
 L2/22-231

 Mixed-script detection in identi�er chunks
 To: UTC
 From: Robin Leroy, Source code ad hoc working group
 Date: 2022-10-20

 This document de�nes a mechanism for detecting confusing mixtures of scripts that could result in usability
 or spoo�ng issues, while accepting those that would arise from legitimate usage for linguistic reasons (and
 somewhat improving the situation when scripts are mixed for technical applications). Note that spoo�ng is
 more comprehensively handled by confusable detection on the set of identi�ers in use; but depending on the
 speci�cs of its implementation, it may leave the door open to deeply confusing compilation errors.

 Note: Document L2/22-229 proposes incorporating the de�nitions from this document into a
 new Unicode Technical Standard. The purpose of this document is to serve as a more detailed
 rationale for its technicalities.

 An implementation which diagnoses confusable identi�ers at the lexical level (on the set of identi�er tokens
 that may be in scope) prior to successful compilation has no need for this mechanism, as it then remedies the
 usability issues as well as the spoo�ng issue. This is, for instance, the case of the Rust compiler.

 The mechanism described here could, for instance, be applied by an editor which is only capable of
 performing lexical analysis on the �le currently being edited, and thus cannot obtain the set of visible names
 de�ned by other �les.

 This �le uses the regular expression syntax de�ned in UTS #18 Unicode Regular Expressions , version 23 .

 De�nition

 An identifier word boundary is de�ned as any of the following:

 🐫 a CamelBoundary , de�ned as the position after the group in a sequence matching the following
 regular expression:
 ([\p{Ll} [\p{Lt}-\p{Grek}]] [\p{Mn}\p{Me}]*) [\p{Lu}\p{Lt}] ,

 🎩 a HATBoundary , de�ned as as the position before a sequence matching the following regular
 expression:
 [\p{Lu}\p{Lt}] [\p{Mn}\p{Me}]* \p{Ll} | [\p{Lt}-\p{Grek}] .

 🐍 a snake_boundary , de�ned as the positions either side of a Punctuation character which is not
 an Other Punctuation character, i.e. , either side of a sequence matching [\p{P}-\p{Po}] .

 An identi�er splits into identifier chunks delimited at identi�er word boundaries. Note that multiple kinds
 of boundaries can coincide.

 Examples of the separation into identi�er chunks are given in the table below; emoji mark the various
 boundaries.

https://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/22-229
https://www.unicode.org/reports/tr18/tr18-23.html

 Identi�er Identi�er chunks Notes

 dromedaryCamel dromedary🐫🎩Camel 🐪

 snakeELEPHANTSnake snake🐫ELEPHANT🎩Snake 🌹📦

 TypeII 🎩Type🐫II

 OCaml O🎩Caml The HATBoundary is designed to
 accommodate the common practice of
 keeping acronyms in upper case in a
 CamelCase identi�er.

 HTTPЗапрос HTTP🎩Запрос

 UAX9ClauseHL4 UAX9🎩Clause🐫HL4

 LOUD_SNAKE LOUD🐍_🐍SNAKE

 Fancy_Snake 🎩Fancy🐍_🐍🎩Snake

 snake-kebab snake🐍-🐍kebab Assuming a pro�le allowing
 hyphen-minus in identi�ers.

 Paral·lel 🎩Paral·lel Other Punctuation does not separate
 words; indeed it is used within words in
 Catalan.

 microB micro🐫B

 microᖯ microᖯ The sequence \p{Ll}\p{Lo} is not a
 CamelBoundary, and should not be one:
 this Other Letter is confusable with a
 Lowercase Letter.

 ᾨΔῌ ᾨΔῌ No boundaries despite the Titlecase
 Letters: depending on font, they might
 not look like they are titlecase.

 ὨιΔΗι 🎩Ὠι🐫Δ🎩Ηι May render identically to the one above
 depending on the font, but this one will
 never look like uppercase with diacritics.

 HTTPᾨδή HTTP🎩ᾨδή Here there are other Lowercase Letters
 after the Greek Titlecase letter, so we
 have a boundary.

 HTTPसव�र HTTPसव�र Here a visible word boundary is not
 detected, but the resulting multi-word
 chunk is visibly mixed-script.

 An identi�er chunk X is confusing if both of the following are true:

 1. X has a restriction level greater than Highly Restrictive, as de�ned in UTS #39, section 5.2 ;
 2. There exists a string Y such that all of the following are true:

https://www.unicode.org/reports/tr39/#Restriction_Level_Detection

 a. Y is confusable with X;
 b. The resolved script set of Y is neither ∅ nor ALL;
 c. The resolved script set of Y is a subset of the union of the Script_Extensions of the

 characters of X.
 d. Y is in the General Security Pro�le for Identi�ers.

 Note: Criteria a through c of condition 2 are similar to “X has a whole-script confusable in the
 union of its Script_Extensions”, but do not require X to be single-script.

 An identi�er chunk for which condition 1 holds but condition 2 does not hold is called visibly mixed-script .

 Note: Visibly mixed-script identi�er chunks are not confusing.

 An implementation implementing mixed-script detection in identi�er chunks shall diagnose confusing
 identi�er chunks in identi�er tokens.

 Examples of confusing and non-confusing mixed-script identi�er chunks are given in the following table; all
 have a restriction level greater than Highly Restrictive.

 Строкa Confusing, confusable with all-Cyrillic Строка and all-Latin Cᴛpoᴋa .

 Δt Visibly mixed-script, t is not confusable with a Greek letter, nor is Δ confusable with a
 Latin letter.

 μэow Visibly mixed-script, μ is not confusable with a Cyrillic letter nor with a Latin letter.

 ΜΙΚΡA Confusing, confusable with all-Greek ΜΙΚΡΑ and all-Latin MIKPA .

 HTTPसव�र Visibly mixed-script, H is not confusable with a Devanagari letter, nor is स confusable
 with a Latin letter.

 microᖯ Confusing, confusable with all-Latin microb .

 Rationale

 Why mixed-script detection to start with?

 Assuming good confusable data on the characters used, spoo�ng issues arising from confusable identi�ers
 can be adequately mitigated by solely detecting the coëxistence of confusable identi�ers without any
 mixed-script detection, e.g. , by warning about

 std::string строка;
 std::string строкa; // Latin a,

 but not about

 std::string строкa; // Latin a.

https://www.unicode.org/reports/tr39/#def_whole_script_confusables

 However, when working with multiple scripts, there is a common usability issue whereby one accidentally
 changes a letter while using the wrong keyboard layout, e.g. , editing the following line:

 std::vector<std::string> строки; // “strings”,

 removing the following struck-out letters and typing (using a Latin keyboard layout) the underlined letters:

 std::vector< std::string > const строк и a // “string s ”,

 to produce the following line:

 std::string const строкa; // “string”.

 Trying to refer to the resulting identi�er строка will lead to a compilation error (because it is actually
 строкa , with a Latin a).

 If confusable detection operates on the set of declarations, it will fail to detect this situation. Similarly, if
 confusable detection is performed by a linter operating globally on a code base after it has compiled (recall
 that confusable detection is a global operation, since it requires collecting the set of all identi�ers), it will not
 get to run. The user will then be faced with an inscrutable compilation error.

 Note that this means that mixed-script detection acts primarily to remedy a usability concern; in adversarial
 scenarii, the detection of confusable identi�ers is a more e�ective remedy.

 Why not whole-identi�er mixed-script detection?

 Industry standard terms are often in another script: consider the real-life identi�er HTTPЗапрос (HTTP
 Request). Note that if that identi�er consisted of one identi�er chunk, it would be confusing, because the
 Cyrillic-only identi�er НТТРЗапрос (NTTR Request) would be confusable with it.

 Why not simply �agging mixed-script identi�er chunks?

 This is the approach taken by ocaml-m17n. We believe that the re�nement used here is useful.

 An identi�er like μэow , which consists of a visibly mixed-script identi�er chunk, is neither problematic
 from a usability nor a security standpoint; the reader knows that scripts are being mixed, and cannot
 realistically have expectations on the nature of the “ o ”. Some single-chunk visibly mixed-script identi�ers
 such as Δt are common . Identi�er chunk detection fails when unicameral scripts are involved, so that a
 warning would be issued about a legitimate and harmless identi�er such as HTTPसव�र .

 What’s the deal with the \p{Grek} stu�?

 The Greek Titlecase Letters may not look titlecase at all depending on the font, and may instead look like a
 capital letter with a diacritic (indeed they are canonically equivalent to a sequence \p{Lu}\p{Mn}), so they
 do not reliably signal a visible word boundary. We posit that detecting a HATBoundary if they are followed
 by a Lowercase Letter is more than enough to properly handle Ancient Greek identi�ers.

 Why [\p{P}-\p{Po}] rather than \p{Pc} or \p{P} in snake_boundary?

 The characters in [[:Po:] & [:XID_Continue:]] are in [:XID_Continue:] not as word
 separators, but because they are needed as part of words in Catalan; see UAX #31 Unicode Identifier and

https://github.com/search?q=HTTP%D0%97%D0%B0%D0%BF%D1%80%D0%BE%D1%81&type=Code
https://github.com/search?l=C%23&p=3&q=%CE%94t&type=Code
https://www.unicode.org/reports/tr31/#Specific_Character_Adjustments

 Pattern Syntax , Section 2.4 “Speci�c Character Adjustments” ; they are not expected to separate words, let
 alone scripts.

 The sets [[:P:] & [:XID_Continue:] - [:Po:]] and [:Pc:] are equal. However, if an
 implementation uses a pro�le for UAX31-R1, it may allow punctuation characters from other general
 categories as word separators, e.g. , the Dash Punctuation hyphen-minus.

 What about unicameral scripts?

 While the case-based identi�er chunk detection fails for those, note that while HTTPसव�र consists of a single
 identi�er chunk, it is neither confusable with a Devanagari string nor with a Latin string, and is therefore
 not confusing. We posit that in the cases where characters from a unicameral script are often confusable
 with characters from another script also in use, a Connector Punctuation character would help with
 legibility, e.g. , that it would be more readable to write HTML_ꓒꓬꓽ than HTMLꓒꓬꓽ (which forms a confusing
 identi�er chunk because of its confusability with the Lisu-only ꓧꓔꓟꓡ ꓒꓬꓽ), or micro_ᖯ than microᖯ
 (confusing because confusable with the Latin-only microb).

 Note that mechanisms enforcing CamelCase identi�er styles should be generalized to allow a low line
 adjacent to a unicameral script. See L2/22-232 .

 If however the requirement to add a Connector Punctuation character proves too onerous for some
 frequently-confusable pair of scripts where one is unicameral, the diagnostic described in this document
 could be suppressed.

 Does this solve the issues of mixed-script mathematical notation?

 To a limited extent. As mentioned above, Δt is non-confusing. The case of δt is more interesting: were it
 not for criterion 2.d in the de�nition of “confusing”, that chunk would be confusing, because δ is
 confusable with the Latin letter ẟ (and this is a case of perfect confusability assuming good font support,
 contrary to, e.g. , p and ρ ; it cannot be solved with stricter confusable data). However, Latin letter delta is
 Restricted with Identi�er_Type=Technical, so it doesn’t count.

 However, the limitations of confusability itself can lead to issues: dρ is confusing because it is confusable
 with the all-Latin dp .

 The diagnostic may need to be suppressed for those applications, much like diagnostics implementing
 confusable detection should be suppressed in applications that make use of restricted scripts (for which
 confusable data is not available).

 Acknowledgements

 The usability issue dealt with here was brought to the author’s attention by Catherine “whitequark”. The
 mitigation is heavily in�uenced by the one implemented by her ocaml-m17n package (from which we take
 the term “identi�er chunk”), with adjustments for case-based identi�er word boundaries and accepting
 visibly mixed-script identi�er chunks. We thank her for feedback on an early version of this document.

https://www.unicode.org/reports/tr31/#Specific_Character_Adjustments
https://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/22-232
https://github.com/whitequark/ocaml-m17n#detecting-confusable-characters

