
-Toward Clarifying the Rules of the Character Name Namespace

To: Unicode Technical Committee
From: Erik Carvalhal Miller

-Subject: Problems in the rules of the character name namespace
Date: Monday, October 2, 2023

This document discusses inconsistencies, ambiguities, and loopholes in the Unicode Standardʼs
-specifications and policies regarding the character name namespace — as defined in the Character

Encoding Stability Policies, the core specification, and some of its annexes — and suggests remedies for
greater consistency and clarity.

I. General Rules to Determine Uniqueness Within the Namespace
-Unicodeʼs Name Uniqueness policy guarantees that character names, character sequence names, and character
-aliases are unique within a single shared namespace, in accordance with loose matching rules which the policy

statement does not delineate but rather points to in UAX #44, Unicode Character Database. These rules, found
more specifically in that annexʼs §5.9.2 (“Matching Character Names”) and designated UAX44-LM2, state that
uniqueness is determined by ignoring letter case and disregarding any whitespace, underscores, and medial
hyphens, with the exception of the hyphen (more precisely, a HYPHEN-MINUS) in HANGUL JUNGSEONG O-E
(U+1180). (Underscores, whitespace other than U+0020 SPACE -, and non uppercase letters are not permitted in
the names and aliases in question, but the scope of §5.9.2 is broader to accommodate implementationsʼ

-identifiers based on names and aliases.) These loose matching/uniqueness rules — positioned by the Name
Uniqueness policy as definitive — are contradicted by stricter rules articulated elsewhere within the Standard,
as we are about to see.

Another stability policy, Named Character Sequence Stability, points to UAX #34, Unicode Named Character
Sequences, for more information about said sequences. That annex, in its §4 (“Names”), contains a rule

-UAX34-R3 which, in discussing not just character sequence names but all names and aliases in the shared
-namespace, in effect imposes the same loose matching strictures (without addressing the identifier variations

covered by UAX44-LM2) but also spells out the additional stricture that the words “CHARACTER”, “DIGIT”,
and “LETTER” be ignored in comparisons to determine uniqueness; the most recent (2020) publicly available
version of ISO/IEC 10646, in its §27.5.4 (“Determining uniqueness”, pg. 45), also states this additional
requirement. UAX34-R3 further declares an exception for the existing control aliases CANCEL CHARACTER
(U+0094) and CANCEL (U+0018).

In the core specification, chapter 4 (“Character Properties”), §4.8 (“Name”) contains a paragraph headed
-“Character Name Matching” (pg. 181), which gives loose matching rules consistent with UAX #44ʼs less

-restrictive loose matching rules and points to them.

Suggestion 1: Update UAX44-LM2 to incorporate the additional “CHARACTER”/“DIGIT”/“LETTER”
stricture of UAX34-R3, including its exception for CANCEL CHARACTER (U+0094) and CANCEL

-(U+0018). Consider revising UAX #34, §4 so that it points to the revised UAX44-LM2 for the loose
matching rules. Locate other restatements of UAX44-LM2 in the Standard (a further example being in
UAX #24, Unicode Script Property, under §2.4 [“Script Designators in Character and Block Names”]) and
revise them as needed.

ISO/IEC 10646, in including the “CHARACTER”/“DIGIT”/“LETTER” stricture in §27.5.4 while failing to make
an exception for the existing CANCEL and CANCEL CHARACTER aliases, places its own character repertoire in
violation of said standardʼs very rules, thereby nominally complicating Unicodeʼs required conformance with a
-self violating ISO/IEC 10646.

Page 1 (of 3)

rick
Text Box
L2/24-073

-Erik Carvalhal Miller • Toward Clarifying the Rules of the Character Name Namespace (2023-10-02) • Page 2 (of 3)

Suggestion 2: Recommend the relevant ISO/IEC group(s) incorporate the CANCEL CHARACTER/
CANCEL exception into ISO/IEC 10646ʼs own statement of the matching rules, for internal consistency, if
such repair has not already been made.

The foregoing suggestions assume that the additional rules of UAX34-R3 are to be retained, but that is not the
only possible tack:

Alternative to Suggestions 1 & 2: Update both the Unicode Standard and ISO/IEC 10646 to remove any
statements of the “CHARACTER”/“DIGIT”/“LETTER” uniqueness stricture and its exception.

-II. Code Point Labels and the Namespace
In the core specificationʼs aforementioned chapter 4, §4.8, under “Code Point Labels” (pg. 186), rules for the

-construction of code point labels such as <control-000D> or <reserved-03A2> are given, followed by this
paragraph:

Unicode code point labels are included in the unique namespace for Unicode character names. This
ensures that there will never be a naming conflict between a code point label and an actual, assigned
Unicode character name.

-Code point labels receive inconsistent treatment within the Standard. UAX #34 and UAX #44 affirm them as
part of the shared namespace; but on the other hand, chapter 3 (“Conformance”), §3.3 (“Semantics”), definition
D6 (for namespace -) on pg. 87 omits them in describing the character name namespace (indeed, they are not
mentioned anywhere in chapter 3). Furthermore, they are not mentioned in the Name Uniqueness policy (which

-nevertheless does point to UAX #44, whose UAX44-LM2 does explicitly include code point labels in the
-character name namespace).

Suggestion 3: - - For clarity, revise the Standard to consistently include code point labels in the character
name namespace, particularly by updating the Name Uniqueness policyʼs stated scope and by updating
chapter 3ʼs definition entry D6.

-Code point labels were formally added to the Standard as of version 5.2 to serve essentially as names for the
- -unnamed. Of the five applicable code point types, four (control, noncharacter, private use, and surrogate) are

immutably assigned; the fifth, reserved, is unique among identifier types in the namespace in that its repertoire
actually shrinks - with successive versions of the Standard. Or does it? On the one hand, the label construction
rules are explicitly stated to apply to code points without character names, therefore indicating that the
repertoire of “reserved” labels does indeed shrink as code points are assigned character names; on the other
hand, the paragraph quoted above explicitly states that labelsʼ inclusion in the namespace “ensures that there
will never [emphasis mine] be a naming conflict” between labels and character names (and, presumably, aliases

-and character sequence names). Therein lies contradiction: Implementations confronted with character data
aligned with different versions of the character database have no guarantee that a “reserved” label valid as of

-one release will not conflict with a character name, character sequence name, or character alias assigned in a
later release — for example, should RESERVED E-FEED ever turn out to be an excellent name for an accepted
pictograph but unfortunately collide with todayʼs valid label <reserved-EFEED>, even if code point U+EFEED
itself is already assigned a character with some other name by that time. Even without actual collision, there is
uncertainty as to the continuing validity of implementationsʼ use of “reserved” labels as the character database
grows.

Suggestion 4: - Form a policy clarifying that character names, character aliases, and character sequence
-names may not conflict with “reserved” code point labels from as far back as Unicode version 5.2.

Suggestion 5: - Clarify that, even if the Standard discourages continued use of obsoleted “reserved” code
point labels for code points that are currently assigned character names, it is recommended that
implementations handle those obsoleted labels gracefully.

-Erik Carvalhal Miller • Toward Clarifying the Rules of the Character Name Namespace (2023-10-02) • Page 3 (of 3)

III. Nomenclature Nomenclature
Some of the inconsistency in the Standardʼs treatment of character names, character aliases, names of named

-character sequences, and code point labels is attributable to the history of the Standardʼs evolution; but it is
also likely that the cumbersome task of enumerating those various identifier types has also contributed to
inconsistency and poses a continued danger to consistency as the Standard evolves.

Suggestion 6: Formally devise and define a cover term for character names, character aliases, names of
-named character sequences, and code point labels (e.g., -character level lexical identifiers [CLLIs]) and

implement it as applicable throughout the text of the Standard, for the sake of clarity and of ease of
updating (including in the implementation of some of the previous suggestions). Also consider a standard
name for those identifiersʼ namespace (even if just based on the cover term [e.g., CLLI namespace] or as
simple as -character name namespace).

✦ ✦ ✦ ✦END

