
1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 1/14

Technical Reports

Proposed Update Unicode Technical Report Standard Annex #53

UNICODE® ARABIC MARK RENDERING
Version Unicode 16.0.0

Editors Roozbeh Pournader (roozbeh@unicode.org), Bob Hallissy
(bob_hallissy@sil.org), Lorna Evans (lorna_evans@sil.org)

Date 2023-11-20

This Version https://www.unicode.org/reports/tr53/tr53-9.html

Previous Version https://www.unicode.org/reports/tr53/tr53-8.html

Latest Version https://www.unicode.org/reports/tr53/

Latest Proposed
Update

https://www.unicode.org/reports/tr53/proposed.html

Revision 9

Summary

This technical report document specifies an algorithm that can be utilized during rendering for
determining correct display of Arabic combining mark sequences.

This UTR UAX makes no change to Unicode normalization forms, and does not propose a new
normalization form. Instead, this is similar to the processing used in [MicrosoftUSE]: a transient process
which is used to reorder text for display in an internal rendering pipeline. This reordering is not intended
for modifying original text, nor for open interchange.

Status

This is a draft document which may be updated, replaced, or superseded by other documents at any
time. Publication does not imply endorsement by the Unicode Consortium. This is not a stable document;
it is inappropriate to cite this document as other than a work in progress.

A Unicode Technical Report (UTR) contains informative material. Conformance to the Unicode
Standard does not imply conformance to any UTR. Other specifications, however, are free to make
normative references to a UTR.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard, but is published
online as a separate document. The Unicode Standard may require conformance to normative
content in a Unicode Standard Annex, if so specified in the Conformance chapter of that version of
the Unicode Standard. The version number of a UAX document corresponds to the version of the
Unicode Standard of which it forms a part.

Please submit corrigenda and other comments with the online reporting form [Feedback]. Related
information that is useful in understanding this document is found in the References. Unicode Standard
Annex #41, “Common References for Unicode Standard Annexes.” For the latest version of the Unicode
Standard see [Unicode]. For a list of current Unicode Technical Reports see [Reports]. For more
information about versions of the Unicode Standard, see [Versions]. For any errata which may apply to
this annex, see [Errata].

Contents

https://www.unicode.org/
https://www.unicode.org/
https://www.unicode.org/reports/
mailto:roozbeh@unicode.org
mailto:bob_hallissy@sil.org
mailto:lorna_evans@sil.org
https://www.unicode.org/reports/tr53/tr53-9.html
https://www.unicode.org/reports/tr53/tr53-8.html
https://www.unicode.org/reports/tr53/
https://www.unicode.org/reports/tr53/proposed.html
https://www.unicode.org/reporting.html
https://www.unicode.org/reports/tr41/tr41-32.html
https://www.unicode.org/versions/latest/
https://www.unicode.org/reports/
https://www.unicode.org/versions/
https://www.unicode.org/errata/
rick
Text Box
L2/24-029

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 2/14

1 Overview
2 Background
3 Description of the Algorithm

3.1 Modifier Combining Marks (MCM)
3.2 Specification of AMTRA

4 Demonstrating AMTRA
4.1 Artificial Test Case
4.2 Override Mechanism for Exceptions
4.3 Examples

5 Supplemental Information
5.1 Use of NFD and Not NFC
5.2 Shadda
5.3 Kasra and Kasra-like Characters
5.4 Rationale for Exclusion of Some Marks
5.5 Dotted Circles
5.6 Other Uses for AMTRA
5.7 Canonical_Combining_Class values for Yet-to-be-encoded Yet-to-be-Encoded
Combining Marks in Arabic
5.8 Workaround for Mistaken Canonical_Combining_Class Assignment

References
Modifications

1 Overview

The assignment of Canonical_Combining_Class values for Arabic combining characters in Unicode is
different than for most other scripts. It is a mixture of special classes for specific marks plus two more
generalized classes for all the other marks. This has resulted in inconsistent and/or incorrect rendering for
sequences with multiple combining marks since Unicode 2.0.

The Arabic Mark Transient Reordering Algorithm (AMTRA) described herein is the recommended solution
to achieving correct and consistent rendering of combining character sequences containing Arabic marks.
This algorithm provides results that match user expectations and assures that canonically equivalent
sequences are rendered identically, independent of the order of the combining marks.

2 Background

Rules and recommendations for the correct display of combining marks are discussed in a number of
places in the Unicode Standard, including Section 5.13, Unknown and Missing Characters, Section 7.9,
Combining Marks, and Section 9.2, Arabic in [Unicode]. Some general principles include:

Canonically equivalent sequences should display the same.
Combining marks from the same combining class are normally displayed using the inside-out rule,
that is, from the base outward.
Combining marks from different combining classes (other than ccc=0) may be re-ordered with
respect to each other if that helps to achieve the desired display.

In the Unicode Standard, the Arabic script combining marks include eleven different non-zero
Canonical_Combining_Class values, as shown in Table 1. When a combining character sequence
includes marks from more than one of these classes, the rendering system has to determine a display
order in which to position these marks on the base character.

While it might be tempting to just use NFC or NFD, neither of these normalization forms will yield what
Arabic readers expect. For one example that will be easily understood by all readers of Arabic script,
given a combining character sequence including a shadda (ccc=33) and damma (ccc=31), NFC and NFD
will move the damma before the shadda—at which point the default inside-out rendering rule would place
the shadda above the damma, which is incorrect.

Some cases are obvious to readers of languages written with Arabic script, and thus will likely get the
same display from various rendering implementations. However, many of the combining marks, especially
those with ccc=220 and ccc=230, are not commonly understood. Different rendering implementations
have made different decisions regarding display order, resulting in inconsistent behavior between one
system and another.

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 3/14

AMTRA defines a method to reorder Arabic combining marks in order to accomplish the following goals:

The inside-out rendering rule will display combining marks in the expected visual order.
Ensure identical display of canonically equivalent sequences.
Provide a mechanism for overriding the display order in exceptional cases.

Table 1: Canonical_Combining_Class Values for Marks Used in Arabic Script

Canonical_Combining_Class (ccc)
Value

Combining Marks in this Class

0 Combining grapheme joiner, combining alef overlay

27 fathatan, open fathatan

28 dammatan, open dammatan

29 kasratan, open kasratan

30 fatha, small fatha

31 damma, small damma

32 kasra, small kasra

33 shadda

34 sukun

35 Superscript alef

220 All other below combining marks except small low noon with
kasra

230 All other above combining marks, small low noon with kasra

3 Description of the Algorithm

The algorithm starts by reordering combining marks according to one of the Unicode Normalization forms,
and then makes adjustments by moving certain marks closer to the base.

3.1 Modifier Combining Marks (MCM)

For use by this algorithm, this specification defines a group of combining marks called “Modifier
Combining Marks” (MCM). This specification defines a group of combining marks called “Modifier
Combining Marks” (MCM) for use by this algorithm. MCM are combining characters that are normally
used to modify the base character before them, and should normally be rendered closer to the base
character than tashkil (supplementary diacritics, including vowels). The MCM characters are not formally
classified as ijam (consonant pointing/nukta, and so on) in the Unicode Standard, but they are usually
perceived by users as ijam.

The complete list of MCM characters is defined in the Unicode Character Database (see [UAX44]) file
PropList.txt".

The complete list of MCM characters is:

U+0654 ARABIC HAMZA ABOVE
U+0655 ARABIC HAMZA BELOW
U+0658 ARABIC MARK NOON GHUNNA
U+06DC ARABIC SMALL HIGH SEEN
U+06E3 ARABIC SMALL LOW SEEN
U+06E7 ARABIC SMALL HIGH YEH
U+06E8 ARABIC SMALL HIGH NOON
U+08CA ARABIC SMALL HIGH FARSI YEH
U+08CB ARABIC SMALL HIGH YEH BARREE WITH TWO DOTS BELOW
U+08CD ARABIC SMALL HIGH ZAH
U+08CE ARABIC LARGE ROUND DOT ABOVE

https://www.unicode.org/reports/tr44/tr44-32.html#About_Property_Table

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 4/14

U+08CF ARABIC LARGE ROUND DOT BELOW
U+08D3 ARABIC SMALL LOW WAW
U+08F3 ARABIC SMALL HIGH WAW

The set of MCM characters is intended to be stable. Adding an existing Unicode character to the list of
MCM could change the rendering of data that assumes the implementation of AMTRA. Additional
characters may be added to the MCM at the time they are encoded (see Section 5.4 Rationale for
Exclusion of Some Marks).

3.2 Specification of AMTRA

In the following specification, parenthetical definitions, for example (D56), refer to definitions in the
Unicode core specification.

Input: A Combining Character Sequence (D56) containing one or more Arabic combining marks.

Output: A canonically equivalent Combining Character Sequence reordered for rendering using inside-out
stacking.

Steps:

1. Normalize the input to NFD
2. Within the result, for each maximal-length substring, S, of non-starter (D107) characters, re-order as

follows:
a. Move any shadda characters (ccc=33) to the beginning of S.
b. If a sequence of ccc=230 characters begins with any MCM characters, move the sequence of

such MCM characters to the beginning of S (before any characters with ccc=33).
c. If a sequence of ccc=220 characters begins with any MCM characters, move the sequence of

such MCM characters to the beginning of S (before any MCM with ccc=230 or ccc=33).

Implementation note: Considering that most Arabic fonts have higher quality glyphs for
precomposed characters, implementations may try to recombine base characters with a combining
character immediately following them if that would result in a precomposed Unicode character. For
example, if after running AMTRA the first two characters of the output are U+064A ARABIC LETTER
YEH and U+0654 ARABIC HAMZA ABOVE, an implementation may want to replace them with
U+0626 ARABIC LETTER YEH WITH HAMZA ABOVE. (This also helps make sure that the dots of
U+064A are not displayed, even if the font is not aware of the Unicode requirement for U+064A
losing its dots when combined with U+0654.)

When this step is done, implementations should not skip combining marks. For example, if the
output of AMTRA is the sequence <U+0627 ARABIC LETTER ALEF, U+0670 ARABIC LETTER
SUPERSCRIPT ALEF, U+0653 ARABIC MADDAH ABOVE>, an implementation may not replace
the first and the third character with U+0622 ARABIC LETTER ALEF WITH MADDA ABOVE.

4 Demonstrating AMTRA

4.1 Artificial Test Case

The following figure demonstrates the algorithm using an artificial sequence of characters:

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 5/14

4.2 Override Mechanism for Exceptions

The default display order implemented by the AMTRA will be correct for most uses. However in situations
where a different mark order is desired, U+034F COMBINING GRAPHEME JOINER (CGJ) can be used
to achieve the desired display order. The following sections give examples of the use of CGJ.

4.3 Examples

The following examples demonstrate why each of the respective characters is included in the MCM.

U+0654 ARABIC HAMZA ABOVE and U+0655 ARABIC HAMZA BELOW

The use of combining hamza above and below is discussed in Section 9.2, Arabic in [Unicode].

Example 1 [Quran1] (page 9, end of line 5)

In Example 1, AMTRA puts a damma over a hamza above:

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 6/14

If an orthography needs to putplace the hamza above over the damma, the text should be encoded as
<damma, CGJ, hamza above>:

AMTRA putplace the kasra below a hamza below:

If an orthography needs to putplace the hamza below under the kasra, the text should be encoded as
<kasra, CGJ, hamza below>:

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 7/14

U+0658 ARABIC MARK NOON GHUNNA

Regarding inclusion of this mark in the MCM, Kew says “The ARABIC NASALIZATION MARK is
considered equivalent to a ‘nukta’, as it is a modifier that binds tightly to the underlying letter.” (italics
added for emphasis) [Kew]. The character is the character encoded as U+0658 ARABIC MARK NOON
GHUNNA.

U+06DC ARABIC SMALL HIGH SEEN and U+06E3 ARABIC SMALL LOW SEEN

ARABIC SMALL HIGH SEEN is included in MCM because most Quranic orthographies use the character
as an MCM only. Orthographies that place the small seen differently will need to use a CGJ.

Example 2a [Al-Hilâlî]

Example 2b [Al-Hilâlî]

In Example 2a, the small high seen is rendered below the sukun, while in Example 2b, it is rendered over
it. The examples are indeed from the same document (Al-Hilâlî and Khân 1996), just two pages away. The
small high seen has different roles: in Example 2a it is a hint that the base letter, sad, should be
pronounced as if it was a seen; in Example 2b, it is a pause-related hint.

Example 2a (characters and properties):

Running AMTRA on this string does not result in any changes.

Example 2b (characters and properties):

Running AMTRA on the string in Example 2b resulted in an undesired change. It puts a sukun over a seen
above. If an orthography needs to putplace the seen above over the sukun, the text should be encoded
as <sukun, CGJ, seen above>.

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 8/14

U+06E7 ARABIC SMALL HIGH YEH

Example 3 [Milo] (page 9, line 11)

In Example 3, AMTRA puts a shadda over a small high yeh.

If an orthography needs to putplace the small high yeh over the shadda, the text should be encoded as
<shadda, CGJ, small high yeh>.

Running AMTRA on this string does not result in any changes.

U+08F3 ARABIC SMALL HIGH WAW and U+08D3 ARABIC SMALL LOW WAW

U+08F3 ARABIC SMALL HIGH WAW “is functionally similar to the already-encoded U+06E7 ARABIC
SMALL HIGH YEH” and therefore small high waw is included in MCM [Pournader]. In available examples,
small high waw and small low waw are functionally equivalent and, because they emphasize the vowel,
are strongly bound to the body of the word. For these reasons they are both included in MCM.

U+06E8 ARABIC SMALL HIGH NOON

Example 4a [Quran2]

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 9/14

Example 4a has a sukun over a small high noon. AMTRA puts a sukun over a small high noon. If an
orthography needs to putplace small high noon over sukun, the text should be encoded as <sukun, CGJ,
small high noon>.

Example 4b

Example 4b shows a practical orthography that uses small high noon for nasalization. It is theoretically
possible for a vowel to appear above the small high noon in this practical orthography. In such a case,
AMTRA puts the vowel (in this case damma) above small high noon.

In order to force the small high noon above the vowel, use the CGJ (<oe, damma, CGJ, small high
noon>).

U+08CE ARABIC LARGE ROUND DOT ABOVE and U+08CF ARABIC LARGE ROUND DOT BELOW

Example 5 [Quran3]

Example 5 has a fatha over a large round dot above. AMTRA puts a fatha over a large round dot above. If
an orthography needs to putplace large round dot above over fatha, the text should be encoded as
<fatha, CGJ, large round dot above>.

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 10/14

5 Supplemental Information

5.1 Use of NFD and Not NFC

NFD assures that sequences such as <superscript alef, madda> always result in the same ordering,
independent of the base letter. If the algorithm were to usehad used NFC instead, the sequence <alef,
superscript alef, madda> would have resulted in a different order of combining marks than <lam,
superscript alef, madda>, because NFC composes <alef, madda> to <alef-with-madda-above>.

5.2 Shadda

The Canonical_Combining_Class for shadda (ccc=33) is higher than most vowels; however, it should be
displayed closer to the base than the vowels.

5.3 Kasra and Kasra-like Characters

AMTRA is able to handle the special ligation of kasra and kasra-like characters which are ligated with a
shadda or hamza in some styles and appear just below them instead of below the base letter; they still
logically follow the shadda or hamza.

5.4 Rationale for Exclusion of Some Marks

Meem above (ccc=230), meem below (ccc=220) and other similar characters are not included in the MCM
because their behavior already meets normal expectations. Examples 6a-6c show that the combining
meem is normally keptstored after fatha, kasra or damma, whereas including meem above and meem
below in MCM would have the undesirable effect of moving them in front of fatha, kasra or damma.

Example 6a [Quran1] (page 11)

Example 6b [Quran1] (page 21)

Example 6c [Quran1] (page 19)

Sukun alternate formsAlternate Forms

There are three sukun-like marks encoded at U+06DF..U+06E1 that are used in some Quranic
orthographies to denote different entities–they may not always represent a sukun. The
Canonical_Combining_Class of these marks is 230, so their ordering in the presence of other combining
marks is not affected by AMTRA. However, sincebecause the combining class for the sukun is 34, these
sukun-like marks will not be treated like a normal sukun in all cases. Users who create data using these
alternate sukun characters will have more flexibility than when using the normal sukun. AMTRA does not
make them equivalent to U+0652 ARABIC SUKUN, as that would make the algorithm unnecessarily
complex and make the usage of CGJ more frequent.

Maddah

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 11/14

Neither U+0653 ARABIC MADDAH ABOVE (ccc=230) nor U+06E4 ARABIC SMALL HIGH MADDA
(ccc=230) are MCM because they are normally displayed above vowel marks.

Combining Alef Overlay

U+10EFC ARABIC COMBINING ALEF OVERLAY (ccc=0) cannot be MCM because any character with a
ccc=0 is not moved by AMTRA. The input for the example below must be lam, fatha, alef overlay, madda,
and it will not be reordered by the algorithm.

Example 7 [Quran4] (page 502)

5.5 Dotted Circles

Some rendering engines will insert a dotted circle for what it understands they understand to be an invalid
sequence. This is a problem in Arabic script because something that appears invalid may actually be valid
text in some lesser known lesser-known orthography of a minority language or in the Quran. For example,
the Microsoft Windows text rendering engine, described in [Microsoft], inserts a dotted circle in
combinations of certain Quranic marks that are known to appear with each other in the Quran.

Such spell-checking processes are best implemented at a higher level than a rendering engine. Also, a
dotted circle insertion algorithm that displays all canonically equivalent sequences identically is hard to
design and the result may be counter-intuitive for its users.

Implementations of the algorithm may be adapted to insert dotted circles by applying the algorithm first
and then inserting the dotted circles.

5.6 Other Uses for AMTRA

There is no intention or expectation that AMTRA would be applied to stored text.AMTRA is not intended or
expected to be applied to stored text. However, there may be situations unrelated to rendering where
AMTRA may be useful, and this UTRUAX does not prohibit such use.

As anFor example, when a text editor is processing a backspace key, a decision has to be made about
what character(s) to remove from the text. For sequences involving combining marks, if the desire is to
remove one mark at a time, users may have an expectationexpect that the outermost marks should be
removed first. For Arabic script the AMTRA could be used to identify outermost marks.

5.7 Canonical_Combining_Class values for Yet-to-be-encodedYet-to-be-Encoded Combining
Marks in Arabic

When new combining marks are encoded, 220 should be used for below marks and 230 for above marks.
In the special cases where an alternative version of the basic tashkil is encoded, the same
Canonical_Combining_Class as the tashkil could be used, but extreme care should be taken.

5.8 Workaround for Mistaken Canonical_Combining_Class Assignment

U+08D9 ARABIC SMALL LOW NOON WITH KASRA

When it was added to Unicode 9.0, the small low noon with kasra (which appears below the text) was
mistakenly given a ccc=230 (mark above). It should have been 220 (mark below), but that cannot now be
changed. When used with other combining marks, there are a number of issues:

When used with any ccc=220 (marks below), in the absence of any combining grapheme joiner
characters, the reordering by AMTRA will always place the ccc=220 marks between the base
character and the small low noon with kasra. If this is not desired then a combining grapheme joiner
can be used to prevent the reordering.

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 12/14

Combining class sequences containing both U+08D9 and another character of ccc=230 might have
the same display but not be canonically equivalent. For this reason, and since it is likely pronounced
last, it is recommended that U+08D9 be encoded at the very end of the combining mark sequence.
Font developers should make sure that small low noon with kasra is treated as if it was a mark
below and therefore has no impact on rendering of any marks above.

References

[Al-Hilâlî] Muhammad Taqî-ud-Dîn Al-Hilâlî and Muhammad Muhsin Khân (translators) 1417 AH
(=1996 CE). The Noble Qur’an: English Translation of the meanings and commentary.
King Fahd Complex For The Printing of The Holy Qur’an. ISBN 9960-770-15-X.

[Feedback] Reporting Errors and Requesting Information Online
https://www.unicode.org/reporting.html

[Kew] Kew, Jonathan, 2002. Bidi committee consensus on Arabic additions from L2/01-425.
L2/02-061 (accessed 1 May 2017).

[Microsoft] Microsoft Typography 2014. Developing OpenType Fonts for Arabic Script.
https://docs.microsoft.com/en-us/typography/script-development/arabic (accessed 16 Feb
2018).

[Microsoft
USE]

Microsoft Typography 2017. Creating and supporting OpenType fonts for the Universal
Shaping Engine. https://docs.microsoft.com/en-us/typography/script-development/use
(accessed 22 May 2018).

[Milo] Milo, Thomas. 2005. Annotations to the printing of the 1924 Azhar Qur'an (U+0670,
U+06D6..U+06DB, U+06DD..U+06DF, U+06E0..U+06ED). L2/05-151 (accessed 1 May
2017).

[Pournader] Pournader, Roozbeh. 2010. Proposal to encode four combining Arabic characters for
Koranic use. L2/09-419R (accessed 2 May 2017).

[Quran1] Quran example. Al-Baqarah. https://archive.org/stream/quran-pdf/002%20-%20Al-
Baqarah (accessed 27 Jul 2017).

[Quran2] Quran example. http://www.dailyayat.com/al-ambiya/21/88 (accessed 27 Jul 2017).

[Quran3] Quran example. https://app.quranflash.com/book/Warsh2?en#/reader/chapter/565
(accessed 21 Dec 2020).

[Quran4] Quran example. https://karachvi.com/quran/mushaf-al-jamahiriya.pdf (accessed 9 Nov
2023).

[Reports] Unicode Technical Reports
https://www.unicode.org/reports/
For information on the status and development process for technical reports, and for a list
of technical reports.

[Unicode] The Unicode Standard
For the latest version, see:
https://www.unicode.org/versions/latest/

[Versions] Versions of the Unicode Standard
https://www.unicode.org/standard/versions/
For information on version numbering, and citing and referencing the Unicode Standard,
the Unicode Character Database, and Unicode Technical Reports.

Modifications

The following summarizes modifications from the previous revisions of this document.

https://www.unicode.org/reporting.html
https://www.unicode.org/L2/L2002/02061-bidi.pdf
https://docs.microsoft.com/en-us/typography/script-development/arabic
https://docs.microsoft.com/en-us/typography/script-development/use
https://www.unicode.org/L2/L2005/05151-annot-quran.pdf
https://www.unicode.org/L2/L2009/09419r-encode-koranic.pdf
https://archive.org/stream/quran-pdf/002%20-%20Al-Baqarah
https://archive.org/stream/quran-pdf/002%20-%20Al-Baqarah
http://www.dailyayat.com/al-ambiya/21/88
https://app.quranflash.com/book/Warsh2?en#/reader/chapter/565
https://karachvi.com/quran/mushaf-al-jamahiriya.pdf
https://www.unicode.org/reports/
https://www.unicode.org/versions/latest/
https://www.unicode.org/standard/versions/

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 13/14

Revision 9:

Proposed Update for Unicode 16.0.0
Changed status from UTR to UAX.
Example 3 image corrected.
Implementation note added after the description of the algorithm.
Addition of section on U+10EFC ARABIC COMBINING ALEF OVERLAY
Small editorial changes.

Modifications for previous versions are listed in those respective versions.

Revision 8:

Added discussion of the following characters:
U+08D9 ARABIC SMALL LOW NOON WITH KASRA
Small editorial changes in reference to “Canonical_Combining_Class”

Revision 7 being a proposed update, only modifications between revisions 6 and 8 are noted here.

Revision 6:

Added the following characters in 3.1 Modifier Combining Marks (MCM) to the MCM:
U+08CA ARABIC SMALL HIGH FARSI YEH
U+08CB ARABIC SMALL HIGH YEH BARREE WITH TWO DOTS BELOW
U+08CD ARABIC SMALL HIGH ZAH
U+08CE ARABIC LARGE ROUND DOT ABOVE
U+08CF ARABIC LARGE ROUND DOT BELOW

U+08CE ARABIC LARGE ROUND DOT ABOVE and U+08CF ARABIC LARGE ROUND DOT
BELOW

Added section.
5.4 Rationale for Exclusion of Some Marks

Renumbered examples from 5a-5c to 6a-6c.

Revision 5 being a proposed update, only modifications between revisions 4 and 6 are noted here.

Revision 4:

Initial approved version.
3.1 Modifier Combining Marks (MCM)

Moved U+08D3 ARABIC SMALL LOW WAW above U+08F3.

Revision 3:

Draft Technical Report
Summary

Summary URL turned into a reference.
Description of the Algorithm

Renamed section.
Removed Review Note and incorporated text into following paragraph.

3.1 Modifier Combining Marks (MCM)
Added U+08D3 ARABIC SMALL LOW WAW to MCM.

3.2 Specification of AMTRA
Renamed section.

4.3 Examples

1/10/24, 10:55 AM UTR #53: Unicode Arabic Mark Rendering

https://www.unicode.org/reports/tr53/tr53-9.html 14/14

Removed reference to ARABIC NASALIZATION MARK.
Changed self reference to [Pournader] to a normal reference.
Added rationale for including U+08D3 in MCM.

5.6 Other Uses for AMTRA
Small editorial changes.

References
Added Microsoft Typography 2017 link.

Revision 2:

Proposed Draft Technical Report.
Converted to html.
Renamed algorithm to have a more pronounceable acronym.
Title

Renamed document.
Summary

Clarified scope and intent of this UTR.
1. Overview

Reworded the Overview for clarity.
3.1 Modifier Combining Marks (MCM)

Reworded stability statements in final paragraph.
3.2 AMTRA

Reworded steps 2b and 2c for clarity.
4.3 Examples

Reworded paragraph in Example 3.
Added explanatory details and graphics for Examples 1, 3, 4a and 4b.

5.4 Rationale for Exclusion of Some Marks
Reworded first paragraph.

5.6 Other Uses for AMTRA
Clarified that there is no intention or expectation that AMTRA would be applied to stored text.
Expanded to indicate why a text editor may want to utilize AMTRA within backspace
processing.

References
Modified Microsoft Typography link.
Sorted per Unicode document conventions.

Revision 1:

Initial Draft.

Copyright © 2023 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind, and
assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in connection with or arising out
of the use of the information or programs contained or accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

https://www.unicode.org/copyright.html

