
 Title: Proposal of the UNICODE AUTO SPACING
 Authors: Koji Ishii (Google), Yasuo Kida (W3C), Fuqiao Xue (W3C)
 Date: Feb 28, 2024

 UNICODE AUTO SPACING
 (Proposal)

 1 Overview and Scope
 East Asian text usually consists of multiple scripts, such as Han ideographs, Kana syllables, and
 Hangul syllables, along with Latin letters and numeric characters. In their established
 typography convention, a thin spacing between East Asian scripts and other scripts can improve
 the readability.

 While detailed rules of the spacing can vary across documents, it is important that the choice
 made by an author for a specific document be clearly established, so that a rendering system
 can display what the author intended. It is also important that this choice be established
 independently of the font resources, as the rendering systems may have to use other fonts than
 those intended or specified in the document. Finally, the expression of the author’s choice
 should be relatively concise, to facilitate document authoring and minimize document size.

 This report describes a Unicode character property which can serve as a stable default rule of
 inserting the spacing for the purpose of reliable document interchange.

 For the purpose of reliable document interchange, this property defines an unambiguous default
 value, so that implementations could reliably render a character stream based solely on the
 property values, without depending on other information such as provided in the tables of the
 selected font.

 The intent is that the author should be able to specify where they want to override, and that in
 the absence of an explicit specification, the spacing is implicitly that defined by the property
 presented in this report.

 The actual choice for the property values should result in a reasonable or legible default, but it
 may not be publishing-material quality, and it may not be a good choice if used in a specific style
 or context.

 The property values are chosen first to match existing practice in East Asian contexts in their
 respective environments. For characters that are not generally used in such environments,
 similarity to existing characters has been taken into consideration. It also takes East Asian
 characters in non-East Asian texts into account.

 1

rick
Text Box
L2/24-057

 2 Conformance
 The property defined in this report is informative. The intent of this report is to provide, in the
 absence of other information, a reasonable way to determine the correct automatic spacing, but
 this behavior can be overridden by inserting space characters, or by a higher-level protocol,
 such as through markup or by the preferences of a layout application. This default determination
 is defined in the accompanying data file [Data], but in no way implies that the spacing is inserted
 only by this rule.

 For more information on the conformance implications, see [Unicode], Section 3.5, Properties,
 in particular the definition (D35) of an informative property.

 3 The Auto_Spacing Property (as)

 3.1 Property Values
 The possible property values are given in Table 1.

 Table 1. Property Values

 Value Description Examples

 W Characters that are considered as
 East Asian script for the auto-spacing
 purpose.

 Han ideographic characters and
 Kana syllables are examples of this
 value.

 N Characters that need the auto-spacing
 with adjacent W characters.

 Latin letters and digits are examples
 of this value.

 O Characters that don’t need the
 auto-spacing.

 Most symbols and punctuation
 characters such as COMMA and
 FULL STOP are examples of this
 value.

 NOTE: A possible addition of “language conditional” is under discussion; specifically,
 “Conditional-Chinese N/O”. Please see Symbols and Punctuation Characters for details.

 Characters that have the property value N are similar to the “Narrow” characters in UAX#11
 EAST ASIAN WIDTH , but most punctuation characters and symbols are excluded. Similarly,
 characters that have the property value W are similar to the “Wide” characters, but most
 punctuation characters and symbols are excluded. Also, to follow the existing practice, Hangul
 characters, circled characters, square characters, and Emoji are defined as O.

 2

https://unicode.org/reports/tr11/
https://unicode.org/reports/tr11/

 3.2 Spacing Algorithm
 The auto spacing should be inserted between “W” and “N”, and between “N” and “W”.

 The exact amount of the spacing can vary across documents. This property doesn’t define the
 exact amount. Instead, it should be defined by high-level protocols or applications such as
 through markup or by the preferences of a layout application.

 There are two ways to represent a space: a character space (by the insertion of physical code
 points, or in a glyph space (like kerning, adjusting the metrics of adjacent glyphs on the device).
 A glyph space is recommended for high-level protocols or applications that can represent glyph
 spaces.

 3.3 Scope of the Property

 3.3.1 Grapheme Cluster
 As in all matters of typography, the interesting unit of text is not the character, but a grapheme
 cluster: it does not make sense to insert the auto spacing between a base character and a
 combining mark attached to it. Implementations should insert the auto spacing before or after
 each grapheme cluster.

 A possible choice for the notion of grapheme cluster is either that of legacy grapheme cluster or
 that of extended grapheme cluster, as defined in [UAX29].

 The property value for a grapheme cluster as a whole is then determined by taking the property
 value of the first character in the cluster, with the following exception:

 ● If the cluster contains an enclosing combining mark (general category Me), then the
 whole cluster has the Auto_Spacing property value O.

 3.3.2 Space Characters
 The property values for space characters (General Category Zs) are O. This is to avoid inserting
 the auto spacing around space characters, which can lead to undesirable double spacing.

 It also allows authors to override the algorithm when high-level protocols or applications don’t
 provide a way for authors to express their intentions to override this algorithm, such as in plain
 text files. For example, in East Asian contexts, U+0020 SPACE should usually represent a wider
 space than the auto spacing, indicating a semantic boundary stronger than the auto spacing,
 while U+2006 SIX-PER-EM SPACE should usually represent a thin space similar to the auto
 spacing for the readability. Inserting U+2006 SIX-PER-EM SPACE to where the algorithm
 doesn’t insert the auto spacing should indicate that the auto spacing is desired there. Likewise,
 inserting U+200B ZERO WIDTH SPACE to where the algorithm inserts the auto spacing should
 prevent the auto spacing from being inserted by rendering systems.

 3

https://www.unicode.org/reports/tr29/

 3.3.3 Symbols and Punctuation Characters
 In some existing practices, symbols and punctuation characters insert the auto spacing, while
 they don’t insert the auto spacing in other existing practices.

 The motivation to insert the auto-spacing is that words such as “20%”, “$20”, or “C#” would look
 unbalanced if the auto-spacing is inserted to the letters and digits but not to the symbols and
 punctuation characters. It also matches the existing practice of widely adopted style guides for
 East Asian plain text defining to insert U+0020 SPACE between any wide and narrow
 characters with some exceptions. Large amount of existing plain text files in East Asian writing
 systems follow this convention for over decades, and one of existing implementations as well.

 On the other hand, traditional printing typography often accepts such unbalanced spacing as
 good results, from a perspective that the spacing is to prevent characters from being too close
 together, not to highlight words like parentheses do [JLREQ-TF]. Another existing
 implementation follows this convention for over decades too.

 Please see the “ Open Issues ” section for more information and possible options on this point.

 3.3.4 Vertical Text Layout
 In vertical text layout, a character may be displayed upright or sideways rotated, as defined in
 [UAX#50].

 If a character that has the Auto_Spacing property value N is displayed upright, the rendering
 system should handle it as if it has the property value O instead.

 3.3.5 Right-to-Left Scripts
 This property has a current limitation in that the handling of right-to-left scripts is not specified.
 This includes scripts that are predominantly written right to left, such as Arabic, along with
 right-to-left scripts that are meant to be written vertically, such as Chorasmian.

 4 Data File
 https://github.com/kojiishi/unicode-auto-spacing/blob/main/auto-spacing.txt

 Currently. the property values of this data file is derived from existing properties using the
 following algorithm (see NOTEs below):

 ● A code point has the property value W if it’s in the following set:
 ○ Include if the script property is one of the following values, or if the

 script_extension property contains one of the following values:
 ■ Han, Tang, Kits, Nshu, Hira, Kana, Bopo

 ○ Excluding if the General Category property is one of following values:

 4

https://github.com/w3c/csswg-drafts/issues/9479#issuecomment-1945496285
https://unicode.org/reports/tr50
https://github.com/kojiishi/unicode-auto-spacing/blob/main/auto-spacing.txt

 ■ P*, S* except Sk, No
 ○ Excluding if the East_Asian_Width property is H.

 ● A code point has the property value N if it’s in the following set:
 ○ Include if the General Category property is one of following values:

 ■ L*, M*, Nd
 ○ Excluding the set for the value W.
 ○ Excluding if the script property is Hang, or if the script extension property

 contains Hang.
 ○ Excluding if the East_Asian_Width property is F or H.

 ● A code point has the property value O if it’s not in either set above.
 There is a python code that generated the data, for reference.

 NOTE: This algorithm isn’t final yet.
 NOTE: There is a possible addition of code point lists, making this not a fully derived property.
 Please see the Open Issues below.

 5 Open Issues
 1. One existing implementation defines some symbols and punctuation characters as N. An

 example is U+0025 PERCENT SIGN, so that a word such as “200%” can have the auto
 spacing on both sides, and there are more such code points than “%”. See also “ 3.3.2
 Symbols and Punctuation Characters ” and #11 .

 a. Not to include symbols and punctuation characters. This matches one existing
 implementation and the JLREQ proposal.

 b. Take the CLREQ proposal . This inserts the auto space in a lot more cases than
 all existing implementations. The current differences in the data file are listed
 here .

 c. Define a language conditional value to accept both CLREQ and JLREQ
 proposals. That value will work as N for Chinese and O for other writing systems.
 Those characters having N will impact English text with Chinese characters.

 d. Find a list of “code points that have less side effects” which both parties can
 reach consensus on.

 2. A suggestion to use the Ideographic property is under discussion. The diff is now very
 small as the algorithm evolves. See also #1 .

 5

https://github.com/kojiishi/unicode-auto-spacing/blob/main/src/auto-spacing.py
https://github.com/kojiishi/unicode-auto-spacing/issues/11
https://github.com/kojiishi/unicode-auto-spacing/pull/15/files
https://github.com/kojiishi/unicode-auto-spacing/pull/15/files
https://github.com/kojiishi/unicode-auto-spacing/issues/1

	Untitled

