Interspersed Syntax

 Some languages, such as regular expression or markup languages, consist of literal text interspersed with
 language syntax. The same can be said of interpolated strings and strings containing escape sequences.

 In that case, the syntax should not interfere with the displayed order of the literal text; instead, any syntactic
 elements should appear at the appropriate position within the text, without being in�uenced by it nor
 in�uencing it.

 Note: Whereas the basic ordering requires only a lexical analysis, this requires a syntactic analysis:
 for instance, a group in a regular expression must be isolated as a whole. In many languages, this
 ordering must then be applied recursively: each alternative in a regular expression group is itself a
 regular expression.

 Thus, the ordering of the regular expression a[bc]d(e|f[g]h)i|j proceeds as follows:

 L2/22-229 51

 1. Apply the basic ordering to order the following atoms:
 a. a[bc]d(e|f[g]h)i
 b. |
 c. j

 2. Apply the ordering for literal text with interspersed syntax to a[bc]d(e|f[g]h)i ,
 displaying it in the same order as adi with isolated syntactic elements [bc] and
 (e|f[g]h)? .

 3. Apply the basic ordering to both [bc] and (e|f[g]h)? , whose atoms are respectively
 [, b , c ,] and (, e , | , f[g]h ,) , ? .

 4. Apply the ordering for literal text with interspersed syntax to f[g]h , displaying it in the
 same order as fh with an isolated [g] .

 5. Apply the basic ordering to [g] .

 In Examples 1 through 4, left-to-right atom direction is used.

 Example 1: Consider the regular expression from Example 2 of Section 3.1.3:

 מ] ״" [בע + s\ ? , גוגל

 It matches strings such as ,בע״מ גוגל (“Google, Ltd.”); however, its plain text appearance is
 misleading: it looks like it matches the reversed גוגל בע״מ, “Ltd. ,Google”. In this case, treating the
 syntax characters as atoms makes things worse:

 מ [" ״] בע + s\ ? , גוגל

 That rendering looks like it matches a nonsensical גוגל מ״בע, “d.Lt ,Google”. Instead, the
 subexpressions , ? , \s + , and [״ "] should be isolated, so that they display at the appropriate
 locations within the resulting text:

 מ] ״" [בע + s\ ? , גוגל

 Example 2: Consider the following C statement, prints a string that reads “kilobyte (kB)”, where
 an escaped ASCII quotation mark is used instead of a gershayim.

 puts(" ק בית קילו) "\ (ב ");

 That rendering is misleading, because the escape sequence is reversed, so that it looks like there is an
 unescaped quotation mark. However, treating the escape sequence as an atom would be even worse:

 puts(" (ב "\ ק) בית קילו");

 The string then reads “(Bk) kilobyte”. Instead the escape sequence should be isolated, so that it
 displays normally, but at the correct location:

 puts(" ק בית קילו) \" (ב ");

 Example 3: Consider the following lines of JavaScript, which both cause a pop-up window to
 appear with a Persian translation of “Version 15,1 was released yesterday”:

 1. alert(̀ ٔشد منتشر دیروز]} 1 , 15 ${[نسخھ ̀);
 2. n=[15, 1]; alert(̀ ٔنسخھ ${n} شد منتشر دیروز ̀);

 That rendering is problematic; in the �rst case, the executable Javascript [15, 1] is displayed with
 right-to-left atom order even though the program uses left-to-right atom order; likewise the

 52 Proposed changes to Unicode properties and reports for source code handling

 placeholder syntax ${} uses right-to-left atom order, so a reviewer could fail to identify it as a
 placeholder. In the second case, the placeholder is �ne, but the Persian text is broken by it, so that it
 looks like it reads “Was released yesterday 𝑛 version”. Instead, the placeholders should be isolated so
 that the statements display as follows:

 1. alert(̀ ٔشد منتشر دیروز { [1 ,15] }$ نسخھ ̀);
 2. n=[15, 1]; alert(̀ ٔنسخھ ${ n } شد منتشر دیروز ̀);

 Note: Isolating interspersed syntax as neutral generally works well for escaped neutral characters
 (such as escaped spaces or quotation marks), or for escaped line breaks. However, it can lead to
 unwanted display when the escaped characters have a strong or explicit bidirectional class. For
 instance, the following string literal would display as “ YouTube لشركة تابعة Google ” (“YouTube is a
 subsidiary of Google), but, in the source code, it looks like “Google is a subsidiary of YouTube”.

 " \u{202B} YouTube لشركة تابعة Google \u{202C} "

 On the other hand, treating the escapes as if they had the bidirectional class of the characters for
 which they stand is technically di�cult, and can lead to unexpected results when escapes are meant
 to represent a string in memory order; for instance, the escapes in the following string literal should
 not be displayed in right-to-left order, even though the text represented by it would be displayed
 with characters right-to-left.

 " \N{ARABIC LETTER MEEM}\N{ARABIC LETTER SAD}\N{ARABIC LETTER REH} "

 The use of the literal characters is a more reliable way to ensure that the source code display matches
 the display of the text. This can be combined with a “show invisibles” mode, as described in Section
 3.2.2, Suggested representations for directional formatting characters .

 Editors may wish to provide a way to see what a string looks like when all escape sequences therein
 are replaced by the characters for which they stand; such a feature would show the contents of the
 above two strings as “ YouTube لشركة تابعة Google ” and “ مصر ”, respectively.

 Where a markup language speci�es the paragraph direction for the bidirectional algorithm in some span of
 the text, that direction should be taken into account when displaying the text.

 Example 5: Consider the HTML source for the following two paragraphs (note: the second
 paragraph translates to “YouTube is a subsidiary of Google”).

 ETCO (إتكو) is a company in Oman

 YouTube لشركة تابعة Google

 If it is displayed using the basic ordering with left-to-right atom direction, that HTML would look
 as follows, which is misleading: the second paragraph looks like it reads “Google is a subsidiary of
 YouTube”.

 1. <p dir= "ltr" > ETCO (إتكو) is a company in Oman </p>
 2. <p dir= "rtl" > YouTube لشركة تابعة Google </p>

 If instead right-to-left atom direction is used, it is the �rst paragraph whose display is misleading.

 1 . > p dir = " ltr " < ETCO (إتكو) is a company in Oman /> p <
 2 . > p dir = " rtl " < YouTube لشركة تابعة Google /> p <

 L2/22-229 53

 Instead, the text within each element should be displayed according to the dir attribute, thus, with
 left-to-right atom direction,

 3. <p dir= "ltr" > ETCO (إتكو) is a company in Oman </p>
 4. <p dir= "rtl" > YouTube لشركة تابعة Google </p>

 3.1.4.1 Equivalent Isolate Insertion for the Ordering for Literal Text with Interspersed Syntax

 This section describes how one would insert isolates into source code in order to have it appear in the right
 direction. The purpose of this is to establish a formal logical description of how text should be ordered. This
 does not mean that isolates should be inserted into a copy of the document for display. Instead higher-level
 protocols should be used to achieve the same display.

 That is, the ordering for literal text with interspersed syntax can be formally described in terms of an
 equivalent insertion of explicit directional formatting characters, as in higher-level protocol HL3 of the
 Unicode Bidirectional Algorithm. That is, a document displayed according to this ordering must display in
 the same order as a document that is modi�ed according to the procedure below and displayed according to
 the Basic Display Algorithm of Unicode Standard Annex #9, Unicode Bidirectional Algorithm , where each
 line of source code is treated as a paragraph.

 Note: Actually inserting explicit directional formatting is not necessary to implement the basic
 ordering. In particular, when code is displayed using HTML, it is better to make use of the features
 of that language, as described in the implementation note in Section 3.1.2, Basic Ordering .

 This formal speci�cation refers to de�nitions from Unicode Standard Annex #9, Unicode Bidirectional
 Algorithm [UAX9], and makes use of the abbreviations de�ned in Section 2, Directional Formatting
 Characters , in that annex.

 A. Let 𝑑 be the atom direction, either LTR or RTL;
 B. Let 𝑑′ be the paragraph direction, LTR, RTL, or FS (First Strong), if speci�ed by the language,

 otherwise 𝑑′=𝑑;
 C. De�ne Text_Isolate to be the code point LRI if 𝑑′=LTR, RLI if 𝑑′=RTL, or FSI if 𝑑′=FS;
 D. Separate the text into lines and each line into runs of syntactic elements and literal text, in a

 language-dependent manner;
 E. For each line:

 a. For each syntactic element on the line:
 i. Apply the equivalent isolate insertion for the basic ordering to the syntactic element,

 using 𝑑 as the atom direction;
 b. Compute 𝑢, the number of isolate initiators in the text of the line that do not have a matching

 PDI within the text of the atom, as de�ned by BD9 ;
 c. Insert Text_Isolate at the beginning of the line;
 d. Insert 𝑢+1 PDI characters at the end of the line;

 3.2 Blank and Invisible Characters

 Many source code editors provide options to make blank characters visible, such as representing horizontal
 tabulations by → , spaces by ⋅ , etc.

 It is recommended that editors also provide an option to make visible any default ignorable code points (that
 is, code points with the Default_Ignorable_Code_Point property). These are invisible characters, which,
 while necessary and commonly used in text, can lead to confusion. However, even if these characters are

https://www.unicode.org/reports/tr9/#Directional_Formatting_Characters
https://www.unicode.org/reports/tr9/#Directional_Formatting_Characters
https://www.unicode.org/reports/tr9/#BD9

 54 Proposed changes to Unicode properties and reports for source code handling

 made visible, their normal e�ect on the text should be retained, as this can otherwise lead to misleading
 rendering.

 Example:

 The following string literal, which reads “YouTube is a subsidiary of Google”, contains two
 invisible characters, as well as three spaces:

 (1) " YouTube لشركة تابعة Google "

 These blank and invisible characters could be made visible as follows:

 (2) " [RLE] YouTube · لشركة · تابعة · Google [PDF] "

 However, when adding the markers that make them visible, their e�ect on the text should be
 retained; otherwise the string literal would appear as follows, which looks like “Google is a
 subsidiary of YouTube”, even though that literal represents a string which reads “YouTube is a
 subsidiary of Google”, as in (1).

 (3) " [RLE] YouTube · لشركة · تابعة · Google [PDF] " # Misleading.

 Some of these invisible characters can be expected to occur frequently, or are part of the orthography of
 some languages. As a result, when they are made visible, their visual representation should be unobtrusive
 (similar to the use of ⋅ for space, rather than [U+0020]).

 3.2.1 Suggested representations for joiner controls and variation selectors

 The joiner controls (U+200C zero width non-joiner, U+200D zero width joiner) and the variation selectors
 (U+200C, U+200D, U+FE00..U+FE0F, U+E0100..U+E01EF) can occur within a word, and in particular
 within an identi�er. Further, they can a�ect shaping; the insertion of a marker into the text stream would
 likewise a�ect shaping, possibly obscuring the e�ect of the character. When these characters are made
 visible, a nonspacing visual indication should be used.

 Two examples are given for each suggested representation in this section; a �rst one where the invisible
 character is unexpected, and should therefore be made visible when showing invisible characters; and a
 second one where it is expected and has an e�ect, illustrating how the suggested representation preserves its
 e�ect on the text. If possible, the visual indication should be suppressed when the character is expected to
 have a visible e�ect; that is, in the second example, it is preferable to not indicate the presence of the invisible
 character at all.

 Review note: the “If possible…” is ICU homework.

 For the zero width non-joiner, the suggested representation is an overlaid vertical bar at the position of the
 non-joiner:

 1. procedure Up | date (version : Positive);
 2. procedure روز | بھ (نسخھ : Positive);

 Editor’s note: in the HTML document, enclose the ZWNJ in a span with a border; here a spacing | was used.

 L2/22-229 55

 For the zero width joiner, the suggested representation is an outline around the extended grapheme cluster
 enclosing the joiner, or, if the joiner lies at an extended grapheme cluster boundary, around the extended
 grapheme clusters either side of the joiner:

 1. f i nland = Locale.IsoCountryCode.valueOf("FI");
 2. � _ලංකා = Locale.IsoCountryCode.valueOf("LK");

 Note: In some cases, such as � above, the zero width joiner merges the glyphs of the grapheme
 clusters either side of it (�=�+ZWJ+�), so that there is no position at which a marker could
 meaningfully be inserted to indicate its presence; styling the two grapheme clusters di�erently, or
 attempting to insert a mark, would likely inhibit correct shaping, and mislead the users as to the
 actual text being displayed.

 For variation selectors, the suggested representation is an outline around the extended grapheme cluster
 containing the variation selector.

 1. infix operator + : AdditionPrecedence // VS-1 has no effect on + .
 2. infix operator � : ComparisonPrecedence // VS-1 slants the = in ⋚ .

 Editor’s note: in the HTML document, put a border around that instead of highlighting it with a solid color.

 Industry example: Visual Studio Code displays variation selectors as suggested.

 3.2.2 Suggested representations for directional formatting characters

 The implicit directional marks (U+061C, U+200E, U+200F) are nonspacing characters which can be
 inserted between tokens, either manually, or automatically by the procedure described in Section 4.2,
 Conversion to Plain Text . A lightweight representation should therefore be used; for instance, ▸ for
 left-to-right mark and ◂ for right-to-left and Arabic letter marks:

 . Update · to · version · 15 · // ·· ;(15) ▸ עדכון ·· ○

 In contrast, the explicit directional formatting characters are more rarely used, and need to be manipulated
 with care, as they are operations on a stack. A more prominent visual representation is therefore appropriate.
 However, the code point number is not a very readable representation. It is instead recommended to use the
 abbreviations de�ned in Section 2, Directional Formatting Characters , in Unicode Standard Annex #9,
 Unicode Bidirectional Algorithm [UAX9].

 The markers indicating the presence of these characters should be directionally isolated, and should be
 inserted before the characters in the case of LRE, RLE, FSI, LRI, RLI, but after in the case of PDF and PDI.

 Example: " [RLE] YouTube · لشركة · تابعة · Google [PDF] "

 Further, it should be possible to selectively turn o� these visual indications; in particular, the following levels
 are recommended:

 S1. Unconditionally show spaces/tabs and default ignorable code points everywhere;
 S2. Do not show spaces, but show default ignorable code points everywhere but in comments;
 S3. Do not show spaces, and only show default ignorable code points in strings;
 S4. Do not show spaces nor default ignorable code points anywhere.

 The reason for level S3 is that some default ignorable code points may be inserted between lexical elements
 throughout the source code in order to preserve the basic ordering in editors that do not implement it. Such

 56 Proposed changes to Unicode properties and reports for source code handling

 default ignorable code points are not part of the semantics of the program, whereas those in strings are. See
 Section 4.2, Conversion to Plain Text .

 Example: When writing comments in right-to-left scripts that refer to technical terms in
 left-to-right scripts, if the comment is displayed using left-to-right paragraph direction, such as
 when the code is displayed as left-to-right plain text (see Section 4.2, Conversion to Plain Text), it is
 necessary to use the explicit directional formatting characters in order for the text to be readable, as
 in the following Persian comment, which reads “The variable message is not null.”.

 1. // [RLE] متغیر message نیست. خالی
 2. *message = " [RLE] YouTube لشركة تابعة Google [PDF] " ;

 The RLE is necessary; in its absence, the comment would appear as the mangled “.is not null /
 changeable message ”:

 . نیست خالی message متغیر //

 Since mentioning technical terms is a frequent occurrence in programming language comments,
 and since comments, by virtue of not being executable, are not subject to spoo�ng concerns as long
 as their extent made recognizable by correct display, a programmer who writes comments in
 right-to-left scripts may want to suppress the [RLE] marker in line comments while retaining them
 elsewhere the source code, such as in the string, in order to be able to check that the message is
 well-formed (levels S2 or S3 above):

 نیست. خالی message متغیر // .1
 2. *message = " [RLE] YouTube لشركة تابعة Google [PDF] " ;

 Implementation note: with rendering based on HTML and CSS, the suggested representations
 can be implemented as in the examples above, which use the following CSS:

 1. span.zwj-cluster {
 2. border-top-style: solid;
 3. border-bottom: 1px solid skyblue;
 4. }
 5. span.zwj-cluster::before {
 6. content: "\A0";
 7. position: absolute;
 8. border-left: 1px solid skyblue;
 9. }
 10. span.zwj-cluster::after {
 11. content: "\A0";
 12. position: absolute;
 13. border-left: 1px solid skyblue;
 14. }
 15.
 16. span.zwnj::before {
 17. content: "\A0";
 18. position: absolute;
 19. border-left: 1px solid skyblue;
 20. }
 21. span.lrm::before {
 22. content: "▸";
 23. color: skyblue;
 24. unicode-bidi: isolate;

 L2/22-229 57

 25. }
 26. span.rle::before {
 27. content: "[RLE]";
 28. color: skyblue;
 29. unicode-bidi: isolate;
 30. }
 31. span.pdf::after {
 32. content: "[PDF]";
 33. color: skyblue;
 34. unicode-bidi: isolate;
 35. }

 The relevant characters are wrapped in spans with the corresponding classes, except that the class
 zwj-cluster is used to enclose grapheme clusters either side of the ZWJ:

 1. <div>f‍inland</div>
 2. <div>up‌date</div>
 3. <div> עדכון ‎(15);</div>
 4. <div>"‫YouTube
 لشركة تابعة .5
 6. Google‬"</div>

 3.3 Confusables

 Issues of confusability, whereby, for instance, two di�erent identi�ers look identical, cannot directly be
 addressed by �xing the display or by syntax highlighting. This is because contrary to display order and to the
 nature and extent of tokens, which can generally be handled with limited context, confusability is global;
 confusable identi�ers may occur arbitrarily far apart in a �le, or even in separate �les.

 Local solutions, such as highlighting individual characters that are confusable with ASCII, are ill-advised;
 they have unacceptable false positive rates when non-Latin scripts are used. As a result, users of these scripts
 would need to turn these diagnostics o�; however, as described in Section 1.2.1, Usability issues arising from
 lookalike glyphs , these users are precisely the ones who are most likely to experience such issues.

 Instead, the mechanisms described in Section 4.1, Confusability Mitigation Diagnostics , should be used.
 These can then be surfaced in display, for instance, using “squiggles” as for other warnings.

 3.4 Syntax Highlighting

 Many spoo�ng issues involve confusion over the extent of string literals and comments, so that executable
 text looks non-executable, or vice-versa. Syntax highlighting can mitigate such issues, by making the extent
 of such tokens visually evident. Note that syntax highlighting based on color can be an accessibility issue; if
 color is used, it is advisable to change luminosity and saturation as well has hue. However, syntax
 highlighting need not be solely based on color; throughout this document, code snippets have comments in
 italics and reserved words in bold, in addition to coloring for various kinds of tokens. However, readable
 stylistic alternatives such as bold and italics do not exist in all writing systems, and are limited in number
 even in the Latin script.

 Note: Key to the syntax highlighting used in this document:

 ● reserved words
 ● comment markers
 ● comment contents

 58 Proposed changes to Unicode properties and reports for source code handling

 ● string literals
 ● hints for blank and invisible characters
 ● markup, regex character classes
 ● escape sequences, regex operators
 ● in some examples: types

 4. Tooling and diagnostics

 Not all issues can be addressed by improving the display of source code. For instance, the words ΚΑΙ (Greek
 for AND) and KAI (in Latin script) are expected to display identically; however, having both as identi�ers in
 the same scope is a problem. Compiler and linters warnings are a more appropriate tool to address such
 issues. Note that the resulting diagnostics may then be visually surfaced by an editor, e.g. , as squiggles.

 Further, source code is sometimes displayed as plain text in environments that are unaware of its lexical
 structure, such as in compiler diagnostics or di�s shown in a terminal, patches sent by email, etc. These
 environments cannot be expected to implement the ordering described in Section 3.1, Bidirectional
 Ordering ; instead, the source code itself should be modi�ed, e.g. , by a pretty-printer, to minimize issues
 when it is displayed as plain text.

 4.1 Confusability Mitigation Diagnostics

 The diagnostics de�ned in this section are recommended for use in linters or other sources of editor
 squiggles. Some of them may need to be turned o� in specialized applications, such as scienti�c computing.
 However, they are designed to be an unobtrusive default while drastically reducing the possibility of
 spoo�ng attacks and the usability issues resulting from visually identical identi�ers.

 4.1.1 Confusable Detection

 The most e�ective remedy to issues of identi�er spoo�ng is the use of confusable detection. In a source code
 document with LTR atom order, it is recommended to warn the user when an identi�er is LTR-confusable
 with some other relevant identi�er or with a reserved word of the language, where LTR-confusability is
 de�ned in Section 4, Confusable Detection , in Unicode Technical Standard #39, Unicode Security Mechanisms
 [UTS39]. When RTL atom order is used, RTL-confusability should be used.

 Note: An implementation should diagnose only distinct confusable identi�ers; identi�ers that are
 identical, or that are equivalent under any normalization or case equivalence used by the language,
 should not be �agged.

 Review note: It would make sense to look for the bidiSkeleta of syntactic lexical elements (operators, etc.)
 in the bidiSkeleta of identifiers; however, this requires a narrower definition of confusability, lest we
 prohibit the letters I and l in any languages where | has syntactic meaning. It could also be useful to
 have such a narrower definition to avoid warning about the confusability of, e.g., I and l, which are
 typically distinct in fonts used to display source code.

 The set of “relevant identi�ers” to look for depends on the language and the capabilities of the tool
 implementing this diagnostic.

 For instance, consider an editor that is only aware of the lexical structure of a programming language, but
 cannot resolve dependencies nor determine scopes: that editor could warn on the coexistence of distinct
 confusable identi�ers in the same �le (type I in the example below). If that editor is also aware of a workspace

 L2/22-229 59

 of relevant �les, it could warn on the coexistence of distinct confusable identi�ers anywhere within those
 �les (type II).

 On the other hand, a compiler for that programming language, knowing the visibility rules of the language,
 could warn when an identi�er is confusable with a semantically distinct visible name; this would allow it to
 diagnose confusabilities with names in other libraries, and it would avoid false positive where local variables
 in unrelated places have confusable names (type III).

 Example: Consider the following C program split across two �les:

 bad_stdlib.c:

 1. #include <ctype.h>
 2. #include <math.h>
 3. // The name of both functions is entirely in Cyrillic.
 4. // The argument in the Latin script for both.
 5. bool іѕѕрасе(char32_t c) {
 6. return c == U' ' ;
 7. }
 8. double ехр(double x) {
 9. return 1 + x;
 10. }

 main.c:

 1. #include <ctype.h>
 2. int main(int argc, char * argv[]) {
 3. // The name of this variable is a Cyrillic s.
 4. char * с = argv[1];
 5. if (isspace(*c)) {
 6. puts("argv[1] starts with a space");
 7. }
 8. // This is a Latin c.
 9. char c = getchar();
 10. return c != 'Y' ;
 11. }

 A type I diagnostic will �ag the confusability between the variables с (l. 4) and c (l. 9) in main.c.

 A type II diagnostic will also �ag that; in addition, it will �ag іѕѕрасе in bad_stdlib.c and isspace in
 main.c, because they are confusable with each other; it will also �ag c in bad_stdlib.c, because it is
 confusable with с in main.c.

 A type III diagnostic will �ag с (l. 4) and c (l. 9) in main.c; it will �ag both іѕѕрасе and ехр in
 bad_stdlib.c, because they are confusable with identi�ers included at lines 1 and 2; it will not �ag c
 in bad_stdlib.c nor isspace in main.c, because their confusables are not visible.

 The type III diagnostic is most complex to implement, but it avoids false positives; on the other
 hand, such false positives are still likely to be mistakes (or spoo�ng attempts) in practice. The
 inability of the type II diagnostic to see other libraries is mitigated by the fact that using a library
 will cause its identi�ers to appear in the code, as for isspace in the example, so that this is unlikely to
 be a problem in a real code base.

 60 Proposed changes to Unicode properties and reports for source code handling

 Industry example: The Rust compiler implements type II confusable detection, by �agging any
 confusable identi�ers within a crate, with the exception that it uses confusability rather than
 LTR-confusability (so that it would fail to diagnose the confusability of the identi�ers a 1 א and
 a1 א).

 In order to mitigate usability issues arising from confusability, such as the ones described in Section 1.2.1,
 Usability issues arising from lookalike glyphs , it is important to detect confusables early, for instance, in the
 editor, or at the latest while compiling. If this check is only performed after successful compilation, such as
 in continuous integration on pull requests, the usability issues are not mitigated, as the user will be faced
 with mysterious compilation errors. When confusable checks are not applied prior to successful
 compilation, implementations should make use of other mechanisms to alleviate usability issues, such as
 mixed-script detection in identi�er chunks; see Section 4.1.2, Mixed-Script Detection .

 4.1.2 Mixed-Script Detection

 Editor’s note: a detailed rationale for this section is provided in document L2/22-231 .

 Mixed-script detection, as described in Unicode Technical Note #39, Unicode Security Mechanisms , should
 not directly be applied to computer language identi�ers; indeed, it is often expected to mix scripts in these
 identi�ers, because they may refer to technical terms in a di�erent script than the one used for the bulk of
 the program. For instance, a Russian HTTP server may use the identi�er HTTPЗапрос (HTTPRequest).

 Instead, identi�ers should be subdivided into visually recognizable chunks based either on both case and
 punctuation; one can then ensure that these chunks are either single-script, or are visibly mixed-script (in
 which case the reader is not misled about the string being single-script).

 Note: While mixed-script detection reduces the surface for spoo�ng attacks, it cannot completely
 prevent them; identi�ers such as іѕѕрасе or ехр are single-script (Cyrillic), but are confusable
 with ASCII identi�ers from the standard libraries of multiple languages, viꝫ isspace and exp .

 Confusable detection should be used to more systematically deal with spoo�ng issues; see Section
 4.1.1, Confusable Detection .

 4.1.2.1 Identi�er chunks

 An identifier word boundary is de�ned as any of the following:

 🐫 a CamelBoundary , de�ned as the position after the group in a sequence matching the following
 regular expression:
 ([\p{Ll} [\p{Lt}-\p{Grek}]] [\p{Mn}\p{Me}]*) [\p{Lu}\p{Lt}] ,

 🎩 a HATBoundary , de�ned as as the position before a sequence matching the following regular
 expression:
 [\p{Lu}\p{Lt}] [\p{Mn}\p{Me}]* \p{Ll} | [\p{Lt}-\p{Grek}] .

 🐍 a snake_boundary , de�ned as the positions either side of a Punctuation character which is not
 an Other_Punctuation character, i.e. , either side of a sequence matching [\p{P}-\p{Po}] .

 An identi�er splits into identifier chunks delimited at identi�er word boundaries. Note that multiple kinds
 of boundaries can coincide.

https://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/22-231

 L2/22-229 61

 Examples of the separation into identi�er chunks are given in the table below; emoji mark the various
 boundaries.

 Identi�er Identi�er chunks Notes

 dromedaryCamel dromedary🐫🎩Camel 🐪

 snakeELEPHANTSnake snake🐫ELEPHANT🎩Snake 🌹📦

 TypeII 🎩Type🐫II

 OCaml O🎩Caml The HATBoundary is designed to
 accommodate the common practice of
 keeping acronyms in upper case in a
 CamelCase identi�er.

 HTTPЗапрос HTTP🎩Запрос

 UAX9ClauseHL4 UAX9🎩Clause🐫HL4

 LOUD_SNAKE LOUD🐍_🐍SNAKE

 Fancy_Snake 🎩Fancy🐍_🐍🎩Snake

 snake-kebab snake🐍-🐍kebab Assuming a pro�le allowing
 hyphen-minus in identi�ers.

 Paral·lel 🎩Paral·lel Other_Punctuation does not separate
 words; indeed it is used within words in
 Catalan.

 microB micro🐫B

 microᖯ microᖯ The sequence \p{Ll}\p{Lo} is not a
 CamelBoundary, and should not be one:
 this Other_Letter is confusable with a
 Lowercase Letter.

 HTTPसव�र HTTPसव�र Here a visible word boundary is not
 detected, but the resulting multi-word
 chunk is visibly mixed-script.

 4.1.2.2 Mixed-script detection in identi�er chunks

 An identi�er chunk X is confusing if both of the following are true:

 1. X has a restriction level greater than Highly Restrictive, as de�ned in UTS #39, section 5.2 ;
 2. There exists a string Y such that all of the following are true:

 a. Y is confusable with X;
 b. The resolved script set of Y is neither ∅ nor ALL;
 c. The resolved script set of Y is a subset of the union of the Script_Extensions of the

 characters of X.
 d. Y is in the General Security Pro�le for Identi�ers.

 Note: Criteria a through c of condition 2 are similar to “X has a whole-script confusable in the
 union of its Script_Extensions”, but do not require X to be single-script.

https://www.unicode.org/reports/tr39/#Restriction_Level_Detection
https://www.unicode.org/reports/tr39/#def_whole_script_confusables

 62 Proposed changes to Unicode properties and reports for source code handling

 An identi�er chunk for which condition 1 holds but condition 2 does not hold is called visibly mixed-script .

 Note: Visibly mixed-script identi�er chunks are not confusing.

 An implementation implementing mixed-script detection in identi�er chunks shall diagnose confusing
 identi�er chunks in identi�er tokens.

 Examples of confusing and non-confusing mixed-script identi�er chunks are given in the following table; all
 have a restriction level greater than Highly Restrictive.

 Строкa Confusing, confusable with all-Cyrillic Строка .

 Δt Visibly mixed-script, t is not confusable with a Greek letter, nor is Δ confusable with a
 Latin letter.

 μэow Visibly mixed-script, μ is not confusable with a Cyrillic letter nor with a Latin letter.

 ΜΙΚΡA Confusing, confusable with all-Greek ΜΙΚΡΑ and all-Latin MIKPA .

 HTTPसव�र Visibly mixed-script, H is not confusable with a Devanagari letter, nor is स confusable
 with a Latin letter.

 microᖯ Confusing, confusable with all-Latin microb .

 4.1.3 General Security Pro�le

 As described in Section 6.1, Confusables Data Collection , of Unicode Technical Standard #39, Unicode
 Security Mechanisms [UTS39], the entirety of Unicode is not in scope for thorough confusables data
 collection. In order to ensure that confusable detection is e�ective, implementations should provide a
 mechanism to warn about identi�ers that are not in the General Security Pro�le for identi�ers, as de�ned in
 Section 3.1, General Security Profile for Identifiers , in the same speci�cation.

 It should be possible to turn o� this diagnostic independently from confusable detection: while it may be
 less comprehensive, data on confusables exists for characters outside the General Security Pro�le, so that
 confusable detection is still bene�cial when using such characters.

 Review note: This is too strict. We should at least include default ignorables as a modification of the
 profile per conformance clause C1. We can also get rid of the context checks for ZWJ and ZWNJ, since
 we have confusable detection which is aware of default ignorables.

 However, what we really want is a property which defines a set on which we have good data about
 confusables, regardless of usage considerations, as characters whose Identifier_Type is Technical,
 Not_NFKC, etc. can make sense in programming language identifiers.

 4.1.4 Multiple visual forms

 In languages where the formats used for displaying and comparing identi�ers are di�erent, as described in
 Section 1.3, Display Format , in Unicode Standard Annex #31, Identifiers and Syntax [UAX31], this can lead
 to confusion or potential for spoo�ng. For instance, consider the following snippet of Ada:

 1. package Matrices_3_By_3 is new Matrices (3, 3);
 2. subtype so3 is Matrices_3_By_3.Skew_Symmetric_Matrix;
 3. begin

https://www.unicode.org/reports/tr39/#General_Security_Profile

 L2/22-229 63

 4. declare
 5. subtype SO3 is Matrices_3_By_3.Special_Orthogonal_Matrix;
 6. X : so3;

 It looks like X is being declared as a skew-symmetric matrix, but it is actually a special orthogonal matrix,
 because the identi�ers so3 and SO3 are equivalent.

 The situation is similar if identi�ers are treated as equivalent under Normalization Form KC, as in the
 following Python program, which looks like it returns a vector, but actually returns a scalar, as 𝒓 and r are
 the same variable.

 1. def GravitationalAcceleration(self, position):
 2. Gm = self.gravitational_parameter
 3. 𝒓 = (position - self.position)
 4. r = 𝒓.Norm()
 5. return 𝒓 * Gm / (r ** 3)

 One possibility is to warn when, within a given code base, di�erent references to the same entity use
 di�erent forms under Normalization Form C (but that are equivalent as identi�ers).

 4.1.5 Extent of block comments

 Many spoo�ng issues involve confusion over the extent of string literals and comments, so that executable
 text looks non-executable, or vice-versa. As discussed in Section 3.4, Syntax Highlighting , while syntax
 highlighting is a very e�ective way to mitigate such issues, it has limitations, as the number of clearly
 distinguishable styles is ultimately limited, especially if very few characters are being styled. It is further
 limited by accessibility considerations.

 Example: To a colorblind user, the extent of this Java comment may be unclear; as italics are not
 commonly used in Hebrew, they cannot reliably be used to help with the identi�cation of the
 extent of the comment.

 /* . בסדר */ ;()requireNonNull. מוקדמים תנאים בדוק /* הודעה ...*/

 The issue here is that the comment contains a right-to-left /* , which looks like the */ that would
 terminate the comment.

 A similar issue can occur with characters that look like the characters in the comment delimiter:

 /* Check preconditions... ∗/ message.requireNonNull(); /* OK. */

 In order to avert such issues, it is useful to issue a warning if, for any comment content atom A in a block
 comment whose ending delimiter is D, the string bidiSkeleton (FS, A) contains skeleton (D) as a substring,
 where bidiSkeleton and skeleton are de�ned in Section 4, Confusable Detection , in Unicode Technical
 Standard #39, Unicode Security Mechanisms [UTS39].

 Note: A similar approach is not recommended for string literals; this is because legitimate string
 literals often contain “smart” quotation marks, which are confusable with the delimiters, so that
 warning about their presence would lead to unacceptable false positives. In contrast, comments can
 reasonably be expected not to contain lookalikes of */ , *) , --> , #> , --]] , etc.

 Review note: We do not want to recommend a diagnostic that would warn about the possibility of
 confusion regarding "The “extent” of this string" .

 64 Proposed changes to Unicode properties and reports for source code handling

 On the other hand, we would like to warn about the following:

 s = "Hello ” + “world" ;

 Besides strings that look like they terminate, but don’t, there is also the inverse problem, as in the
 following C statement:

 printf("Quotes may be “dumb" , "smart”, fullwidth, etc.");

 A proper solution would likely have to involve a syntactic analysis, rather than merely a lexical one;
 even then, it is not clear what such a solution would look like.

 4.1.6 Directional formatting characters

 Implementations should not prohibit the use of the directional formatting characters; they are useful in
 ensuring the correct display of bidirectional text, as illustrated in this document. However, in order to avoid
 disruption when the code is displayed as plain text, it may be useful to warn when the e�ect of the explicit
 directional formatting character extends across atoms. The algorithm described in Section 4.2, Conversion to
 Plain Text , includes such a diagnostic.

 4.2 Conversion to Plain Text

 The following algorithm is a conversion to plain text in the sense of Section 6.5, Conversion to Plain Text , in
 Unicode Standard Annex #9, Unicode Bidirectional Algorithm [UAX9]. It is suitable for languages that
 allow implicit directional marks between lexical elements and in any other appropriate locations, as
 described in Section 2.2, Whitespace and Syntax .

 The algorithm is idempotent. It transforms a source code �le into one that has the same semantics and the
 same visual appearance when displayed according to Section 3.1, Bidirectional ordering . In addition, if no
 errors are emitted, the resulting source code �le is correctly ordered when displayed as plain text according to
 the Unicode Bidirectional Algorithm, where each line of code is treated as a left-to-right paragraph, with the
 following exceptions:

 1. The rules from Section 3.1.3, Embedded languages , are not applied.
 2. The rules from Section 3.1.4, Ordering for Literal Text with Interspersed Syntax , are not applied.
 3. The display may be incorrect in edge cases involving strings delimited by brackets, as described in

 Section 4.2.1, Unpaired Brackets .

 If embedded languages also allow for the insertion of implicit directional marks, the conversion to plain text
 could be applied to relevant string literals. Markup, escapes, and interpolated strings cannot be handled by
 conversion to plain text.

 Note: It is possible to achieve the same e�ect by inserting fewer implicit directional marks, by
 looking ahead on the line for strongly directional characters. However, the algorithm de�ned in this
 section attempts to minimize such spooky action at a distance, in order to reduce the potential for
 confusion if the source code is edited as plain text. For instance, no left-to-right mark is needed in
 the statement A, but one is inserted by the algorithm, producing B:

 A. תו · := · X;
 B. תו ▸· := · X;

https://www.unicode.org/reports/tr9/#Conversion_to_Plain_Text

 L2/22-229 65

 However, if the author notices an o�-by-one error and edits that statement in a plain text editor, the
 text is improperly displayed unless that left-to-right mark is present:

 A. 1 · := · תו · + · X;
 B. 1 · =: ·▸ תו · + · X;

 The algorithm inserts LRM as soon as possible after an atom whose last strong direction could be
 right-to-left; this forces the left-to-right ordering of atoms, and prevents earlier atoms from in�uencing the
 ordering of subsequent ones. The algorithm also inserts FSI at the beginning of any comment whose �rst
 strong direction could be right-to-left, and terminates any isolates and embeddings in comments by inserting
 PDI and PDF, so that the e�ect of these explicit formatting characters does not cross atom boundaries.

 Note: The PDI and PDF characters are not inserted in end of line comments, as their e�ect stops at
 the end of the paragraph, and having them in the source code could lead to unexpected editing
 behavior is text is appended after a trailing PDI or PDF.

 The algorithm is as follows. It refers to de�nitions from Unicode Standard Annex #9, Unicode Bidirectional
 Algorithm [UAX9], and makes use of the abbreviations de�ned in Section 2, Directional Formatting
 Characters , in that annex.

 A. De�ne the boolean variable Needs_LRM, initialized to False;
 B. Separate the text into lines and each line into atoms, as described in Section 3.1.1, in a

 language-dependent manner;
 C. For each line:

 a. For each atom on the line:
 i. If the atom is a whitespace atom, remove any instances of LRM and RLM from that

 atom.
 ii. If Needs_LRM is True:

 1. If the language allows for the insertion of an implicit directional mark before the
 atom without changing the meaning of the program:
 a. Insert LRM before the atom;
 b. Set Needs_LRM to False;

 2. Otherwise (for instance, if the position before the atom is within a string literal):
 a. Look for the �rst character in the atom whose Bidi_Class property is one of

 L, R, AL, EN, AN, LRE, RLE, LRI, RLI, or FSI, if any;
 b. If that character exists and its Bidi_Class property is not L:

 i. Emit an error: the line cannot be converted to plain text by this
 algorithm;

 iii. If the atom is a comment content atom:
 1. If the atom does not start with the character FSI:

 a. Look for the �rst character in the atom whose Bidi_Class property is one of
 L, R, AL, LRE, RLE, LRI, RLI, or FSI, if any;

 b. If that character exists and its Bidi_Class property is not L:
 i. Prepend FSI to the atom;

 2. If the atom is followed by a code point that does not have Bidi_Class B:
 a. Insert a sequence of PDI characters after the atom as needed to close any

 isolate initiators in the atom that do not have a matching PDI, as de�ned in
 BD9 .

 b. Insert a sequence of PDF characters after those PDI characters as needed to
 close any embedding initiators in the atom that do not lie between an isolate

https://www.unicode.org/reports/tr9/#Directional_Formatting_Characters
https://www.unicode.org/reports/tr9/#Directional_Formatting_Characters
https://www.unicode.org/reports/tr9/#BD9

 66 Proposed changes to Unicode properties and reports for source code handling

 initiator and its matching PDI, and do not have a matching PDF, as de�ned
 in BD11 .

 iv. If the atom is followed by a code point that does not have Bidi_Class other than B:
 1. If the atom has any isolate initiators that do not have a matching PDI, as de�ned in

 BD9 , emit a diagnostic: the line cannot be converted to plain text by this
 algorithm;

 2. If the atom has any embedding initiators that do not lie between an isolate initiator
 and its matching PDI, and do not have a matching PDF, as de�ned in BD11 , emit
 a diagnostic: the line cannot be converted to plain text by this algorithm;

 3. Look for the last character in the atom whose Bidi_Class property is one of L, R,
 AL, PDF, or PDI, if any;

 4. If that character exists and its Bidi_Class property is not L:
 a. Set Needs_LRM to True;

 b. If the line is terminated by a character with Bidi_Class B:
 i. Set Needs_LRM to False;

 Note: Conversion to plain text is only provided for left-to-right plain text; this is because numeric
 atoms must have left-to-right embedding direction, which requires the insertion of embeddings or
 isolates. This algorithm does not insert such characters except in comments.

 It is possible to construct a similar conversion to right-to-left plain text in a programming language
 whose numeric literals satisfy the following regular expression, which uses the syntax of Unicode
 Technical Standard #18, Unicode Regular Expressions [UTS18]:

 (\p{bc=L}
 |\p{bc=EN}
 |\p{bc=EN}\p{bc=ET}
 |\p{bc=ET}\p{bc=EN}
 |\p{bc=EN}\p{bc=CS}\p{bc=EN})+

 Such a conversion needs to insert RLM rather than LRM, and to look for R or AL, rather than L,
 in steps C.b.ii.2.b, C.b.iii.1.b, and C.b.iv.4.

 Implementation note: In step B of this algorithm, an implementation only needs to correctly
 identify the extent of those atoms that can contain characters with bidi classes R or AL, or explicit
 directional formatting characters, and to correctly characterize the �rst opportunity to insert an
 implicit directional mark after such atoms. In practice, this generally means correctly lexing for
 comments, string literals, and identi�ers, assuming that implicit directional marks may be inserted
 after these tokens. In a language that conforms to requirement UAX31-R3b, this allows for simpler
 and more future-proof treatment of identi�ers, whereby any sequence of non-syntax,
 non-whitespace characters that is not part of a comment or string is treated as a possible identi�er
 for the purposes of this algorithm.

 4.2.1 Unpaired brackets

 If a language uses atoms that contain closing brackets before which implicit delimiters cannot be inserted
 without changing the meaning of the program, such as string delimiters that use parentheses, the source
 code converted by the preceding algorithm may be improperly displayed as plain text even though no error is
 omitted. This occurs when an earlier atom (such as the contents of the string) has an unmatched opening
 parenthesis in an established right-to-left context which matches the one in the delimiter.

https://www.unicode.org/reports/tr9/#BD11
https://www.unicode.org/reports/tr9/#BD9
https://www.unicode.org/reports/tr9/#BD11

 L2/22-229 67

 Example: Consider the following C++ string literal, which contains an unpaired opening
 parenthesis in a right-to-left context; the opening delimiter is R"(, the closing delimiter is)" , the
 contents are " א(ב :

 R"(" ב)א)"

 Its plain text display is as follows, which makes it look unterminated:

 R"(" (ב)א "

 These situations cannot be resolved by inserting left-to-right marks; however, implementations may wish to
 signal an error in these cases. This can be done by applying the Unicode bidirectional algorithm to each line
 after conversion to plain text, and by checking that any bracket pairs set to R in step N0 lie in the same atom.

 4.3 Identi�er Styles

 Many linters enforce case conventions, such as having compile time constants in upper case with words
 separated by low line, public names with the �rst letter of each word capitalized and no word separator
 (CamelCase), etc. Generalizing these diagnostics outside of ASCII may not always be obvious; in particular,
 the generalized diagnostics should not prevent the use of unicameral scripts. This section de�nes a
 mechanism which may be used to generalize such style checks while avoiding these pitfalls.

 The basic idea is to disallow undesired categories of characters, instead of only allowing desired categories.
 For instance, to check that an identi�er is in lowercase with words separated by low line, the uppercase and
 titlecase letters are forbidden, instead of allowing only lowercase and underscores (see small_snake below).

 This section uses the regular expression syntax de�ned in Unicode Technical Standard #18, Unicode Regular
 Expressions , version 23 [UTS18].

 Editor’s note: a detailed rationale for this section is provided in document L2/22-232 .

 An implementation claiming to implement Unicode identi�er styles shall emit some of the diagnostics
 de�ned below.

 1. BactrianCamel:
 A diagnostic shall be emitted if an identi�er matches the following regular expression:

 ̂\p{Ll}
 | \p{LC}[\p{Mn}\p{Me}]* \p{Pc} \p{LC}

 2. dromedaryCamel:
 A diagnostic shall be emitted if an identi�er matches the following regular expression:

 ̂[\p{Lu}\p{Lt}]
 | \p{LC}[\p{Mn}\p{Me}]* \p{Pc} \p{LC}

 3. small_snake:
 A diagnostic shall be emitted if an identi�er matches the following regular expression:
 [\p{Lu}\p{Lt}]

 4. Title_Snake:
 A diagnostic shall be emitted if an identi�er matches the following regular expression:
 (^ | \p{Pc}) \p{Ll}

 5. CAPITAL_SNAKE: A diagnostic shall be emitted if an identi�er, once normalized under
 Normalization Form C, matches the following regular expression:
 [\p{Ll} \p{Lt}]

https://www.unicode.org/reports/tr9/#N0
https://www.unicode.org/reports/tr18/tr18-23.html
https://www.unicode.org/reports/tr18/tr18-23.html
https://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/22-232

 68 Proposed changes to Unicode properties and reports for source code handling

 Alternatively, it shall declare a pro�le, and de�ne the situations in which the aforementioned diagnostics are
 suppressed and the additional situations in which they are emitted.

 Examples:

 An implementation could implement the BactrianCamel diagnosis with a pro�le that additionally
 prohibits (\p{Lu}[\p{Mn}\p{Me}]*){4} (four uppercase letters in a row).

 An implementation could implement the Title_Snake diagnostic with a pro�le that allows
 lowercase after a Connector Punctuation (allowing Proud_snake_case).

 An implementation which meets requirement UAX31-R1 with a pro�le adding the hyphen-minus
 (-) to Continue could implement the various diagnostics with a pro�le that replaces \p{Pc} in the
 above regular expressions by [\p{Pc}\p{Pd}] , treating the hyphen-minus like the low line
 (allowing “kebab-case”).

 5. Reference Implementations

 Review Note: As for other Unicode algorithms, such as the Unicode Bidirectional Algorithm, reference
 implementations will be provided to illustrate some of the algorithms defined in this specification. A
 brief exposition of these implementations will be provided in this section.

 L2/22-229 69

 Editor’s note: The members of the SCWG, as well as people acknowledged in separate rationale documents,
 should be acknowledged in the appropriate section of each relevant technical report.

