Archaic cuneiform numerals

Robin Leroy, Anshuman Pandey, and Steve Tinney 2024-09-30

Contents

1	Sum	ımary			2	
2	Pro	posed (changes to the Standard		3	
	2.1		specification text		3	
	2.2		charts		5	
	2.3		erties		12	
	5	2.3.1	Name, General_Category, Numeric_Value, etc		12	
		2.3.2	Line_Break		16	
		2.3.3	Script		16	
		2.3.4	Script_Extensions		16	
		2.3.5	Block		16	
3	Rati	onale	for curviform-cuneiform disunification		17	
	3.1	The cu	uneiform encoding model		17	
	3.2	Argun	nents for curviform-cuneiform unification		17	
3.3 A primer on classic Ur III and Old Babylonian metrologies						
		3.3.1	The discrete counting system		19	
		3.3.2	The area system		20	
		3.3.3	The capacity system		21	
		3.3.4	The length system		22	
		3.3.5	Fractions		22	
	3.4	Curvi	form numerals in early metrologies		22	
		3.4.1	Field lengths in Nirsu		23	
		3.4.2	Dyke lengths in Nirsu		24	
		3.4.3	Butter, cheese and wheat in Nirsu		24	
		3.4.4	Grain in Ebla		25	
		3.4.5	Use in modern publications		27	
	3.5	Non-r	numeric usage		33	
	3.6	The li	mited benefits of diachronic encoding for numerals		34	
	3.7	Comp	atibility considerations		35	
		3.7.1	The case of ŠAR ₂		35	
		3.7.2	Transliteration		37	
	3.8	Concl	usions		38	

4	Rationale for ED-Uruk numeral unification							
5	Considerations on individual numeral series							
6 Characters not included in this proposal 6.1 Fourth millennium numerals 6.2 Third millennium numerals 6.3 Stacking patterns 6.4 Other glyph variants not reflected in transliteration								
Ac	cknowledgements	47						
Re	Artefacts ISO and Unicode documents Online corpora and related projects Other documents	55 56						

1 Summary

This document proposes encoding, at U+12550–U+12586, 311 numerals used in the fourth millennium (Uruk IV and Uruk III periods) and Early Dynastic period in conjunction with the Sumero-Akkadian cuneiform script and the proto-cuneiform script. The proposed characters are listed in §2. Most of them were listed in [L2/23-190]. The present document provides a more detailed rationale for their encoding and additional information about their identity and usage, both as part of the rationale and in §5. Some characters have been removed, in some cases because they are non-encodable variants, in others because their encodability should be considered as part of the proto-cuneiform proposal; these are discussed in §6. The glyphs have also been reworked, and additional characters used in the Early Dynastic period have been added.

The non-numeric signs of proto-cuneiform will be the subject of a separate proposal; we need only note here that the divergence between the approaches to character identity in modern scholarship requires that proto-cuneiform be disunified from cuneiform: proto-cuneiform is effectively treated as an undeciphered script. In contrast, the cuneiform encoding model requires an understanding of the text to correctly encode it.

However, the *numerals* used in proto-cuneiform should be unified with ones used in the Early Dynastic period, for the reasons set forth in §4. The proposed "curved", or "curviform", numerals³ should however *not* be unified with the already-

 $^{^1[}IS015924]$: Xsux, Script property value long name: Cuneiform; encoded since Unicode Version 5.0. $^2[IS015924]$: Pcun, not yet encoded.

³Impressed into clay using cylindrical styli, held either perpendicular to the tablet, yielding ● (small stylus) or ● (large stylus), or at a shallower angle: ▷, ▷ (small stylus), ▷, ▷ (large stylus). Some numerals are composed of multiple such impressions, *e.g.*, ▶ . The terms "curved", "curviform", "curvilinear", and "round" can be found in the literature. We avoid the term "round" here as it has other meanings in the context of numbers. We use "curviform" in this document as, being the least common term, it is least likely to lead to confusion, and "CURVED" in the character names for consistency with documentation about the modifier @c used in machine readable ATF transliterations [Tin19].

encoded cuneiform numerals⁴. Since the encoding proposals for the cuneiform script twenty years ago provisionally considered the curviform numerals to be glyph variants of the cuneiform numerals, a detailed rationale is provided in §3, including compatibility considerations in §3.7.

The overall picture of unifications and disunifications over time is illustrated in table 1. The Script_Extensions property assignments in §2.3 reflect the overlap. Many of these numerals are also used in proto-Elamite 5 texts, where they are treated as identical characters in scholarship on proto-Elamite, so that they should be unified with those that were proposed (but not yet accepted) in [L2/23-196]. However, in the interest of time, we do not provide a detailed rationale for this unification in this document, and we are not proposing that the numerals be given the corresponding Script_Extensions property value for now. Neither do we propose encoding any numerals that are solely attested in proto-Elamite texts, or well-attested in proto-Elamite texts but insufficiently attested in Uruk—those are discussed in §6.

	Uruk III & earlier	ED – Ur III	OB & later	
Numerals	This propo	osal		
ivuillerais		Existing Xsux		
Non-numeric signs	Future Pcun			

Table 1: Usage of existing, proposed, and future characters across functions and time periods.

2 Proposed changes to the Standard

2.1 Core specification text

Amend [Uni16, §11.1.2, sub "Cuneiform Numerals"], as follows:

Cuneiform Numerals. In general, numerals that also have a phonetic, logographic, or determinative value are encoded in the main Cuneiform block; as a result, some series of numerals, such as ∫-∰∫ 1(diš)-9(diš) or ✓-∰ 1(u)-9(u), are split across the two blocks. Numerals have been encoded separately from signs that are visually identical but-semantically different etymologically unrelated (for example, U+1244F ← CUNEIFORM NUMERIC SIGN ONE BAN2, U+12450 ☐ CUNEIFORM NUMERIC SIGN TWO BAN2, and so on, versus U+12226 ☐ CUNEIFORM SIGN MASH, U+1227A ☐ CUNEIFORM SIGN PA, and so on).

The relation between series of numerals depends on the metrological system; for instance, when counting talents, written (a unit of weight, approximately 30 kg), (a unit of weight, approximately 30 kg), (b unit of is used for "one talent", and (c) for "ten talents". However, when measuring areas, the area (including including is eighteen times (including including includi

⁴Impressed into clay using a stylus with a trihedral end: ← (stylus held horizontally), ! (vertically), \(\) (diagonally) \(\) (with the head of the stylus), \(\) (stylus pressed deeper, forming a larger wedge), \(\) (combining \(\) and \(\)), etc.

⁵[ISO₁₅₉₂₄]: Pelm, not yet encoded.

reflects only its relation to the first numeral in its series, rather than the absolute numeric value that it might represent. For instance, the number "fifty" is written %, but U+12410 % CUNEIFORM NUMERIC SIGN FIVE U has Numeric_Value=5, as it is $5 \times \checkmark$.

In the third millennium, and especially in the Early Dynastic period, some numerals are written using a cylindrical tool, rather than the cuneiform stylus, forming curved rather than cuneiform numerals (▷ rather than ►). The cuneiform numerals are descended from these curved numerals. However, in the Early Dynastic period, the curved numerals contrast with the cuneiform ones, and are used together with them in several metrological systems; they are therefore separately encoded. Most curved numerals are encoded in the Archaic Cuneiform Numerals block, with the exception of two fractions in the Cuneiform Numbers and Punctuation block: U+1245D ♣ CUNEIFORM NUMERIC SIGN ONE THIRD VARIANT FORM A and U+1245E ♣ CUNEIFORM NUMERIC SIGN ONE THIRD DISH and U+1245B ♣ CUNEIFORM NUMERIC SIGN TWO THIRDS DISH.

Add after [Uni16, §11.1.3]:

11.1.4 Archaic Cuneiform Numerals: U+12550-U+1268F

This block contains numerals used in the fourth millennium and third millennium. The numerals that are used in the fourth millennium and Early Dynastic I–II period (2900–2700 BCE) are named according to the conventions of the Berlin *Archaische Texte aus Uruk* (ATU) project, with names such as U+12550 \triangleright CUNEIFORM NUMERIC SIGN ONE N01 or U+125B6 \triangleright CUNEIFORM NUMERIC SIGN ONE N39A. For the signs that are also used in the third millennium, informative aliases provide correspondences to more common third millennium conventions, such as "1 aš curved" for U+12550 \triangleright CUNEIFORM NUMERIC SIGN ONE N01. The numerals that are only used starting in the Early Dynastic III period, where the ATU notation is not used, are named in the same fashion as the numerals of the Cuneiform Numbers and Punctation block.

The curved numerals are produced using cylindrical tools of two different sizes, producing small curved indents (\bigcirc , \neg , and \bullet), and large ones (\bigcirc , \neg , and \bullet). These can be combined, as in U+12574 \bigcirc CUNEIFORM NUMERIC SIGN ONE N48, U+12582 \bigcirc CUNEIFORM NUMERIC SIGN ONE N50, or U+125A3 \bigcirc CUNEIFORM NUMERIC SIGN ONE N54. Consistent sizing is important to identifying these characters, as there is no visual distinction other than size between, for instance, U+12566 \bigcirc CUNEIFORM NUMERIC SIGN FIVE N14 and U+1257D \bigcirc CUNEIFORM NUMERIC SIGN FIVE N45. The reference glyphs of some of the larger signs have been resized to fit in the code charts cells, but fonts for these characters should retain consistent size across the numeral series.

Editor's note: The dashed-box convention for wide dashes, see [Uni16, §24.1.2, sub "Dashed Box Convention"] should probably not be extended to these characters, since numbers enclosed in a real dashed box are a thing in proto-Elamite texts.

The Numeric_Value assignments follow the same principles as in the Cuneiform Numbers and Punctuation block. Numerals used in the third millennium have the Cuneiform script property value; numerals used only in the fourth millennium have the Proto-Cuneiform script property value. Numerals used in both the fourth and third millennium have both scripts in their Script_Extensions values.

The sign ŠAR₂. When used logographically, the sign ŠAR₂ has the same (cuneiform) appearance as U+1212D \diamondsuit CUNEIFORM SIGN HI in all but the most archaizing Early Dynastic texts. The character U+122B9 CUNEIFORM SIGN SHAR2 should be used for logographic šar₂, whether cuneiform or curved. Most period-specific fonts will have the same cuneiform glyph for U+122B9 and U+1212D. In the Early Dynastic period, numeric 1 šar₂ is typically written with a curved glyph, contrasting with logographic šar₂. U+12579 \blacksquare CUNEIFORM NUMERIC SIGN ONE N45 should be used for curved 1 šar₂. In later periods, long after ŠAR₂ and ḤI have merged, even numeric 1 šar₂ has a cuneiform glyph. U+122B9 CUNEIFORM SIGN SHAR2 should be used for cuneiform 1 šar₂.

The reference glyph for U+122B9

CUNEIFORM SIGN SHAR2 is curved, reflecting the rarer and more archaic practice, instead of cuneiform as it would be in the Ur III period, so as to distinguish it from U+1212D

CUNEIFORM SIGN HI.

2.2 Code charts

The code charts for the proposed block, including the character names list with proposed informative aliases, cross references, and informative notes, are shown on the following pages. A plain text file containing the NamesList.txt lines is attached to this document.

This space for rent.

	1255	1256	1257	1258	1259	125A	125B	125C	125D	125E
0	12550	12560	12570	12580	12590	125A0	125B0	125C0	125D0	125E0
1	12551	12561	12571	12581	12591	125A1	125B1	125C1	125D1	125E1
2	12552	12562	BBB 12572	12582	12592	125A2	125B2	125C2	125D2	125E2
3	12553	12563	12573	12583	12593	125A3	125B3	125C3	125D3	125E3
4	12554	12564	12574	9 9 12584	12594	125A4	125B4	125C4	125D4	125E4
5	12555	12565	12575	99 12585	12595	125A5	125B5	125C5	125D5	125E5
6	12556	12566	12576	000 00 12586	12596	125A6	125B6	125C6	125D6	125E6
7	12557	12567	12577	12587	12597	125A7	125B7	12507	125D7	125E7
8	12558	12568	12578	12588	12598	125A8	125B8	125C8	125D8	125E8
9	12559	12569	12579	12589	12599	88	12589	CC C 125C9	125D9	125E9
Α	1255A	1256A	1257A	▶ D-	1259A	125AA	125BA	66	125DA	125EA
В			•	₹	\bowtie	₩		125CA		Q
С	1255B	1256B	1257B	1258B	1259B	125AB	125BB	125CB	125DB	125EB
D	1255C	1256C	1257C	1258C	1259C	125AC	125BC	125CC	125DC	125EC
E	1255D	1256D	1257D	1258D	1259D	125AD	125BD	125CD	125DD	125ED
F	1255E	1256E	1257E	1258E	1259E	125AE	125BE	125CE	125DE	125EE 125EF

	125F	1260	1261	1262	1263	1264	1265	1266	1267	1268
0	10550		**************************************	10000		. 6.6.	40050	10000	40070	### ###
1	125F0	12600	12610	12620	12630	12640	12650	12660	12670	12680 #### ###
	125F1	12601	12611	12621	12631	12641	12651	12661	12671	12681
2	125F2	12602	12612	12622	12632	12642	12652	12662	12672	#### #### 12682
3	125F3	12603	12613	12623	12633	12643	12653	12663	12673	##### #### 12683
4	125F4	12604	12614	12624	12634	12644	12654	12664	12674	12684
5	125F5	12605	12615	12625	DDD DD 12635	12645	12655	12665	12675	12685
6	12313	12003	12013	12023	` \ `	12040	12033	12003	12073	1 2003
_	125F6	12606	12616	12626	12636	12646	12656	12666	12676	12686
7	125F7	12607	12617	12627	12637	12647	12657	12667	12677	
8	125F8	12608	12618	12628	12638	12648	12658	12668	12678	
9	125F9	12609	12619	12629	12639	12649	1 I 1 I 12659	12669	12679	
Α	125FA	1260A	1261A	1262A	1263A	1264A	1265A	1266A	1267A	
В	****	*			000		111		#	
С	125FB	1260B	1261B	1262B	1263B	1264B	1265B	1266B	1267B	
	125FC	1260C	1261C	1262C	1263C	1264C	1265C	1266C	1267C	
D	125FD	1260D	1261D	1262D	1263D	1264D	1265D	1266D	1267D	
Ε	125FE	1260E	1261E	1262E	1263E	1264E	1265E	1266E	## ## 1267E	
F	125FF	1260F	1261F	1262F	1263F	1264F	1265F	1266F	### ## 1267F	

Many of the reference glyphs for the higher numbers (THREE and above, in some cases TWO) have been rescaled to fit the code chart cells. They should be sized consistently with the corresponding ONE numerals.

Common Numerals

Used in the sexagesimal discrete counting system and other metrological systems

- 12550 ▷ CUNEIFORM NUMERIC SIGN ONE N01
 - = 1 aš curved
 - → 12038 ← cuneiform sign ash
 - · often used instead of dis in Early Dynastic counterparts of cuneiform metrological systems
 - → 12079 T cuneiform sign dish
- 12551 DD CUNEIFORM NUMERIC SIGN TWO N01
 - → 12400 » cuneiform numeric sign two ash
- 12552 DDD CUNEIFORM NUMERIC SIGN THREE N01
- 12553 BE CUNEIFORM NUMERIC SIGN FOUR N01
- 12554 ₽₽ CUNEIFORM NUMERIC SIGN FIVE N01
- 12555 BEB CUNEIFORM NUMERIC SIGN SIX N01
- 12556 BEEP CUNEIFORM NUMERIC SIGN SEVEN NO1 12557 BBBE CUNEIFORM NUMERIC SIGN EIGHT N01
- 12558 ELLE CUNEIFORM NUMERIC SIGN NINE N01
- 12559 CUNEIFORM NUMERIC SIGN ONE N08
 - = 1 diš curved
 - → 12079 T cuneiform sign dish
 - = 1/2 iku curved
 - used for one half in multiple metrological systems
 - → 12039 < cuneiform sign ash zida tenu
 - → 12226 ¥ cuneiform sign mash
 - = 1 bariga curved
 - used in Early Dynastic capacity systems
- 1255A ₹ CUNEIFORM NUMERIC SIGN TWO N08
 - → 1222B Tr cuneiform sign min
 - = 2 bariga curved
 - → 12456 ¥ cuneiform numeric sign nigidamin
- 1255B ₹ CUNEIFORM NUMERIC SIGN THREE N08
 - ightarrow 12408 TTT cuneiform numeric sign three dish
 - used in Early Dynastic capacity systems
 - = 3 bariga curved
 - → 12457 ¥7 cuneiform numeric sign nigidaesh
- 1255C ₹₹ CUNEIFORM NUMERIC SIGN FOUR N08
- 1255D CUNEIFORM NUMERIC SIGN FIVE N08 1255E CUNEIFORM NUMERIC SIGN SIX N08
- 1255F CUNEIFORM NUMERIC SIGN SEVEN N08
- CUNEIFORM NUMERIC SIGN EIGHT N08 12560
- 12561 CUNEIFORM NUMERIC SIGN NINE N08
- 12562 **CUNEIFORM NUMERIC SIGN ONE N14**
 - = 1 u curved
 - = 1 bur₃ curved
 - → 1230B < cuneiform sign u
- 12563 **\$** CUNEIFORM NUMERIC SIGN TWO N14
 - → 12399 « cuneiform sign u u
- 12564 **CUNEIFORM NUMERIC SIGN THREE N14**
 - → 1230D « cuneiform sign u u u
- **CUNEIFORM NUMERIC SIGN FOUR N14** 12565
 - → 1240F \ cuneiform numeric sign four u
- 12566 : CUNEIFORM NUMERIC SIGN FIVE N14
- 12567 ******* CUNEIFORM NUMERIC SIGN SIX N14
- 12568 **** CUNEIFORM NUMERIC SIGN SEVEN N14
- 12569 :::: CUNEIFORM NUMERIC SIGN EIGHT N14
- 1256A :::: CUNEIFORM NUMERIC SIGN NINE N14

- 1256B CUNEIFORM NUMERIC SIGN ONE N34
 - = 1 ŋeš₂ curved
 - → 12415 Y cuneiform numeric sign one gesh2
- 1256C DD CUNEIFORM NUMERIC SIGN TWO N34
- 1256D DDD CUNEIFORM NUMERIC SIGN THREE N34
- 1256E

 R CUNEIFORM NUMERIC SIGN FOUR N34
- 1256F RP CUNEIFORM NUMERIC SIGN FIVE N34
- 12570 RES CUNEIFORM NUMERIC SIGN SIX N34
- 12571 CUNEIFORM NUMERIC SIGN SEVEN N34 12572 RESE CUNEIFORM NUMERIC SIGN EIGHT N34
- 12573 REEP CUNEIFORM NUMERIC SIGN NINE N34
- 12574 DESCUNEIFORM NUMERIC SIGN ONE N48
 - = 1 neš'u curved
 - → 1241E 🏋 cuneiform numeric sign one geshu
- 12575 DE CUNEIFORM NUMERIC SIGN TWO N48
- 12576 DED CUNEIFORM NUMERIC SIGN THREE N48
- CUNEIFORM NUMERIC SIGN FOUR N48 12577
- 12578 CUNEIFORM NUMERIC SIGN FIVE N48
- 12579 CUNEIFORM NUMERIC SIGN ONE N45
 - = 1 šar₂ curved
 - 122B9 should be used for cuneiform 1 šar₂
 - 122B9 should be used for logographic šar₂, even when curved
 - → 122B9 cuneiform sign shar2
- 1257A •• CUNEIFORM NUMERIC SIGN TWO N45
- 1257B 😍 **CUNEIFORM NUMERIC SIGN THREE N45**
- 1257C **\$ CUNEIFORM NUMERIC SIGN FOUR N45**
- 1257D **CUNEIFORM NUMERIC SIGN FIVE N45**
- 1257E CUNEIFORM NUMERIC SIGN SIX N45
- 1257F **** CUNEIFORM NUMERIC SIGN SEVEN N45
- 12580 **CUNEIFORM NUMERIC SIGN EIGHT N45**
- 12581 **** CUNEIFORM NUMERIC SIGN NINE N45
- 12582 **●** CUNEIFORM NUMERIC SIGN ONE N50
 - = 1 šar'u curved
 - → 1242C � cuneiform numeric sign one sharu
 - used instead of 1258E * in fourth millennium land

area systems

- → 12434 🕻 cuneiform numeric sign one buru
- 12583 CUNEIFORM NUMERIC SIGN TWO N50
- 12584 🔮 CUNEIFORM NUMERIC SIGN THREE N50
- 12585 **CUNEIFORM NUMERIC SIGN FOUR N50**
- 12586 CUNEIFORM NUMERIC SIGN FIVE N50

Numerals used for land areas

- Together with N08, N01, N14, N45, and N50
- CUNEIFORM NUMERIC SIGN ONE EIGHTH IKU 12587 **CURVED**
 - \rightarrow 1245F \checkmark cuneiform numeric sign one eighth ash
- CUNEIFORM NUMERIC SIGN ONE EIGHTH IKU 12588 CURVED VARIANT FORM
- 12589 CUNEIFORM NUMERIC SIGN ONE N01 REVERSED
 - = 1/4 iku curved
 - → 12460 / cuneiform numeric sign one quarter ash
- CUNEIFORM NUMERIC SIGN ONE QUARTER IKU 1258A »⊳
- CURVED VARIANT FORM
- 1258B CUNEIFORM NUMERIC SIGN ONE HALF IKU CURVED VARIANT FORM
 - → 12039 < cuneiform sign ash zida tenu
- 1258C ■ CUNEIFORM NUMERIC SIGN ONE N22
 - = 1 eše₃ curved
- → 12458 × cuneiform numeric sign one eshe3 1258D R CUNEIFORM NUMERIC SIGN TWO N22
- 1258E CUNEIFORM NUMERIC SIGN ONE BURU CURVED → 12434 & cuneiform numeric sign one buru
- 1258F CUNEIFORM NUMERIC SIGN TWO BURU CURVED
- 12590 CUNEIFORM NUMERIC SIGN THREE BURU CURVED

```
12591 🗱 CUNEIFORM NUMERIC SIGN FOUR BURU CURVED
12592 CUNEIFORM NUMERIC SIGN FIVE BURU CURVED
```

Early Dynastic capacity measures

```
12593 ♥ CUNEIFORM NUMERIC SIGN ONE BAN2 CURVED
```

- → 1244F 并 cuneiform numeric sign one ban2
- used for one half in multiple metrological systems
- → 12226 ¥ cuneiform sign mash
- 12594 ₱ CUNEIFORM NUMERIC SIGN TWO BAN2 CURVED 12595 **₱** CUNEIFORM NUMERIC SIGN THREE BAN2 CURVED
- 12596 **■** CUNEIFORM NUMERIC SIGN FOUR BAN2 CURVED
- 12597 **◯** CUNEIFORM NUMERIC SIGN FIVE BAN2 CURVED

Early Dynastic weight fractions

- 12598 🚈 CUNEIFORM NUMERIC SIGN NINDA2 TIMES SHE PLUS ONE ASH CURVED
 - = 1/3 aš curved variant form
 - → 1245D ₹ cuneiform numeric sign one third dish variant form a
 - \rightarrow 1245A \coprod cuneiform numeric sign one third dish
- 12599 📂 CUNEIFORM NUMERIC SIGN NINDA2 TIMES SHE PLUS TWO ASH CURVED
 - = 2/3 aš curved variant form
 - → 1245E ₹ cuneiform numeric sign two thirds dish variant form a
 - \rightarrow 1245B Δ cuneiform numeric sign two thirds dish

Numerals used in the bisexagesimal system

```
Together with N08, N01, N14, and N34
```

```
    □ CUNEIFORM NUMERIC SIGN ONE N51

    = 1 nes, curved doubled, 1 nesmin curved
```

- 1259B 🔀 CUNEIFORM NUMERIC SIGN TWO N51 1259C **CUNEIFORM NUMERIC SIGN THREE N51**
- CUNEIFORM NUMERIC SIGN FOUR N51 1259D
- 1259E CUNEIFORM NUMERIC SIGN FIVE N51
 1259F CUNEIFORM NUMERIC SIGN SIX N51
- 125A0 CUNEIFORM NUMERIC SIGN SEVEN N51
- 125A1 EE CUNEIFORM NUMERIC SIGN EIGHT N51 125A2 — CUNEIFORM NUMERIC SIGN NINE N51
- 125A3 ▼ CUNEIFORM NUMERIC SIGN ONE N54
 - = 1 neš'u curved doubled, 1 nešmin'u curved
- 125A4 EX CUNEIFORM NUMERIC SIGN TWO N54
- 125A5 👺 CUNEIFORM NUMERIC SIGN THREE N54 125A6 OUNEIFORM NUMERIC SIGN FOUR N54
- 125A7 E CUNEIFORM NUMERIC SIGN FIVE N54
- 125A8 CUNEIFORM NUMERIC SIGN ONE N56
- 125A9 CUNEIFORM NUMERIC SIGN TWO N56

Fourth millennium grain capacity measures

Used with N01, N14, N45, N34, and N48

- 125AA Z CUNEIFORM NUMERIC SIGN ONE N24 125AB ↔ CUNEIFORM NUMERIC SIGN ONE N26 125AC ☑ CUNEIFORM NUMERIC SIGN ONE N28
- 125AD 🔯 CUNEIFORM NUMERIC SIGN ONE N29A ☼ CUNEIFORM NUMERIC SIGN ONE N29B 125AE
- 125AF
- 125B0 ₩ CUNEIFORM NUMERIC SIGN ONE N30C 125B1 & CUNEIFORM NUMERIC SIGN ONE N30D
- 125B2 CUNEIFORM NUMERIC SIGN ONE N30E 125B3 CUNEIFORM NUMERIC SIGN ONE N31
- 125B4 © CUNEIFORM NUMERIC SIGN ONE N32 125B5
- **⊚** CUNEIFORM NUMERIC SIGN ONE N33 125B6 CUNEIFORM NUMERIC SIGN ONE N39A 125B7 □ CUNEIFORM NUMERIC SIGN TWO N39A
- ₩ CUNEIFORM NUMERIC SIGN THREE N39A

- 125B9 **Ξ** CUNEIFORM NUMERIC SIGN FOUR N39A CUNEIFORM NUMERIC SIGN ONE N39B
- 125BA 125BB CUNEIFORM NUMERIC SIGN TWO N39B
- 125BC CUNEIFORM NUMERIC SIGN THREE N39B
- 125BD CUNEIFORM NUMERIC SIGN FOUR N39B

Numerals of sexagesimal system S'

Used to count dead animals and jars of certain types of liquids

- 125BF ► CUNEIFORM NUMERIC SIGN TWO N02
- 125C0 DED CUNEIFORM NUMERIC SIGN THREE NO2
- 125C1 CUNEIFORM NUMERIC SIGN FOUR N02 125C2 CUNEIFORM NUMERIC SIGN FIVE N02
- 125C3 CUNEIFORM NUMERIC SIGN SIX N02
- 125C4 CUNEIFORM NUMERIC SIGN SEVEN N02 125C5 EXTENSION CUNEIFORM NUMERIC SIGN EIGHT NO2
- 125C6 ESSER* CUNEIFORM NUMERIC SIGN NINE NO2
- 125C7 **CUNEIFORM NUMERIC SIGN ONE N15**
- 125C8 9 **CUNEIFORM NUMERIC SIGN TWO N15**
- 125C9 ** CUNEIFORM NUMERIC SIGN THREE N15
- 125CA **SS** CUNEIFORM NUMERIC SIGN FOUR N15
- 125CB ******* CUNEIFORM NUMERIC SIGN FIVE N15
- 125CC → CUNEIFORM NUMERIC SIGN ONE N35 125CD → CUNEIFORM NUMERIC SIGN TWO N35
- 125CE EDD CUNEIFORM NUMERIC SIGN THREE N35
- 125CF CUNEIFORM NUMERIC SIGN FOUR N35 125D0 CUNEIFORM NUMERIC SIGN FIVE N35

Numerals of bisexagesimal system B*

Used in the fourth millennium to count rations of an unclear nature

- 125D1 ► CUNEIFORM NUMERIC SIGN ONE N06
- 125D2 ➡ CUNEIFORM NUMERIC SIGN TWO N06
- 125D3 CUNEIFORM NUMERIC SIGN THREE N06
- 125D4 E CUNEIFORM NUMERIC SIGN FOUR N06
- 125D5 CUNEIFORM NUMERIC SIGN FIVE N06
- 125D6 CUNEIFORM NUMERIC SIGN SIX N06 125D7 CUNEIFORM NUMERIC SIGN SEVEN N06
- 125D8 CUNEIFORM NUMERIC SIGN EIGHT N06
- 125D9 CUNEIFORM NUMERIC SIGN NINE N06
- 125DA ← CUNEIFORM NUMERIC SIGN ONE N21
- 125DB **≇** CUNEIFORM NUMERIC SIGN TWO N21
- 125DC 🛫 CUNEIFORM NUMERIC SIGN THREE N21
- 125DD 😩 CUNEIFORM NUMERIC SIGN FOUR N21
- 125DE E CUNEIFORM NUMERIC SIGN FIVE N21
- 125DF **CUNEIFORM NUMERIC SIGN ONE N38**
- **CUNEIFORM NUMERIC SIGN ONE N52** 125E0
- 125E1 EX CUNEIFORM NUMERIC SIGN TWO N52
- CUNEIFORM NUMERIC SIGN THREE N52
 CUNEIFORM NUMERIC SIGN FOUR N52 125E2
- 125E3 125E4 ECUNEIFORM NUMERIC SIGN FIVE N52
- 125E5 EUNEIFORM NUMERIC SIGN SIX N52
- 125E6 CUNEIFORM NUMERIC SIGN SEVEN N52
- 125E7 EUNEIFORM NUMERIC SIGN EIGHT N52
- 125E8 **ELLIP** CUNEIFORM NUMERIC SIGN NINE N52
- **▼** CUNEIFORM NUMERIC SIGN ONE N60

Numerals of capacity system S'

Used in the fourth millennium to measure malted barley

- 125EA ⋈ CUNEIFORM NUMERIC SIGN ONE N24A 125EB □ CUNEIFORM NUMERIC SIGN ONE N40
- 125EC ₩ **CUNEIFORM NUMERIC SIGN TWO N40**
- 125ED \≅ CUNEIFORM NUMERIC SIGN THREE N40
- 125EE ∰ **CUNEIFORM NUMERIC SIGN FOUR N40**
- 125EF 🛱 CUNEIFORM NUMERIC SIGN ONE N03 125F0 ► CUNEIFORM NUMERIC SIGN TWO N03
- 125F1 ► CUNEIFORM NUMERIC SIGN THREE N03
- 125F2 ₽ CUNEIFORM NUMERIC SIGN FOUR N03
- 125F3 CUNEIFORM NUMERIC SIGN FIVE N03
 - CUNEIFORM NUMERIC SIGN ONE N18

```
125F5 CUNEIFORM NUMERIC SIGN TWO N18
125F6 CUNEIFORM NUMERIC SIGN THREE N18
125F8 CUNEIFORM NUMERIC SIGN FOUR N18
125F9 CUNEIFORM NUMERIC SIGN FIVE N18
125FA CUNEIFORM NUMERIC SIGN SEVEN N18
125FB CUNEIFORM NUMERIC SIGN SEVEN N18
125FC CUNEIFORM NUMERIC SIGN SIGN N18
125FD CUNEIFORM NUMERIC SIGN NINE N18
125FD CUNEIFORM NUMERIC SIGN NINE N18
```

Numerals of capacity system Š"

```
Used in the fourth millennium to measure various kinds of emmer
```

```
125FE #
        CUNEIFORM NUMERIC SIGN ONE N24B
125FF
        CUNEIFORM NUMERIC SIGN ONE N26B
12600
         CUNEIFORM NUMERIC SIGN ONE N28B
12601
      CUNEIFORM NUMERIC SIGN ONE N29AB
12602
        CUNEIFORM NUMERIC SIGN ONE N41
12603
        CUNEIFORM NUMERIC SIGN TWO N41
12604
        CUNEIFORM NUMERIC SIGN THREE N41
12605
        CUNEIFORM NUMERIC SIGN FOUR N41
12606
        CUNEIFORM NUMERIC SIGN ONE N04
12607
     CUNEIFORM NUMERIC SIGN TWO N04
12608
     *** CUNEIFORM NUMERIC SIGN THREE N04
12609 🎎 CUNEIFORM NUMERIC SIGN FOUR N04
1260A REP CUNEIFORM NUMERIC SIGN FIVE NO4
1260B
     ★ CUNEIFORM NUMERIC SIGN ONE N19
1260C
        CUNEIFORM NUMERIC SIGN TWO N19
1260D
        CUNEIFORM NUMERIC SIGN THREE N19
1260E # CUNEIFORM NUMERIC SIGN FOUR N19
1260F
     CUNEIFORM NUMERIC SIGN FIVE N19
12610
     ## CUNEIFORM NUMERIC SIGN SIX N19
12611 .... CUNEIFORM NUMERIC SIGN SEVEN N19
12612 **** CUNEIFORM NUMERIC SIGN EIGHT N19
12613 ..... CUNEIFORM NUMERIC SIGN NINE N19
12614 ◆ CUNEIFORM NUMERIC SIGN ONE N46
12615 •• CUNEIFORM NUMERIC SIGN TWO N46
12616 ₽ CUNEIFORM NUMERIC SIGN ONE N36
12617 DE CUNEIFORM NUMERIC SIGN TWO N36
12618 CUNEIFORM NUMERIC SIGN THREE N36
12619 R CUNEIFORM NUMERIC SIGN FOUR N36
1261A CUNEIFORM NUMERIC SIGN FIVE N36
1261B CUNEIFORM NUMERIC SIGN SIX N36
1261C CUNEIFORM NUMERIC SIGN SEVEN N36
1261D CUNEIFORM NUMERIC SIGN EIGHT N36
1261E CUNEIFORM NUMERIC SIGN NINE N36
1261F
     CUNEIFORM NUMERIC SIGN ONE N49
12620 CUNEIFORM NUMERIC SIGN TWO N49
12621 CUNEIFORM NUMERIC SIGN THREE N49
12622 CUNEIFORM NUMERIC SIGN FOUR N49
```

Numerals of capacity system Š*

Used in the fourth millennium to measure barley groats

```
12623
     E CUNEIFORM NUMERIC SIGN ONE N25
12624
     ☑ CUNEIFORM NUMERIC SIGN ONE N28C
12625
12626

    CUNEIFORM NUMERIC SIGN ONE N29AC

⋈ CUNEIFORM NUMERIC SIGN ONE N30AC

12628 A CUNEIFORM NUMERIC SIGN ONE N30CC
12629
        CUNEIFORM NUMERIC SIGN ONE N42A
1262A ≅
        CUNEIFORM NUMERIC SIGN TWO N42A
1262B
     ≅ CUNEIFORM NUMERIC SIGN THREE N42A
1262C
     ≣ CUNEIFORM NUMERIC SIGN FOUR N42A
1262D
        CUNEIFORM NUMERIC SIGN ONE N42B
     ≘ CUNEIFORM NUMERIC SIGN TWO N42B
1262E
1262F
        CUNEIFORM NUMERIC SIGN THREE N42B
12630
        CUNEIFORM NUMERIC SIGN FOUR N42B
12631
        CUNEIFORM NUMERIC SIGN ONE N05
    CUNEIFORM NUMERIC SIGN TWO N05
12632
12633 DEED CUNEIFORM NUMERIC SIGN THREE N05
```

```
12634 RE CUNEIFORM NUMERIC SIGN FOUR N05
12635 CUNEIFORM NUMERIC SIGN FIVE N05
12636
         CUNEIFORM NUMERIC SIGN ONE N20
12637
         CUNEIFORM NUMERIC SIGN TWO N20
12638 • CUNEIFORM NUMERIC SIGN THREE N20
12639 CUNEIFORM NUMERIC SIGN FOUR N20
1263A *** CUNEIFORM NUMERIC SIGN FIVE N20
1263B SSS CUNEIFORM NUMERIC SIGN SIX N20
1263C **** CUNEIFORM NUMERIC SIGN SEVEN N20
1263D **** CUNEIFORM NUMERIC SIGN EIGHT N20
1263E ***** CUNEIFORM NUMERIC SIGN NINE N20
1263F
      • CUNEIFORM NUMERIC SIGN ONE N47
12640
     60 CUNEIFORM NUMERIC SIGN TWO N47
     CUNEIFORM NUMERIC SIGN ONE N37
12641
12642 DD CUNEIFORM NUMERIC SIGN TWO N37
```

Numerals of system EN

Only attested in the Uruk IV period

```
12643
     ■ CUNEIFORM NUMERIC SIGN ONE N09
12644
         CUNEIFORM NUMERIC SIGN ONE N11
12645
        CUNEIFORM NUMERIC SIGN ONE N12
      Ď
12646
     CUNEIFORM NUMERIC SIGN ONE N07A
12647 📓 CUNEIFORM NUMERIC SIGN TWO N07A
12648
     CUNEIFORM NUMERIC SIGN THREE N07A
12649 CUNEIFORM NUMERIC SIGN ONE N07B
1264A 🙀 CUNEIFORM NUMERIC SIGN TWO N07B
1264B
     CUNEIFORM NUMERIC SIGN THREE N07B
```

Flat numerals

Rectangular numerals impressed with a flat tool, used in Ur in the Early Dynastic I–II period

1264C

CUNEIFORM NUMERIC SIGN ONE N01 FLAT

```
= 1 aš flat
          → 12038 ← cuneiform sign ash
1264D CUNEIFORM NUMERIC SIGN TWO N01 FLAT
1264E CUNEIFORM NUMERIC SIGN THREE N01 FLAT
1264F H CUNEIFORM NUMERIC SIGN FOUR N01 FLAT
12650 EP CUNEIFORM NUMERIC SIGN FIVE N01 FLAT
12651 HH CUNEIFORM NUMERIC SIGN SIX N01 FLAT
12652 EEF CUNEIFORM NUMERIC SIGN SEVEN N01 FLAT
12653 HEE CUNEIFORM NUMERIC SIGN EIGHT N01 FLAT
12654 HHP CUNEIFORM NUMERIC SIGN NINE N01 FLAT
12655
      ■ CUNEIFORM NUMERIC SIGN ONE N08 FLAT
12656
         CUNEIFORM NUMERIC SIGN ONE N14 FLAT
         = 1 u flat
          → 1230B < cuneiform sign u
12657
      CUNEIFORM NUMERIC SIGN TWO N14 FLAT
```

```
12658 | CUNEIFORM NUMERIC SIGN THREE N14 FLAT
12659
     ! CUNEIFORM NUMERIC SIGN FOUR N14 FLAT
1265A | CUNEIFORM NUMERIC SIGN FIVE N14 FLAT
1265B | CUNEIFORM NUMERIC SIGN SIX N14 FLAT
1265C | CUNEIFORM NUMERIC SIGN SEVEN N14 FLAT
1265D | CUNEIFORM NUMERIC SIGN EIGHT N14 FLAT
1265E | CUNEIFORM NUMERIC SIGN NINE N14 FLAT
1265F
      □ CUNEIFORM NUMERIC SIGN ONE N34 FLAT
12660
     ☐ CUNEIFORM NUMERIC SIGN TWO N34 FLAT
12661
     CUNEIFORM NUMERIC SIGN THREE N34 FLAT
12662 E CUNEIFORM NUMERIC SIGN FOUR N34 FLAT
12663
     ELP CUNEIFORM NUMERIC SIGN FIVE N34 FLAT
12664
     ELE CUNEIFORM NUMERIC SIGN SIX N34 FLAT
12665
     ELEP CUNEIFORM NUMERIC SIGN SEVEN N34 FLAT
12666 HEE CUNEIFORM NUMERIC SIGN EIGHT N34 FLAT
12667 HEEF CUNEIFORM NUMERIC SIGN NINE N34 FLAT
12668
        CUNEIFORM NUMERIC SIGN ONE N45 FLAT
12669
      CUNEIFORM NUMERIC SIGN TWO N45 FLAT
1266A
      ■ CUNEIFORM NUMERIC SIGN ONE N22 FLAT
1266B
      ℍ CUNEIFORM NUMERIC SIGN TWO N22 FLAT
1266C
        CUNEIFORM NUMERIC SIGN ONE N51 FLAT
```

```
1266E F CUNEIFORM NUMERIC SIGN THREE N51 FLAT
       CUNEIFORM NUMERIC SIGN FOUR N51 FLAT
1266F
12670 E CUNEIFORM NUMERIC SIGN FIVE N51 FLAT
      EXECUTE CUNEIFORM NUMERIC SIGN SIX N51 FLAT
12671
12672 CUNEIFORM NUMERIC SIGN SEVEN N51 FLAT
12673 CUNEIFORM NUMERIC SIGN EIGHT N51 FLAT
12674 CUNEIFORM NUMERIC SIGN NINE N51 FLAT
12675
      CUNEIFORM NUMERIC SIGN ONE N34 FLAT TENU
12676 	■ CUNEIFORM NUMERIC SIGN ONE N04 FLAT
12677 ED CUNEIFORM NUMERIC SIGN TWO N04 FLAT
12678 CUNEIFORM NUMERIC SIGN THREE N04 FLAT
12679 E CUNEIFORM NUMERIC SIGN FOUR N04 FLAT
1267A # CUNEIFORM NUMERIC SIGN FIVE N04 FLAT
1267B
      * CUNEIFORM NUMERIC SIGN ONE N19 FLAT
1267C ‡ CUNEIFORM NUMERIC SIGN TWO N19 FLAT
1267D # CUNEIFORM NUMERIC SIGN THREE N19 FLAT
1267E ## CUNEIFORM NUMERIC SIGN FOUR N19 FLAT
1267F ## CUNEIFORM NUMERIC SIGN FIVE N19 FLAT
12680 ## CUNEIFORM NUMERIC SIGN SIX N19 FLAT
12681 ### CUNEIFORM NUMERIC SIGN SEVEN N19 FLAT
12682 ### CUNEIFORM NUMERIC SIGN EIGHT N19 FLAT
12683 ***** CUNEIFORM NUMERIC SIGN NINE N19 FLAT
12684 • CUNEIFORM NUMERIC SIGN ONE N46 FLAT
12685 $ CUNEIFORM NUMERIC SIGN TWO N46 FLAT
12686 	☐ CUNEIFORM NUMERIC SIGN ONE N36 FLAT
```

2.3 Properties

Add to the respective UCD files the lines given in this section. These are available as plain text files attached to this document. Changes to derived files are not listed.

2.3.1 Name, General_Category, Numeric_Value, etc.

Attached: UnicodeData.txt.

```
12550; CUNEIFORM NUMERIC SIGN ONE N01; N1; 0; L;;;; 1; N;;;;;
12551; CUNEIFORM NUMERIC SIGN TWO N01; N1; 0; L;;;; 2; N;;;;;
12552; CUNEIFORM NUMERIC SIGN THREE N01; N1;0;L;;;;3;N;;;;;
12553; CUNEIFORM NUMERIC SIGN FOUR N01; N1; 0; L;;;; 4; N;;;;
12554; CUNEIFORM NUMERIC SIGN FIVE N01;N1;0;L;;;;5;N;;;;
12555; CUNEIFORM NUMERIC SIGN SIX N01;N1;0;L;;;6;N;;;;
12556;CUNEIFORM NUMERIC SIGN SEVEN N01;N1;0;L;;;;7;N;;;;
12557; CUNEIFORM NUMERIC SIGN EIGHT N01; N1; 0; L;;;; 8; N;;;;
12558;CUNEIFORM NUMERIC SIGN NINE N01;N1;0;L;;;;9;N;;;;
12559; CUNEIFORM NUMERIC SIGN ONE N08; N1;0;L;;;;1;N;;;;;
1255A; CUNEIFORM NUMERIC SIGN TWO N08; N1;0;L;;;;2;N;;;;;
1255B;CUNEIFORM NUMERIC SIGN THREE N08;N1;0;L;;;;3;N;;;;
1255C; CUNEIFORM NUMERIC SIGN FOUR N08; N1;0;L;;;;4;N;;;;;
1255D;CUNEIFORM NUMERIC SIGN FIVE N08;N1;0;L;;;;5;N;;;;
1255E; CUNEIFORM NUMERIC SIGN SIX N08; N1;0;L;;;;6;N;;;;;
1255F;CUNEIFORM NUMERIC SIGN SEVEN N08;N1;0;L;;;;7;N;;;;;
12560; CUNEIFORM NUMERIC SIGN EIGHT N08; N1;0;L;;;;8;N;;;;;
12561;CUNEIFORM NUMERIC SIGN NINE NØ8;Nl;0;L;;;;9;N;;;;
12562; CUNEIFORM NUMERIC SIGN ONE N14; N1;0;L;;;;1;N;;;;
12563; CUNEIFORM NUMERIC SIGN TWO N14; N1; 0; L;;;; 2; N;;;;
12564; CUNEIFORM NUMERIC SIGN THREE N14; N1; 0; L;;;; 3; N;;;;;
12565; CUNEIFORM NUMERIC SIGN FOUR N14; N1;0;L;;;;4;N;;;;
12566; CUNEIFORM NUMERIC SIGN FIVE N14; N1;0;L;;;;5;N;;;;;
12567;CUNEIFORM NUMERIC SIGN SIX N14;N1;0;L;;;;6;N;;;;
12568;CUNEIFORM NUMERIC SIGN SEVEN N14;N1;0;L;;;;7;N;;;;
12569; CUNEIFORM NUMERIC SIGN EIGHT N14; N1;0;L;;;;8;N;;;;;
1256A; CUNEIFORM NUMERIC SIGN NINE N14;N1;0;L;;;;9;N;;;;;
1256B; CUNEIFORM NUMERIC SIGN ONE N34; N1;0;L;;;;1;N;;;;
1256C; CUNEIFORM NUMERIC SIGN TWO N34; N1; 0; L;;;; 2; N;;;;
1256D;CUNEIFORM NUMERIC SIGN THREE N34;N1;0;L;;;;3;N;;;;
1256E;CUNEIFORM NUMERIC SIGN FOUR N34;N1;0;L;;;;4;N;;;;
1256F; CUNEIFORM NUMERIC SIGN FIVE N34; N1;0;L;;;;5;N;;;;
12570;CUNEIFORM NUMERIC SIGN SIX N34;N1;0;L;;;;6;N;;;;
12571; CUNEIFORM NUMERIC SIGN SEVEN N34; N1; 0; L;;;; 7; N;;;;
12572;CUNEIFORM NUMERIC SIGN EIGHT N34;N1;0;L;;;;8;N;;;;;
12573;CUNEIFORM NUMERIC SIGN NINE N34;N1;0;L;;;;9;N;;;;
12574; CUNEIFORM NUMERIC SIGN ONE N48; N1;0;L;;;;1;N;;;;
12575; CUNEIFORM NUMERIC SIGN TWO N48; N1;0;L;;;;2;N;;;;
12576;CUNEIFORM NUMERIC SIGN THREE N48;N1;0;L;;;;3;N;;;;;
12577; CUNEIFORM NUMERIC SIGN FOUR N48; N1;0;L;;;;4;N;;;;;
12578; CUNEIFORM NUMERIC SIGN FIVE N48; N1;0;L;;;;5;N;;;;;
12579; CUNEIFORM NUMERIC SIGN ONE N45; N1;0;L;;;;1;N;;;;;
1257A;CUNEIFORM NUMERIC SIGN TWO N45;N1;0;L;;;;2;N;;;;;
1257B;CUNEIFORM NUMERIC SIGN THREE N45;N1;0;L;;;;3;N;;;;
1257C; CUNEIFORM NUMERIC SIGN FOUR N45; N1;0;L;;;;4;N;;;;;
1257D; CUNEIFORM NUMERIC SIGN FIVE N45; N1;0;L;;;;5;N;;;;;
1257E; CUNEIFORM NUMERIC SIGN SIX N45; N1;0;L;;;;6;N;;;;
1257F; CUNEIFORM NUMERIC SIGN SEVEN N45; N1;0;L;;;;7;N;;;;;
12580; CUNEIFORM NUMERIC SIGN EIGHT N45; N1;0;L;;;;8;N;;;;
12581;CUNEIFORM NUMERIC SIGN NINE N45;N1;0;L;;;;9;N;;;;
12582; CUNEIFORM NUMERIC SIGN ONE N50; N1; 0; L;;;; 1; N;;;;;
12583;CUNEIFORM NUMERIC SIGN TWO N50;N1;0;L;;;;2;N;;;;
12584; CUNEIFORM NUMERIC SIGN THREE N50; N1;0;L;;;;3;N;;;;
12585; CUNEIFORM NUMERIC SIGN FOUR N50; N1;0;L;;;;4;N;;;;;
12586;CUNEIFORM NUMERIC SIGN FIVE N50;N1;0;L;;;;5;N;;;;
12587; CUNEIFORM NUMERIC SIGN ONE EIGHTH IKU CURVED; N1; 0; L;;;; 1/8; N;;;;
12588; CUNEIFORM NUMERIC SIGN ONE EIGHTH IKU CURVED VARIANT FORM; N1;0; L;;;;1/8;N;;;;
12589; CUNEIFORM NUMERIC SIGN ONE NO1 REVERSED; N1;0;L;;;;1/4;N;;;;;
1258A; CUNEIFORM NUMERIC SIGN ONE QUARTER IKU CURVED VARIANT FORM; N1;0;L;;;;1/4;N;;;;;
1258B;CUNEIFORM NUMERIC SIGN ONE HALF IKU CURVED VARIANT FORM;N1;0;L;;;;1/2;N;;;;
1258C; CUNEIFORM NUMERIC SIGN ONE N22; N1;0;L;;;;1;N;;;;;
1258D; CUNEIFORM NUMERIC SIGN TWO N22; N1;0;L;;;;2;N;;;;
```

```
1258E; CUNEIFORM NUMERIC SIGN ONE BURU CURVED; N1;0;L;;;;1;N;;;;
1258F;CUNEIFORM NUMERIC SIGN TWO BURU CURVED;N1;0;L;;;;2;N;;;;
12590;CUNEIFORM NUMERIC SIGN THREE BURU CURVED;N1;0;L;;;;3;N;;;;
12591; CUNEIFORM NUMERIC SIGN FOUR BURU CURVED; N1;0;L;;;;4;N;;;;
12592; CUNEIFORM NUMERIC SIGN FIVE BURU CURVED; N1;0;L;;;;5;N;;;;
12593; CUNEIFORM NUMERIC SIGN ONE BAN2 CURVED; N1;0;L;;;;1;N;;;;;
12594; CUNEIFORM NUMERIC SIGN TWO BAN2 CURVED; N1;0;L;;;;2;N;;;;
12595;CUNEIFORM NUMERIC SIGN THREE BAN2 CURVED;N1;0;L;;;;3;N;;;;
12596;CUNEIFORM NUMERIC SIGN FOUR BAN2 CURVED;N1;0;L;;;;4;N;;;;
12597; CUNEIFORM NUMERIC SIGN FIVE BAN2 CURVED; N1;0;L;;;;5;N;;;;
12598; CUNEIFORM NUMERIC SIGN NINDA2 TIMES SHE PLUS ONE ASH CURVED; N1;0;L;;;;1/3;N;;;;;
12599; CUNEIFORM NUMERIC SIGN NINDA2 TIMES SHE PLUS TWO ASH CURVED; N1;0; L;;;; 2/3; N;;;;;
1259A; CUNEIFORM NUMERIC SIGN ONE N51; N1;0;L;;;;1;N;;;;;
1259B;CUNEIFORM NUMERIC SIGN TWO N51;Nl;0;L;;;;2;N;;;;;
1259C;CUNEIFORM NUMERIC SIGN THREE N51;N1;0;L;;;;3;N;;;;;
1259D;CUNEIFORM NUMERIC SIGN FOUR N51;N1;0;L;;;;4;N;;;;
1259E;CUNEIFORM NUMERIC SIGN FIVE N51;N1;0;L;;;;5;N;;;;;
1259F;CUNEIFORM NUMERIC SIGN SIX N51;N1;0;L;;;;6;N;;;;;
125A0; CUNEIFORM NUMERIC SIGN SEVEN N51;N1;0;L;;;;7;N;;;;
125A1;CUNEIFORM NUMERIC SIGN EIGHT N51;N1;0;L;;;;8;N;;;;
125A2;CUNEIFORM NUMERIC SIGN NINE N51;N1;0;L;;;;9;N;;;;
125A3;CUNEIFORM NUMERIC SIGN ONE N54;N1;0;L;;;;1;N;;;;
125A4; CUNEIFORM NUMERIC SIGN TWO N54; N1; 0; L;;;; 2; N;;;;
125A5; CUNEIFORM NUMERIC SIGN THREE N54; N1;0;L;;;;3;N;;;;
125A6; CUNEIFORM NUMERIC SIGN FOUR N54; N1;0;L;;;;4;N;;;;
125A7;CUNEIFORM NUMERIC SIGN FIVE N54;N1;0;L;;;;5;N;;;;;
125A8;CUNEIFORM NUMERIC SIGN ONE N56;N1;0;L;;;;1;N;;;;
125A9;CUNEIFORM NUMERIC SIGN TWO N56;N1;0;L;;;;2;N;;;;
125AA;CUNEIFORM NUMERIC SIGN ONE N24;N1;0;L;;;;1;N;;;;
125AB; CUNEIFORM NUMERIC SIGN ONE N26; N1; 0; L;;;; 1; N;;;;
125AC; CUNEIFORM NUMERIC SIGN ONE N28; N1;0;L;;;;1;N;;;;;
125AD; CUNEIFORM NUMERIC SIGN ONE N29A; N1;0;L;;;;1;N;;;;;
125AE;CUNEIFORM NUMERIC SIGN ONE N29B;N1;0;L;;;;1;N;;;;
125AF;CUNEIFORM NUMERIC SIGN ONE N30A;N1;0;L;;;;1;N;;;;
125B0;CUNEIFORM NUMERIC SIGN ONE N30C;N1;0;L;;;;1;N;;;;
125B1;CUNEIFORM NUMERIC SIGN ONE N30D;N1;0;L;;;;1;N;;;;
125B2;CUNEIFORM NUMERIC SIGN ONE N30E;N1;0;L;;;;1;N;;;;
125B3;CUNEIFORM NUMERIC SIGN ONE N31;Nl;0;L;;;;1;N;;;;;
125B4;CUNEIFORM NUMERIC SIGN ONE N32;N1;0;L;;;;1;N;;;;;
125B5;CUNEIFORM NUMERIC SIGN ONE N33;N1;0;L;;;;1;N;;;;
125B6;CUNEIFORM NUMERIC SIGN ONE N39A;N1;0;L;;;;1;N;;;;
125B7;CUNEIFORM NUMERIC SIGN TWO N39A;N1;0;L;;;;2;N;;;;
125B8;CUNEIFORM NUMERIC SIGN THREE N39A;N1;0;L;;;;3;N;;;;
125B9;CUNEIFORM NUMERIC SIGN FOUR N39A;N1;0;L;;;;4;N;;;;;
125BA;CUNEIFORM NUMERIC SIGN ONE N39B;N1;0;L;;;;1;N;;;;;
125BB;CUNEIFORM NUMERIC SIGN TWO N39B;Nl;0;L;;;;3;N;;;;
125BC;CUNEIFORM NUMERIC SIGN THREE N39B;Nl;0;L;;;;3;N;;;;
125BD;CUNEIFORM NUMERIC SIGN FOUR N39B;N1;0;L;;;;4;N;;;;
125BE; CUNEIFORM NUMERIC SIGN ONE N02; N1; 0; L;;;; 1; N;;;;
125BF; CUNEIFORM NUMERIC SIGN TWO N02; N1;0;L;;;;2;N;;;;;
125C0; CUNEIFORM NUMERIC SIGN THREE N02; N1;0;L;;;;3;N;;;;;
125C1;CUNEIFORM NUMERIC SIGN FOUR N02;N1;0;L;;;;4;N;;;;
125C2;CUNEIFORM NUMERIC SIGN FIVE N02;N1;0;L;;;5;N;;;;
125C3;CUNEIFORM NUMERIC SIGN SIX N02;N1;0;L;;;;6;N;;;;;
125C4;CUNEIFORM NUMERIC SIGN SEVEN N02;N1;0;L;;;;7;N;;;;
125C5;CUNEIFORM NUMERIC SIGN EIGHT N02;N1;0;L;;;;8;N;;;;
125C6;CUNEIFORM NUMERIC SIGN NINE N02;N1;0;1;;;9;N;;;;125C7;CUNEIFORM NUMERIC SIGN ONE N15;N1;0;L;;;;1;N;;;;
125C8;CUNEIFORM NUMERIC SIGN TWO N15;N1;0;L;;;;2;N;;;;
125C9;CUNEIFORM NUMERIC SIGN THREE N15;N1;0;L;;;;3;N;;;;
125CA; CUNEIFORM NUMERIC SIGN FOUR N15; N1; 0; L;;;; 4; N;;;;;
125CB;CUNEIFORM NUMERIC SIGN FIVE N15;N1;0;L;;;;5;N;;;;
125CC; CUNEIFORM NUMERIC SIGN ONE N35; N1;0;L;;;;1;N;;;;;
125CD; CUNEIFORM NUMERIC SIGN TWO N35; N1;0;L;;;;2;N;;;;;
125CE;CUNEIFORM NUMERIC SIGN THREE N35;N1;0;L;;;;3;N;;;;
125CF;CUNEIFORM NUMERIC SIGN FOUR N35;N1;0;L;;;;4;N;;;;
125D0;CUNEIFORM NUMERIC SIGN FIVE N35;N1;0;L;;;;5;N;;;;;
125D1;CUNEIFORM NUMERIC SIGN ONE N06;N1;0;L;;;;1;N;;;;
125D2; CUNEIFORM NUMERIC SIGN TWO N06; N1;0;L;;;;2;N;;;;;
125D3;CUNEIFORM NUMERIC SIGN THREE N06;N1;0;L;;;;3;N;;;;;
125D4;CUNEIFORM NUMERIC SIGN FOUR N06;N1;0;L;;;;4;N;;;;
125D5;CUNEIFORM NUMERIC SIGN FIVE N06;N1;0;L;;;5;N;;;;
125D6; CUNEIFORM NUMERIC SIGN SIX N06; N1;0;L;;;;6;N;;;;;
125D7; CUNEIFORM NUMERIC SIGN SEVEN N06; N1;0;L;;;;7;N;;;;;
```

```
125D8; CUNEIFORM NUMERIC SIGN EIGHT N06; N1;0;L;;;;8;N;;;;;
125D9;CUNEIFORM NUMERIC SIGN NINE N06;N1;0;L;;;;9;N;;;;
125DA;CUNEIFORM NUMERIC SIGN ONE N21;N1;0;L;;;;1;N;;;;
125DB; CUNEIFORM NUMERIC SIGN TWO N21; N1; 0; L;;;; 2; N;;;;;
125DC;CUNEIFORM NUMERIC SIGN THREE N21;N1;0;L;;;;3;N;;;;
125DD; CUNEIFORM NUMERIC SIGN FOUR N21; N1;0;L;;;;4;N;;;;
125DE; CUNEIFORM NUMERIC SIGN FIVE N21; N1; 0; L;;;; 5; N;;;;;
125DF;CUNEIFORM NUMERIC SIGN ONE N38;N1;0;L;;;;1;N;;;;;
125EØ;CUNEIFORM NUMERIC SIGN ONE N52;N1;Ø;L;;;;1;N;;;;
125E1; CUNEIFORM NUMERIC SIGN TWO N52; N1;0; L;;;;2;N;;;;
125E2;CUNEIFORM NUMERIC SIGN THREE N52;N1;0;L;;;;3;N;;;;;
125E3;CUNEIFORM NUMERIC SIGN FOUR N52;N1;0;L;;;;4;N;;;;
125E4;CUNEIFORM NUMERIC SIGN FIVE N52;N1;0;L;;;;5;N;;;;;
125E5; CUNEIFORM NUMERIC SIGN SIX N52; N1;0;L;;;;6;N;;;;;
125E6;CUNEIFORM NUMERIC SIGN SEVEN N52;N1;0;L;;;;7;N;;;;
125E7; CUNEIFORM NUMERIC SIGN EIGHT N52; N1;0;L;;;;8;N;;;;
125E8;CUNEIFORM NUMERIC SIGN NINE N52;N1;0;L;;;;9;N;;;;;
125E9;CUNEIFORM NUMERIC SIGN ONE N60;N1;0;L;;;;1;N;;;;
125EA; CUNEIFORM NUMERIC SIGN ONE N24A; N1;0;L;;;;1;N;;;;
125EB; CUNEIFORM NUMERIC SIGN ONE N40; N1;0;L;;;;1;N;;;;;
125EC;CUNEIFORM NUMERIC SIGN TWO N40;N1;0;L;;;;2;N;;;;
125ED;CUNEIFORM NUMERIC SIGN THREE N40;N1;0;L;;;;3;N;;;;;
125EE; CUNEIFORM NUMERIC SIGN FOUR N40; N1; 0; L;;;; 4; N;;;;;
125EF; CUNEIFORM NUMERIC SIGN ONE N03; N1; 0; L;;;; 1; N;;;;
125F0; CUNEIFORM NUMERIC SIGN TWO N03; N1;0;L;;;;2;N;;;;;
125F1;CUNEIFORM NUMERIC SIGN THREE N03;N1;0;L;;;;3;N;;;;;
125F2;CUNEIFORM NUMERIC SIGN FOUR N03;N1;0;L;;;;4;N;;;;
125F3; CUNEIFORM NUMERIC SIGN FIVE N03; N1; 0; L; ;; 5; N; ;; ;;
125F4; CUNEIFORM NUMERIC SIGN ONE N18;N1;0;L;;;;1;N;;;;
125F5; CUNEIFORM NUMERIC SIGN TWO N18; N1; 0; L;;;; 2; N;;;;
125F6; CUNEIFORM NUMERIC SIGN THREE N18; N1;0;L;;;;3;N;;;;;
125F7;CUNEIFORM NUMERIC SIGN FOUR N18;N1;0;L;;;;4;N;;;;;
125F8;CUNEIFORM NUMERIC SIGN FIVE N18;N1;0;L;;;;5;N;;;;;
125F9;CUNEIFORM NUMERIC SIGN SIX N18;N1;0;L;;;;6;N;;;;;
125FA;CUNEIFORM NUMERIC SIGN SEVEN N18;N1;0;L;;;7;N;;;;
125FB;CUNEIFORM NUMERIC SIGN EIGHT N18;N1;0;L;;;;8;N;;;;
125FC;CUNEIFORM NUMERIC SIGN NINE N18;N1;0;L;;;;9;N;;;;
125FD;CUNEIFORM NUMERIC SIGN ONE N45A;N1;0;L;;;;1;N;;;;;
125FE;CUNEIFORM NUMERIC SIGN ONE N24B;N1;0;L;;;;1;N;;;;
125FF;CUNEIFORM NUMERIC SIGN ONE N26B;N1;0;L;;;;1;N;;;;
12600; CUNEIFORM NUMERIC SIGN ONE N28B; N1;0;L;;;;1;N;;;;
12601;CUNEIFORM NUMERIC SIGN ONE N29AB;N1;0;L;;;;1;N;;;;;
12602;CUNEIFORM NUMERIC SIGN ONE N41;N1;0;L;;;;1;N;;;;;
12603; CUNEIFORM NUMERIC SIGN TWO N41; N1; 0; L;;;; 2; N;;;;;
12604; CUNEIFORM NUMERIC SIGN THREE N41; N1;0;L;;;;3;N;;;;;
12605; CUNEIFORM NUMERIC SIGN FOUR N41; N1;0;L;;;;4;N;;;;
12606;CUNEIFORM NUMERIC SIGN ONE N04;N1;0;L;;;;1;N;;;;
12607; CUNEIFORM NUMERIC SIGN TWO N04; N1;0;L;;;;2;N;;;;
12608;CUNEIFORM NUMERIC SIGN THREE N04;N1;0;L;;;;3;N;;;;;
12609; CUNEIFORM NUMERIC SIGN FOUR N04; N1; 0; L;;;; 4; N;;;;
1260A; CUNEIFORM NUMERIC SIGN FIVE N04; N1;0;L;;;;5;N;;;;;
1260B;CUNEIFORM NUMERIC SIGN ONE N19;N1;0;L;;;;1;N;;;;;
1260C;CUNEIFORM NUMERIC SIGN TWO N19;N1;0;L;;;;3;N;;;;
1260D;CUNEIFORM NUMERIC SIGN THREE N19;N1;0;L;;;3;N;;;;
1260E;CUNEIFORM NUMERIC SIGN FOUR N19;N1;0;L;;;;4;N;;;;
1260F; CUNEIFORM NUMERIC SIGN FIVE N19; N1;0;L;;;;5;N;;;;;
12610;CUNEIFORM NUMERIC SIGN SIX N19;N1;0;L;;;;6;N;;;;;
12611;CUNEIFORM NUMERIC SIGN SEVEN N19;N1;0;L;;;;7;N;;;;
12612; CUNEIFORM NUMERIC SIGN EIGHT N19; N1; 0; L;;;; 8; N;;;;
12613; CUNEIFORM NUMERIC SIGN NINE N19; N1;0;L;;;;9;N;;;;;
12614;CUNEIFORM NUMERIC SIGN ONE N46;N1;0;L;;;;1;N;;;;
12615; CUNEIFORM NUMERIC SIGN TWO N46; N1;0;L;;;;2;N;;;;;
12616; CUNEIFORM NUMERIC SIGN ONE N36; N1; 0; L;;;; 1; N;;;;;
12617; CUNEIFORM NUMERIC SIGN TWO N36; N1;0;L;;;;2;N;;;;
12618;CUNEIFORM NUMERIC SIGN THREE N36;N1;0;L;;;;3;N;;;;
12619;CUNEIFORM NUMERIC SIGN FOUR N36;N1;0;L;;;;4;N;;;;
1261A;CUNEIFORM NUMERIC SIGN FIVE N36;N1;0;L;;;;5;N;;;;
1261B;CUNEIFORM NUMERIC SIGN SIX N36;N1;0;L;;;;6;N;;;;;
1261C; CUNEIFORM NUMERIC SIGN SEVEN N36; N1;0;L;;;;7;N;;;;;
1261D;CUNEIFORM NUMERIC SIGN EIGHT N36;N1;0;L;;;;8;N;;;;
1261B; CUNEIFORM NUMERIC SIGN NINE N36;N1;0;L;;;;9;N;;;;
1261F; CUNEIFORM NUMERIC SIGN ONE N49;N1;0;L;;;;1,N;;;;
12620; CUNEIFORM NUMERIC SIGN TWO N49; N1; 0; L;;;; 2; N;;;;;
12621; CUNEIFORM NUMERIC SIGN THREE N49; N1; 0; L;;;; 3; N;;;;;
```

```
12622; CUNEIFORM NUMERIC SIGN FOUR N49; N1;0;L;;;;4;N;;;;;
12623;CUNEIFORM NUMERIC SIGN ONE N25;N1;0;L;;;;1;N;;;;
12624;CUNEIFORM NUMERIC SIGN ONE N27;N1;0;L;;;;1;N;;;;
12625;CUNEIFORM NUMERIC SIGN ONE N28C;N1;0;L;;;;1;N;;;;
12626; CUNEIFORM NUMERIC SIGN ONE N29AC; N1;0;L;;;;1;N;;;;
12627; CUNEIFORM NUMERIC SIGN ONE N30AC; N1;0;L;;;;1;N;;;;;
12628; CUNEIFORM NUMERIC SIGN ONE N30CC; N1;0;L;;;;1;N;;;;;
12629;CUNEIFORM NUMERIC SIGN ONE N42A;Nl;0;L;;;;1;N;;;;;
1262A; CUNEIFORM NUMERIC SIGN TWO N42A; N1;0;L;;;;2;N;;;;
1262B; CUNEIFORM NUMERIC SIGN THREE N42A; N1;0;L;;;3;N;;;;
1262C;CUNEIFORM NUMERIC SIGN FOUR N42A;N1;0;L;;;;4;N;;;;
1262D;CUNEIFORM NUMERIC SIGN ONE N42B;N1;0;L;;;;1;N;;;;
1262E;CUNEIFORM NUMERIC SIGN TWO N42B;Nl;0;L;;;;2;N;;;;;
1262F;CUNEIFORM NUMERIC SIGN THREE N42B;Nl;0;L;;;;3;N;;;;;
12630; CUNEIFORM NUMERIC SIGN FOUR N42B; N1; 0; L;;;; 4; N;;;;
12631; CUNEIFORM NUMERIC SIGN ONE N05; N1;0;L;;;;1;N;;;;;
12632; CUNEIFORM NUMERIC SIGN TWO NØ5; Nl; 0; L;;;; 2; N;;;;
12633;CUNEIFORM NUMERIC SIGN THREE N05;N1;0;L;;;;3;N;;;;;
12634; CUNEIFORM NUMERIC SIGN FOUR N05; N1;0;L;;;;4;N;;;;
12635; CUNEIFORM NUMERIC SIGN FIVE N05; N1;0;L;;;;5;N;;;;;
12636;CUNEIFORM NUMERIC SIGN ONE N20;N1;0;L;;;;1;N;;;;
12637; CUNEIFORM NUMERIC SIGN TWO N20; N1;0;L;;;;2;N;;;;
12638; CUNEIFORM NUMERIC SIGN THREE N20; N1;0;L;;;;3;N;;;;;
12639; CUNEIFORM NUMERIC SIGN FOUR N20; N1; 0; L;;;; 4; N;;;;;
1263A; CUNEIFORM NUMERIC SIGN FIVE N20; N1; 0; L;;;; 5; N;;;;;
1263B;CUNEIFORM NUMERIC SIGN SIX N20;N1;0;L;;;;6;N;;;;;
1263C;CUNEIFORM NUMERIC SIGN SEVEN N20;N1;0;L;;;;7;N;;;;
1263D;CUNEIFORM NUMERIC SIGN EIGHT N20;N1;0;L;;;;8;N;;;;
1263E;CUNEIFORM NUMERIC SIGN NINE N20;N1;0;L;;;;9;N;;;;
1263F;CUNEIFORM NUMERIC SIGN ONE N47;N1;0;L;;;;1;N;;;;;
12640; CUNEIFORM NUMERIC SIGN TWO N47; N1; 0; L;;;; 2; N;;;;;
12641; CUNEIFORM NUMERIC SIGN ONE N37; N1;0;L;;;;1;N;;;;;
12642; CUNEIFORM NUMERIC SIGN TWO N37; N1;0;L;;;;2;N;;;;;
12643;CUNEIFORM NUMERIC SIGN ONE NØ9;Nl;0;L;;;;1;N;;;;
12644; CUNEIFORM NUMERIC SIGN ONE N11; N1;0; L;;;;1;N;;;;
12645;CUNEIFORM NUMERIC SIGN ONE N12;N1;0;L;;;;1;N;;;;
12646; CUNEIFORM NUMERIC SIGN ONE N07A; N1;0;L;;;;1;N;;;;
12647; CUNEIFORM NUMERIC SIGN TWO N07A; N1;0;L;;;;2;N;;;;
12648; CUNEIFORM NUMERIC SIGN THREE N07A; N1;0;L;;;;3;N;;;;;
12649;CUNEIFORM NUMERIC SIGN ONE NØ7B;N1;0;L;;;;1;N;;;;
1264A; CUNEIFORM NUMERIC SIGN TWO NO7B; N1;0;L;;;;2;N;;;;
1264B; CUNEIFORM NUMERIC SIGN THREE N07B; N1;0;L;;;;3;N;;;;;
1264C; CUNEIFORM NUMERIC SIGN ONE NO1 FLAT; N1;0;L;;;;1;N;;;;
1264D;CUNEIFORM NUMERIC SIGN TWO NO1 FLAT;Nl;0;L;;;;2;N;;;;
1264E;CUNEIFORM NUMERIC SIGN THREE N01 FLAT;Nl;0;L;;;;3;N;;;;;
1264F;CUNEIFORM NUMERIC SIGN FOUR N01 FLAT;Nl;0;L;;;;4;N;;;;
12650; CUNEIFORM NUMERIC SIGN FIVE NO1 FLAT; N1; 0; L; ;; ;5; N; ;; ;;
12651;CUNEIFORM NUMERIC SIGN SIX N01 FLAT;N1;0;L;;;;6;N;;;;
12652; CUNEIFORM NUMERIC SIGN SEVEN NO1 FLAT; N1; 0; L;;;; 7; N;;;;
12653;CUNEIFORM NUMERIC SIGN EIGHT N01 FLAT;N1;0;L;;;;8;N;;;;;
12654; CUNEIFORM NUMERIC SIGN NINE N01 FLAT; N1;0;L;;;;9;N;;;;;
12655;CUNEIFORM NUMERIC SIGN ONE NØ8 FLAT;Nl;0;L;;;;1;N;;;;
12656;CUNEIFORM NUMERIC SIGN ONE N14 FLAT;N1;0;L;;;;1;N;;;;
12657; CUNEIFORM NUMERIC SIGN TWO N14 FLAT; N1;0;L;;;;2;N;;;;
12658;CUNEIFORM NUMERIC SIGN THREE N14 FLAT;N1;0;L;;;;3;N;;;;
12659; CUNEIFORM NUMERIC SIGN FOUR N14 FLAT; N1;0;L;;;;4;N;;;;
1265A;CUNEIFORM NUMERIC SIGN FIVE N14 FLAT;N1;0;L;;;;5;N;;;;
1265B;CUNEIFORM NUMERIC SIGN SIX N14 FLAT;N1;0;L;;;;6;N;;;;
1265C; CUNEIFORM NUMERIC SIGN SEVEN N14 FLAT; N1; 0; L;;;; 7; N;;;;;
1265D;CUNEIFORM NUMERIC SIGN EIGHT N14 FLAT;N1;0;L;;;;8;N;;;;
1265E;CUNEIFORM NUMERIC SIGN NINE N14 FLAT;N1;0;L;;;;9;N;;;;
1265F; CUNEIFORM NUMERIC SIGN ONE N34 FLAT; N1;0;L;;;;1;N;;;;;
12660; CUNEIFORM NUMERIC SIGN TWO N34 FLAT; N1;0;L;;;;2;N;;;;;
12661; CUNEIFORM NUMERIC SIGN THREE N34 FLAT; N1;0;L;;;;3;N;;;;;
12662;CUNEIFORM NUMERIC SIGN FOUR N34 FLAT;N1;0;L;;;;4;N;;;;
12663;CUNEIFORM NUMERIC SIGN FIVE N34 FLAT;N1;0;L;;;;5;N;;;;;
12664; CUNEIFORM NUMERIC SIGN SIX N34 FLAT; N1;0;L;;;;6;N;;;;;
12665; CUNEIFORM NUMERIC SIGN SEVEN N34 FLAT; N1;0;L;;;;7;N;;;;
12666; CUNEIFORM NUMERIC SIGN EIGHT N34 FLAT; N1;0;L;;;;8;N;;;;
12667; CUNEIFORM NUMERIC SIGN NINE N34 FLAT; N1;0;L;;;;9;N;;;;;
12668; CUNEIFORM NUMERIC SIGN ONE N45 FLAT; N1;0;L;;;;1;N;;;;;
12669; CUNEIFORM NUMERIC SIGN TWO N45 FLAT; N1;0;L;;;;2;N;;;;
1266A; CUNEIFORM NUMERIC SIGN ONE N22 FLAT; N1;0;L;;;;1;N;;;;
1266B;CUNEIFORM NUMERIC SIGN TWO N22 FLAT;N1;0;L;;;;2;N;;;;
```

```
1266C;CUNEIFORM NUMERIC SIGN ONE N51 FLAT;N1;0;L;;;;1;N;;;;
1266D;CUNEIFORM NUMERIC SIGN TWO N51 FLAT;N1;0;L;;;;2;N;;;;
1266E;CUNEIFORM NUMERIC SIGN THREE N51 FLAT;N1;0;L;;;;3;N;;;;
1266F;CUNEIFORM NUMERIC SIGN FOUR N51 FLAT;N1;0;L;;;;4;N;;;;
12670; CUNEIFORM NUMERIC SIGN FIVE N51 FLAT; N1; 0; L;;;; 5; N;;;;;
12671;CUNEIFORM NUMERIC SIGN SIX N51 FLAT;N1;0;L;;;;6;N;;;;
12672; CUNEIFORM NUMERIC SIGN SEVEN N51 FLAT; N1;0;L;;;;7;N;;;;
12673;CUNEIFORM NUMERIC SIGN EIGHT N51 FLAT;N1;0;L;;;;8;N;;;;;
12674;CUNEIFORM NUMERIC SIGN NINE N51 FLAT;N1;0;L;;;9;N;;;;
12675; CUNEIFORM NUMERIC SIGN ONE N34 FLAT TENU; N1;0;L;;;;1;N;;;;;
12676; CUNEIFORM NUMERIC SIGN ONE N04 FLAT; N1;0;L;;;;1;N;;;;
12677; CUNEIFORM NUMERIC SIGN TWO NO4 FLAT; N1;0;L;;;;2;N;;;;;
12678; CUNEIFORM NUMERIC SIGN THREE N04 FLAT; N1;0;L;;;;3;N;;;;;
12679; CUNEIFORM NUMERIC SIGN FOUR NØ4 FLAT; N1;0;L;;;;4;N;;;;
1267A; CUNEIFORM NUMERIC SIGN FIVE NØ4 FLAT; N1;0;L;;;;5;N;;;;
1267B;CUNEIFORM NUMERIC SIGN ONE N19 FLAT;N1;0;L;;;;1;N;;;;
1267C; CUNEIFORM NUMERIC SIGN TWO N19 FLAT; N1;0;L;;;;2;N;;;;
1267D; CUNEIFORM NUMERIC SIGN THREE N19 FLAT; N1; 0; L;;;; 3; N;;;;;
1267E; CUNEIFORM NUMERIC SIGN FOUR N19 FLAT; N1;0;L;;;;4;N;;;; 1267F; CUNEIFORM NUMERIC SIGN FIVE N19 FLAT; N1;0;L;;;;5;N;;;;
12680;CUNEIFORM NUMERIC SIGN SIX N19 FLAT;N1;0;L;;;;6;N;;;;
12681;CUNEIFORM NUMERIC SIGN SEVEN N19 FLAT;N1;0;L;;;;7;N;;;;
12682;CUNEIFORM NUMERIC SIGN EIGHT N19 FLAT;N1;0;L;;;;8;N;;;;
12683; CUNEIFORM NUMERIC SIGN NINE N19 FLAT; N1;0;L;;;;9;N;;;;
12684; CUNEIFORM NUMERIC SIGN ONE N46 FLAT; N1;0;L;;;;1;N;;;;;
12685;CUNEIFORM NUMERIC SIGN TWO N46 FLAT;N1;0;L;;;;2;N;;;;;
12686; CUNEIFORM NUMERIC SIGN ONE N36 FLAT; N1; 0; L;;;; 1; N;;;;;
```

2.3.2 Line_Break

Attached: LineBreak.txt.

12550..12686 ; AL # N1 [311] CUNEIFORM NUMERIC SIGN ONE N01..CUNEIFORM NUMERIC SIGN ONE N36 $\mbox{\ }$ FLAT

2.3.3 Script

Attached: Scripts.txt.

```
12550..125A7 ; Cuneiform # N1 [88] CUNEIFORM NUMERIC SIGN ONE N01..CUNEIFORM NUMERIC SIGN
FIVE N54
1264C..12686 ; Cuneiform # N1 [59] CUNEIFORM NUMERIC SIGN ONE N01 FLAT..CUNEIFORM NUMERIC
SIGN ONE N36 FLAT
125A8..1264B ; Proto_Cuneiform # N1 [164] CUNEIFORM NUMERIC SIGN ONE N56..CUNEIFORM NUMERIC
SIGN THREE N07B
```

2.3.4 Script_Extensions

Attached: ScriptExtensions.txt.

```
12550..12586 ; Pcun Xsux # N1 [55] CUNEIFORM NUMERIC SIGN ONE
N01..CUNEIFORM NUMERIC SIGN FIVE N50
1258C..1258D ; Pcun Xsux # N1 [2] CUNEIFORM NUMERIC SIGN ONE
N22..CUNEIFORM NUMERIC SIGN TWO N22
1259A..125A7 ; Pcun Xsux # N1 [14] CUNEIFORM NUMERIC SIGN ONE
N51..CUNEIFORM NUMERIC SIGN FIVE N54
```

2.3.5 Block

Attached: Blocks.txt.

12550..1268F; Archaic Cuneiform Numerals

3 Rationale for curviform-cuneiform disunification

The numbering systems that use cuneiform numerals are descended from the ones that use curviform numerals, and many of the cuneiform signs have clear curviform counterparts across this transition. Co-occurrences are sometimes described by analogy to distinctions that are not the realm of plain text, as in [Pow72, p. 215] "in the same fashion as we use black and red ink"; however, we must bear in mind that such analogies are not made in the context of character encoding discussions. In 2004, the curviform numerals were deemed unencodable for the time being; however, closer inspection reveals that the distinction functions less like markup than was argued at the time, and that the unification is problematic.

3.1 The cuneiform encoding model

As outlined in, *e.g.*, [UTR56], the cuneiform encoding model is diachronic; each character may have wildly different glyphs depending on time period and region. For instance, the sign IM may resemble in texts from Early Dynastic IIIa Šuruppag as in the character code charts, if later in the third millennium⁶, in Old Babylonian cursive, in Neo-Assyrian, but is always encoded as U+1214E CUNEIFORM SIGN IM.

This encoding model allows for the interoperable representation of editions of diachronic reference works such as sign lists⁷ and dictionaries⁸, and of composite texts⁹. By being compatible with similarly diachronic transliteration practice, *i.e.*, by avoiding distinctions finer than those made in transliteration, the encoding model also allows for automated conversion of transliterated corpora to cuneiform, which has proven useful as a processing step in analyses such as [Rom24; JJ24]¹⁰. The diachronic approach is also useful for pedagogic applications¹¹.

3.2 Arguments for curviform-cuneiform unification

In this context, the argument was made in [L2/04-099], as part of discussion of the cuneiform encoding¹² that the curviform numerals, which occasionally appear in the Ur III period and are used heavily in the Early Dynastic period, were a stylistic distinction unifiable with the cuneiform digits, and that an archaizing Ur III font or an Early Dynastic font could have curviform glyphs for the appropriate characters.

Some co-occurrence of curviform and cuneiform digits was known and acknowledged. [L2/04-099, p. 3] cites [NDE93, p. 62], which is a copy of [P020054], an Early Dynastic IIIb administrative tablet from Nirsu. The excerpt cited, lines 1–3 of column 1 of the obverse, is as follows:

⁶Merging with U+1224E CUNEIFORM SIGN NI2.

⁷Notably [OSL] and the online edition of [Bor10] in [eBL, Signs].

⁸Notably [ePSD2] and the online edition of [Sch10] in [eBL, Dictionary].

⁹For example, there are Neo-Assyrian and Neo-Babylonian copies of parts of the laws of 以上 《红豆), as well as Old Babylonian copies in both archaizing and cursive styles. Because of damage on the stele [P249253], some sections are known only from those copies. See [Oel22, pp. 110 sqq.].

 $^{^{10}}$ Attendees may recall the summary given on the third day of UTC #180, as recorded in [L2/24-159]. Other readers may refer to [Svä+24, pp. 242, 148].

¹¹For instance, Old Babylonian grammar may be taught in the Neo-Assyrian script, as in [Cap02].

```
13
                                     $
                                                       CH.
                                                                         ➾
                                                                #
             1(u)
                      1/2(diš)
                                    5(diš tenû)
                                                      gi
                                                                us_2
                                                                        sa_2
         7.5 (ropes)
                                    5
                                                      reed
                                                                side
                                                                        equal
W 14
                                                     ➾
3(u)
               6(diš tenû)
                                           saŋ
                                 gi
                                                     sa_2
3 (ropes)
                                           front
                                 reed
                                                    equal
信買
ašag-bi
                    1(bur<sub>3</sub>c)
                                 1(eše<sub>3</sub><sup>c</sup>)
                                              1(iku<sup>c</sup>) 1/2(iku<sup>c</sup>)
 ašag=bi
 field=DEM15
```

tug_x(LAK 483)-si-ga-kam tugsiga =ak =am -Ø ploughed=gen=cop-3.sg.s

The argument made in [L2/04-099, p. 4] is that this is comparable to a stylistic distinction such as 16

465 metres, equal lengths 198 metres, equal widths this field is 9, 18 hectares of ploughed land

where the numerals have the same structure ([L2/04-099] contrasts this to the different structures of ASCII digits and roman numerals). That document further claims that "the number signs do not normally carry in their individual signs the meaning of what they are used to measure", and that curviform and cuneiform numerals "are not normally mixed together in a single numerical expression", noting the exceptions of [P232278; P232280]. In addition, [L2/04-099, p. 4] points out that the cuneiform numeric signs are descended from the curviform ones (this is undisputed), and claims there is only a small re-allocation of the function of signs (from to I numerals). It therefore comes to the conclusion that the use of curviform numerals should be seen as a formatting distinction, rather than one that should be represented in plain text, and insists that the encoding should capture the lineal historical descent of those signs, presumably to take advantage of the benefits of diachronic encoding described in §3.1.

Although they had been part of the preliminary proposal [L2/03-393R], the curviform numerals were therefore removed from [L2/04-036] and [L2/04-189], which both state that "The distinction between curved numerals and their cuneiform descendants is treated as glyphic for the purposes of the present proposal; this issue will need to be revisited in subsequent encoding phases¹⁷."

¹³As noted in [Pow87, p. 466], this sign has a very short "tail" in this period, so that it is wider than it is tall, and can at first seem like a large ← in copies. The photos in [CDLI] clearly show that this is in fact a vertical wedge.

¹⁴Note that ED IIIb 〈 numerals have a somewhat different appearance from those of the Ur III period used in this transcription; the sign **≪** in [P020054] looks more like Ur III ❖.

¹⁵Alternatively: area=POSS.3.SG.NH, "its area".

¹⁶We have taken the liberty of adjusting the analogy to use measures approximately equal to those in [Po20054], instead of a field of five by twenty-five metres.

 $^{^{17}}$ The cuneiform encoding process was planned in *stages* in [L2/03-162]. One might expect the second stage of encoding, which led to the creation of the Early Dynastic Cuneiform block, to incorporate the

L2/24-210 19

The time has come to revisit this issue. As we will see in §3.3, numerals can only be interpreted in the context of what they measure, i.e., as part of a metrological system. In §3.4 we will see that in some periods:

- the functions and use of the numerals vary beyond the mere ▷/! switch;
- the contrast between curviform and cuneiform numerals is commonly used to distinguish metrological systems:
- some metrological systems commonly mix curviform and cuneiform in single numerical expressions.

A primer on classic Ur III and Old Babylonian metrologies

```
江 第三型 第二
五 下 核 压 工 即
                     14.1月月
I want to write tablets: the tablet of
1 cor of barley to 600 cor; the tablet
of 1 shekel of silver to 10 minas [...]
                Edubba'a D18
```

Before diving into the usage of the curviform numerals in the Early Dynastic period to explain the constrast with cuneiform numerals, it is useful to understand the usage of the already-encoded characters in the Ur III and Old Babylonian periods.

As is well known¹⁹ a sexagesimal place value system (SPVS) was used in Mesopotamia from the late third millennium onwards. One should bear in mind, however, that other systems were used; the SPVS was primarily used in calculations, with results being expressed in non-positional systems [Robo8, p. 76; Rob22]. The digits 1–59 of the SPVS have inner structure which is reflected in the encoding: the digits 1–9 are the individual characters \[-\fifting \], the multiples of ten (10–50) are \(-\fifting \), but the other digits 11–59 are sequences <!-\"; in effect the base-sixty digits are themselves written in base ten, with a different set of symbols for the tens place. This reflects the origin of the sexagesimal place value system; it derives from a non-positional system, hereafter the cuneiform discrete counting system $S_{\text{Ur III}/OB}$,

The discrete counting system

The relations between the values of the signs in the cuneiform discrete counting system may be summarized by the following factor diagram²⁰, where the number over arrow indicates the multiple of the preceding sign (right of the arrow)

numerals needed for the representation and discussion of Early Dynastic texts; however, the proposal [L2/12-208] stated that "numerals have been omitted due to the complexity of numeral signs from this period. An expert in the metrology of this period must be consulted before these can be properly included."

¹⁹See, e.g., [Uni16, §22.3.3, sub "Cuneiform Numerals"].

²⁰These diagrams, which have become standard in discussions of Mesopotamian metrology, originate with [Fri78, p. 10], where they are called step-diagrams, see Figure 4.

corresponding to the following sign (left).

3.3.2 The area system

The discrete counting system was not the only non-positional system in use in the Ur III and Old Babylonian periods; different systems were in use depending on what was being counted or measured. For instance, field areas were measured using the following system, where for the named units we have provided the name of the unit in transliterated Sumerian, normalized Old Babylonian Akkadian, and the approximate metric equivalent [Frio7, p. 378; Rob19]:

Note that for the range of areas given above, this system does not use any symbols separate from the numerals for the individual units ($ub\hat{u}m$, $ik\hat{u}m$, eblum, and $b\bar{u}rum$). As mentioned in [Rob19], the whole numeric expression for the area would be followed by the sign \blacksquare functioning as punctuation²¹, but the numerals are tied to the metrology; thus a surface of 5 $b\bar{u}r$ 1 ebel 4 $ik\hat{u}$ (100 $ik\hat{u}$, 36 ha) would be written²² 《 \prec \equiv \blacksquare . Contrast this with systems where the same numerals are used for different units, and overt units are used, as in "88 acres 3 roods 33 perches" or Ξ 頃八畝五分九厘. Note also that the same signs are shared between multiple systems, with different relations; the sign \diamondsuit is equal to sixty times \lt in the area system, but to three hundred and sixty times \lt in the discrete counting system.

For areas smaller than a quarter $ik\hat{u}m$, an overt unit is used, with one \mathbb{Z} (sar, $m\bar{u}\check{s}arum$), approximately 36 m², written \mathbb{Z} , equal to one hundredth of an $ik\hat{u}m$, then sexigesimally subdivided in 60 \mathbb{Z} (gin₄, $\check{s}iqlum$, "shekel"). For areas greater than 3600 $b\bar{u}r$, the \diamondsuit and \diamondsuit numerals are reused with a suffix \mathbf{E} (gal, "big"), as follows [Robo8, p. 295 nn. b, c; Frio7, p. 378; Rob19]:

 $^{^{21}}$ This sign is sometimes interpreted as a measurement unit, and transliterated iku, see, e.g., [Pro20, pp. 385 sqq.], or transliterations in [Feuo4] discussed in §3.7.2. Even with this interpretation, the sequence of numerals used, and the interpretation of numerals shared with other metrological systems, is specific to system $G_{\rm Ur\,III/OB}$.

²²As in the surface of the field of [14] (the city of Apisal) reported on [P102305, rev. 1]

²³From [P213162, obv. 2], which has an additional M EM, two thirds (of a shekel), see §3.3.5.

L2/24-210 21

3.3.3 The capacity system

Another such system of note is the one for capacities²⁴ [Frio7, p. 376; Rob19],

In the above diagram, the numerals for ban₂ are +, \ddagger , \ddagger , \ddagger , and \ddagger , and those for bariga are \, \, \, \, and \\ (contrast ordinary \) and \(\) otherwise used with \(\) numerals). Further, we have used the symbol \sim to express that, as described in [Hue11, p. 585 nn. (b), (f)], the sign ## GUR, while it is used only with volumes in excess of one gur, is written after the whole expression, after the overt unit sign > if present, and after the word for "grain" if present, as in the following capacity:

Observe that while large numbers of gur follow²⁶ system $S_{\text{Ur III}/OB}$, the use of horizontal (AŠ) numerals for the gur disambiguates from the vertical bariga, as $\langle 1 \pm 1 \rangle$ would be 10 gur 1 bariga, and ⟨-\pm would be 11 gur; again even with some overt units, most of the numerals that participate in a metrological system have an interpretation dependent on that system.

This intertwining of units and numerals explains the large number of alreadyencoded numeral series:

- I-**!!!!** used in $S_{Ur III/OB}$ and the SPVS as well as with overt units;
- \leftarrow used in $G_{\text{Ur III/OB}}$, of which \leftarrow are also used in $S_{\text{Ur III/OB}}$ and the SPVS as well as with overt units;
- \P -\ used in $S_{\text{Ur III/OB}}$, and sometimes with overt units;
- K-W used in $S_{Ur III/OB}$;
- \diamondsuit \diamondsuit used in $S_{\text{Ur III/OB}}$ and $G_{\text{Ur III/OB}}$;

 \diamondsuit \diamondsuit used in $S_{\text{Ur III/OB}}$ and $G_{\text{Ur III/OB}}$;
- - used in $C_{\text{Ur III}/OB}$ as well as with overt units of the weight system;
- I, I, II used in $C_{\text{Ur III/OB}}$ —note the overlap with I–IIIII;
- \Join and \Join used in $G_{\text{Ur III/OB}}$.

Only in the SPVS did numerals exist truly independently of metrology; to quote [Robo8, p. 78]: "The SPVS temporarily changed the status of numbers from properties of real-world objects to independent entities that could be manipulated without regard to [...] metrological system. [...] Once the calculation was done, the result was expressed in the most appropriate metrological units and thus re-entered the natural world as a concrete quantity."

²⁴Used for volumes of grain, but also oil, dairy products, beer, etc., as well as to express the capacity of boats; volumes of earthworks instead use system $G_{\text{Ur III/OB}}$ based on a height of one cubit, see [Pow87, p. 488; Robo8, p. 294; Rob19].

²⁵From [P309594, obv. 1]. ²⁶A larger unit, the guru₇ (*karûm*, grain heap), is sometimes used instead, with **► ■冷**無<=◇ 井 (1 karûm = 3600 kurrū). See [Frio7, p. 415; Rob19].

3.3.4 The length system

In the Ur III and Old Babylonian periods, lengths are expressed using overt units counted with $\$ and $\$ numerals with their system $S_{\text{Ur III/OB}}$ values. Since it does not have any unusual numerals, this system would not in itself be of much relevance to character encoding, but we present it here as background for its Early Dynastic counterpart presented in §3.4. Metrological tables use the following units 27 [Frio7, p. 118; Rob19]:

Two more units appear occasionally [Pow87, p. 459; Frio7, p. 118; Rob19]:

In addition, there are Akkadian names for the half-rope and half-reed, see [Pow87, pp. 463 sq.].

3.3.5 Fractions

Fractions of the $ik\hat{n}m$, $\searrow = \frac{1}{2}$ — and $\nearrow = \frac{1}{4}$ —, have already been encountered. In other contexts, the fraction $\frac{1}{2}$ is written +, as in + \ggg . The fractions $\frac{1}{3}$ and $\frac{2}{3}$ are written \checkmark ! and \checkmark !. The latter two signs are derived from curviform signs \checkmark and \checkmark , which are already separately encoded; these are in turn derived from the sign $\ifmmode{k}\ifmmode$

3.4 Curviform numerals in early metrologies

At first sight, the metrological systems from the Early Dynastic period resemble the ones previously mentioned. In particular, the discrete counting system used in the Early Dynastic period (and earlier in the fourth millennium) clearly mirrors system $S_{\text{Ur III}/OB}$ [Frio7, p. 374; DE87, pp. 127, 165]:

Likewise the area system used in the Early Dynastic IIIb period for areas of one iku and greater [Dei22, p. 72; NDE93, p. 63; Frio7, p. 378; Lec16],

$$\bullet \stackrel{10}{\longleftarrow} \bullet \stackrel{6}{\longleftarrow} * \stackrel{10}{\longleftarrow} \bullet \stackrel{3}{\longleftarrow} \stackrel{6}{\longleftarrow} \qquad (G_{\rm ED\,IIIb})$$

²⁷In this factor diagram and the next, we do not include the numerals. The units are no more than a factor of 60 apart, so higher numerals such as $\{$ or \diamondsuit are not used.

²⁸As indicated by the capitalization, the reading of this sign is unknown; see [Pow87, pp. 465 sqq.] for a discussion of various hypotheses.

mirrors system $G_{\text{Ur III}/\text{OB}}$, with consistent use of the numerals: • corresponds to \langle , • to \langle , and • to \langle . An exception to this correspondence, noted in [L2/04-099, p. 4] (see §3.2), is that the vertical | from $S_{\text{Ur III}/\text{OB}}$ corresponds to a horizontal \triangleright in system S. This is however far from the only case of such a reallocation of function. The earlier form of the area system is [DE87, pp. 141, 165; Frio7, p. 378]:

$$\bullet \stackrel{6}{\leftarrow} \bullet \stackrel{10}{\leftarrow} \stackrel{3}{\leftarrow} \stackrel{6}{\leftarrow} \triangleright,$$
(G)

Observe that, as noted in [DE87, p. 142], \odot changes meaning from $10 \circ$ in system G to $600 \circ$ in system $G_{ED \, IIIb}$. System G is used in the fourth millennium, but also in the ED I–II period (it is the "area 2" system in [Chao3], whereas $G_{ED \, IIIb}$ is the "area 1" system).

Another example of nontrivial correspondence between cuneiform and curviform numerals may be found by comparing the fractions the Early Dynastic IIIb area system²⁹,

$$\bullet \stackrel{10}{\longleftarrow} \bullet \stackrel{6}{\longleftarrow} \stackrel{10}{\longleftarrow} \stackrel{3}{\longleftarrow} \stackrel{6}{\longleftarrow} \stackrel{2}{\longleftarrow} \stackrel{2}{\smile} \stackrel{2}{\longleftarrow} \stackrel{2}{\smile} \stackrel{2}{\longleftarrow} \stackrel{30}{\longleftarrow}, \qquad (G_{\rm ED\,IIIb})$$

with the numerals of a contemporaneous capacity system:

$$\underbrace{\stackrel{10}{\longleftarrow} \stackrel{6}{\longleftarrow} \stackrel{10}{\longleftarrow} \stackrel{6}{\longleftarrow} \stackrel{10}{\longleftarrow} \stackrel{4}{\longleftarrow} \stackrel{6}{\longleftarrow} \stackrel{7}{\Downarrow}, \qquad (C_{\pm 1} \rightleftharpoons 1)}_{=\pm 1}$$

both described in [Lec16]. While the size of the $\mbox{$$

3.4.1 Field lengths in Nirsu

The length system of the Early Dynastic IIIb state of Lagaš is of particular interest. As described in [Pow87, p. 466; Lec20, pp. 289 sq.], lengths are expressed in rods, but the unit sign V is generally omitted; in addition, only tens of rods are used; these are equal to one rope, but the sign I is not written either. Lengths shorter than one rope are expressed in half-ropes using the $\frac{1}{2}$ sign I (again with no I), and then in reeds, with the sign I as follows:

This is the system that was used to express the sides of the field in [P020054] discussed in §3.2. In that tablet and most others from the same period, such as the

²⁹A variant is $\bullet \leftarrow 0$ $\leftarrow 0$

 $^{^{30}}$ The (fairly rare) cuneiform counterpart is $\ref{4}$.

3.4.2 Dyke lengths in Nirsu

[Pow87, p. 466] notes that reeds "are regularly written with the normal, cuneiform end of the stylus. Higher units are usually written with the reversed (round) end of the stylus." Powell does not elaborate on the specifics of this mixed use of numerals, but a cursory search in [CDLI] finds many occurrences³⁵, such as:

These expressions use an explicit sign № 😂 (counted in multiples of ten) or 🗓. This notation—but not its use of curviform numerals—is remarked on in [Lec20, p. 290 n. 27], which cites several of the instances listed above. It seems to be typical of texts about dykes. The notation can be summarized by the following factor diagram, where prefix units have been marked by an asterisk:

$$\underbrace{\begin{array}{c} 10 \\ } \bigcirc \stackrel{6}{\longleftrightarrow} \bigcirc \stackrel{\bullet}{\longleftrightarrow} = \underbrace{\begin{array}{c} 2 \\ } \bigcirc \stackrel{\bullet}{\longleftrightarrow} \stackrel{10}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \stackrel{3}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow} \stackrel{\bullet}{\longleftrightarrow}$$

3.4.3 Butter, cheese and wheat in Nirsu

 $^{^{32}}$ A [CDLI] search for "(bur3)" (\langle numerals used for areas) currently returns 15 ED IIIb results, whereas one for "(bur3@c)" (\bullet numerals used for areas) returns 206. Further, when dated, the tablets with cuneiform bur3 are from the reigns of \Box \Box \Box \Box \Box \Box (variously transliterated iri-inim-gi-na, uru-ka-gi-na, etc.) and \Box \Box \Box (lugal-zag-ge-si), the last two kings of ED IIIb Lagaš.

³³This is the case of the sides of the field in [P020054, obv. 2 2–3].

³⁴That note also mentions a contrast between the use of curviform numerals to count people and curviform numerals to count bread alotted to them in [P010876]; such contrasts are more akin to styling, and might not, on their own, justify the disunification.

 $^{^{35}}$ A search for curviform numerals followed by some number of reeds counted in ($ten\hat{u}$) cuneiform numerals currently finds 125 occurrences across 47 tablets.

^{36[}CDLI] only has a copy, but a photo may be found in [Lec12, p. 82]. On that photo the 될 고 II is not visible. Lecompte notes that the copy is faithful; indeed another 될 고 II is can be seen both on the copy and the photo on obv. 2 2.

³⁷From copy.

³⁸With either unit omitted, as in the examples above, or both, as in [P020129, obv. 3 3] $\square\square\square$ \exists \exists .

numerals for \$\formaller{1}\$ [Fri78, p. 43; Lec16]:

$$\underbrace{ \begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array} }_{\exists 1 \notin \underbrace{\square}_{\alpha} \cap \bullet} \overset{6}{\leftarrow} \stackrel{10}{\leftarrow} \stackrel{6}{\leftarrow} \stackrel{6}{\leftarrow} \stackrel{6}{\leftarrow} \stackrel{5}{\searrow}, \qquad \qquad (C_{\exists 1 \notin \underbrace{\square}_{\alpha}})$$

as in [P020016, rev. 1 4; P020065; P020090, obv. 1 3, rev. 2 1; P020092, rev. 3 1; P020137, obv. 1 2] and others, where ban₂ counted with \forall numerals are followed by sila₃ counted with \land numerals. Curviform numerals are also used to count sila₃, but not³⁹ as part of the \rightrightarrows systems. This contrast can be seen in [P220927], which measures butter (\rightleftharpoons , i₃) with a different capacity system, using the \rightleftharpoons (dug, "pot") of 20 \gimel , with \rhd and \bullet numerals⁴⁰ for both the \rightleftharpoons and the \beth , thus [Pow87, pp. 504 sq.]

$$\underbrace{\bullet \overset{10}{\longleftarrow} \triangleright}_{\stackrel{2}{\longleftarrow}} \overset{2}{\longleftarrow} \underbrace{\bullet \overset{10}{\longleftarrow} \triangleright}_{\stackrel{3}{\longleftarrow}} \overset{\frac{3}{2}}{\rightleftharpoons} \stackrel{2}{\bowtie} \stackrel{2}{\longleftarrow} \stackrel{7}{\bowtie}, \qquad (C_{\stackrel{10}{\longleftarrow}})$$

but counts cheese (\bowtie , ga'ar) using the \bowtie \bowtie capacity system, with \searrow numerals for the \nearrow .

Another capacity system in ED IIIb Nirsu is the $\sharp \$ $\Leftrightarrow \Leftrightarrow$, the gur of two ul [Lec16]:

$$\underbrace{\stackrel{10}{\longleftarrow} \stackrel{2}{\triangleright} \stackrel{6}{\longleftarrow} \stackrel{6}{\triangledown} \stackrel{6}{\longleftarrow} \stackrel{5}{\longleftarrow} }_{\exists 1 < (\square)}$$

Here the ロートーマ contrast occurs not only within the numerals of the system, but with its units; this is perhaps best illustrated by the expressions 無 (主意 医・マ母ミソ 出ぐ口 in [P221746, rev. 2 2] and 無 医・母ミソ 出ぐ口 in [P221814, rev. 1 5].

3.4.4 Grain in Ebla

The mixing of curviform and cuneiform numerals within a metrological system is not specific to Nirsu.

³⁹As of this writing, the single occurrence of (ban2@c) followed by curviform numerals and sila3 in ED IIIb Nirsu transliterations on [CDLI], 4(ban2@c) 3(asz@c) sila3 in [P221815, obv. 47], is incorrect: it should be 4(ban2@c) 3(disz@t) sila3.

The system of grain⁴¹ capacities in Ebla uses the following units⁴²:

The $\Box \Diamond \bot$ and $\Box \Box \Box$ are generally counted using curviform numerals, and the smaller units using cuneiform I numerals43. Indeed, a search on [EbDA] for cooccurrences of either ★☆ or 🎉 🛱 with either of 🏗 🗘 or 🗗 🗏 finds the following expressions⁴⁴:

- 1. [P240532, verso 4 9] ▷ ₩ ◁ £ 1 ♣ 46 ₩ ₩ { ♦ 1
- 2. [P240548, verso 1 1] ▷ ◀ 🗗 ৰা 🖤 * ↔
- 3. [P240655, recto 7 9] DD ₩ L 47 ₩ 1/4 1

- 6. [P240609, verso 3 1] □ ◁ ∄ 珊 \\\ ★
- 7. [P240533, recto 3 3] ♣▷▽⋤�⊥ ₩₩↓₩ ¶+*+♦₩
- 8. [P240697, recto 1 5] ▷ ▽ ⁴⁸ ¶ 🎹 * ↔
- 9. [P240653, recto 6 2] \$ DDD ♥ ┗Φ L | W | ← H + + ← →
- 10. [P240654, recto 2 6] ▷◁∄폐 ₩¾⁴⁹ ₩★⁴♦⁵⁰
- 11. [P240531, recto 1 8] ▷◁出頭 \\\(\psi\) \\(\psi\)

A glance it seems that 🔰 are counted with cuneiform numerals and higher units with curviform ones,

but we have not investigated this thoroughly.

⁴²Another system uses different values for the 🎹 and 🎶 [ଐ, see [Cha12, p. 62; Arc15, p. 229 n. 12]:

⁴³For a more comprehensive overview of numeral usage in Ebla which we unfortunately found late in the preparation of this proposal, see [Gor24]; exceptions exist. Note that the example for ▷ numerals counting V (\Box cited in [Gor24, p. 143 n. 592], [P240532, recto 17] \Box V (\Box , does not use the higher units; on the same tablet, [P240532, verso 4 9] (item 1), which does, uses I numerals for the № 🖽. [Gor24, pp. 141-143] cites only \(\) for \(\black \to \) and only curviform numerals for integer \(\opi \black \to \). As mentioned in [Cha12, p. 63], the \mathbf{p} is also counted using the \mathbf{q} - \mathbf{p} numeral series. Some instances of that usage are found transliterated n/6 in [EbDA]; in some cases the \mathbb{P} sign is omitted, and the \mathbb{P} numeral is then written before the ⊥ unit, as in ▷▷ ♣ ፟ from [P240545, verso 13].

⁴⁴We cite here only one attestation per tablet; most tablets contain several expressions mixing curviform 🗗 🖽 and larger with cuneiform 🍱 and smaller. In all cases the transcriptions given here are based on the [EbDA] transliterations, but the shape and orientation of the numerals was checked 45 on a photograph (from [EbDA] unless noted otherwise).

⁴⁵As we will see in §3,7,2, [CDLI] transliterations indicate numeral shape; however, as of this writing, they do so incorrectly on the Ebla corpus, claiming that all numerals are curviform, so we were not able to rely on them in this specific case.

⁴¹Liquid capacities use a different system [Arc15, p. 229 n. 12]:

⁴⁶ba-ri₂-zu₂, a variant spelling.

⁴⁷Short for ⋤� ⊥.

⁴⁸Note the omitted ⋤� ⊥.

⁵⁰**Ⅲ ※** ←♦ not legible on the [EbDA] photo.

⁵¹From [CDLI] photo.

3.4.5 Use in modern publications

Because of their prevalence in the fourth millennium and Early Dynastic period, the proposed numerals are widely used in modern publications discussing metrology in those periods, as illustrated in Figures 1–21.

for the words & u & a n a and & a n a b i. Deimel's reading & a n (a) for U came out of the reading /& a n t a k/ for the sign Y and the writing of & a (-n a) after the fractional signs for & u & a n a and & a n a b i in Old Sumerian texts. But this was an ill-conceived argument at its inception, for

Figure 1: Discussion of the readings of proposed ∇ and already-encoded \P in [Pow71, p. 107].

⁵²From photo in [Arc89, p. 6].

⁵³Laid out as **!!!!**; on stacking patterns see §6.3.

⁵⁴From photo in [Arc89, p. 6]; see also the [CDLI] photo and the copy in [Fri86, p. 17]. This tablet features unusual usage of vertical numerals—"somewhat unorganized", as described by [Fri86, p. 16]—, such as $\exists \Box \Diamond \bot$ or $\exists \Box \Diamond \bot$ or $\exists \Box \Diamond \bot$ are consistently counted with cuneiform numerals, and the higher units with cuneiform numerals.

⁵⁵Short for ₩₩ ��

⁵⁶ŠU₂+NIN₂-saŋ, an unusual variant spelling.

sions also. In example 6, the writing the may imply a reading /š a n a b i/, whereas the in example 11 should be read */š u š a n a m i n/. Moreover, the question must be raised as to whether such writings as <\tau_{\coloredco

Figure 2: Discussion of the readings of proposed "=" and "=" as well as already-encoded "=" and "=" in [Pow71, p. 138].

iku fractions							
Girsu type = :f.o.o = :o.g.o = :o.o.h	"BIN 8" type Φ = :p.o.o Θ = :o.q.o. 8 = :o.o.r	Ur III type \(\frac{1}{2} = :m.o) \(\frac{1}{2} = :o.n) \end{align*}					

Figure 3: A transliteration system for the fractions of the iku in [Pow72, p. 216].

1 "big cup" = 3 "big disks". Hence we can infer from the two ŠE-texts BIN 8,4 and BIN 8,5 together, that the "ŠE-system" makes use of number signs whose values are related to each other through the equations

A more convenient way of saying the same thing is to write out the "steps" between the various ŠE-units in what we shall call a "step-diagram" for the "ŠE-system":

Figure 4: The first factor diagram, in [Fri78, p. 10].

L2/24-210 29

```
(C 20.,
501010 = 50 70
1 0 1 00 1 00 = 6 · 2 0 1 00 (C 27).
```

These metrological equations for the "unknowns" 0, o, \overline{U} , etc., can be treated $_{\mbox{\scriptsize exactly}}$ as ordinary equations for unknowns $\mbox{\ensuremath{x}},\mbox{\ensuremath{y}},\mbox{\ensuremath{z}},\mbox{\ensuremath{the}}$. In particular, the equations can be simplified by subtraction of equal amounts from both sides of the identities. In this way the three equations above can be reduced to:

```
2° = 20 0
          (403° subtracted from both sides)
```

We can now read off from the first equation that $1 \circ = 10 \, \text{U}$, and from the second that 10 = 6. Then the third equation can be simplified (by "substitition" of these values into the equation), to the following reduced form:

The most likely solution to this last equation is, of course,

Figure 5: Derivation of the factors of the bisexagesimal system in [Fri78, p. 15]⁵⁸.

$$5 \bullet + 4 \triangleright = 3 \bullet + 24 \triangleright \tag{C 234}$$

$$1 \bigcirc + 1 \bullet + 5 \bigcirc = 7 \bullet + 5 \bigcirc \tag{C 314}$$

$$1 \times + 1 \times + 1 \bigcirc = 10 \times + 2 \bigcirc + 6 \bullet. \tag{C 27}$$

A diplomatic edition of [Fri78] could rotate the numerals using a higher-level protocol:

$$(4\sqrt{5} \bullet = 24\sqrt{3} \bullet \tag{C 234})$$

$$\begin{cases}
4\sqrt{5} \bullet = 24\sqrt{3} \bullet & \text{(C 234)} \\
5\sqrt{1} \bullet 1\sqrt{} = 5\sqrt{7} \bullet & \text{(C 314)} \\
1\sqrt{} 1\sqrt{} 1\sqrt{} 1\sqrt{} = 6 \bullet 2\sqrt{} 1\sqrt{} & \text{(C 27)}.
\end{cases}$$

⁵⁸The bisexagesimal system is used alike in proto-Elamite and proto-cuneiform texts, see [Fri78, p. 38]; the derivation in [Fri78, p. 15] is based on proto-Elamite artefacts. There is a typo in the equation for C 27: the right-hand side should have 10 N rather than 1 N, otherwise nothing could be deduced about N. Note that in Friberg's early works [Fri78; Fri86; Fri87], copies of fourth millennium and sometimes third millennium tablets are shown as vertical text (which they were for the scribes), and their numerals are written within horizontal text in the same orientation that they have if the tablet is taken as vertical text; in [UAX50] parlance, as if they had Vertical_Orientation=Upright. In addition, they are listed in these equations in the horizontal order in which they appear as vertical text (thus the rightmost numeral is the most significant, read first). Cuneiform is correctly Vertical_Orientation=Rotated, consistently both with modern practice and with the rotation between earlier vertical and later horizontal monumental inscriptions. Friberg's early conventions are not followed in later scholarship, and are abandoned in his own more recent works, such as [Frio7]; a more typical way to express the first equations might be

Thus, for instance, the original set of fractions ∇ , σ , and ∇ (1/2, 1/4 and 1/8 of an iku) in the Sumerian GANA system, was after a time augmented through the addition of the new sub-unit SAR: \mathbb{M} , equal to 1/100 of an iku (D). Similarly, the Sumerian weight unit "ma-na" which originally may have had only the sub-units ∇ sa-na (= 1/3 mana) and ∇ ∇ sa-na-bi (= 2/3 mana), and perhaps also gin: $\mathbb{H}^{\mathbb{H}}$ (= 1/60 mana), seems to have acquired, at some time or other, also the smaller sub-units $\mathbb{H}^{\mathbb{H}}$ (= 1/3 gin), and $\mathbb{H}^{\mathbb{H}}$ - $\mathbb{H}^{\mathbb{H}}$ (= 1/3 gin), and $\mathbb{H}^{\mathbb{H}}$ - $\mathbb{H}^{\mathbb{H}}$ (= 1/3 gin).

Figure 6: Discussion of proposed fractions \triangledown , \triangleleft , \blacklozenge , and \biguplus as well as already-encoded \blacktriangledown and \blacktriangledown in [Fri78, p. 49].

stein publizierten Zeicheniiste enthalten ist³, bis vor kurzem unentdeckt bleiben konnte. Erst 1978 machte der schwedische Mathematiker J. Friberg, ERBM I, 9-11, darauf aufmerksam, daß die Zeichen für die Zahlen Eins (□) und Zehn (●) in Verbindung mit dem Zeichen ŠE nicht im Verhältnis 1 zu 10 sondern im Verhältnis 1 zu 6 stehen. Bis dahin hatte man, obwohl die Andersartigkeit des in Verbindung mit dem Zeichen ŠE verwendeten Zahlzeichensystems bekannt war, für diese beiden häufigsten Zahlzeichen einheitlich ein Verhältnis 1 zu 10 unterstellt, obwohl es mehrere eindeutige Gegenbelege gab, von denen zumindest diejenigen der Archaischen Texte aus Gemdet Nasr bereits früh publiziert und jedermann zugünglich waren⁴. Als Folge

Figure 7: Discussion in [DE87, p. 117] of the discovery in [Fri78, pp. 9–11] (see Figure 4) of the different relations between \triangleright and \bullet in systems G and \check{S} .

there is in any case an important qualitative difference between IX for Latin novem and \$\frac{1}{8}\$ for Sumerian ni\(\text{i}\). ni\(\text{s}\) seems to be a primary numberword requiring, in a system depicting Sumerian numeration, a differentiated representation comparable

Figure 8: The sign \$\frac{1}{2}\$ used in a parallel with IX in [Eng88, pp. 131–133 n. 9], discussing an argument from [Pow72, p. 172] on the question of the language of the Uruk III texts.

of decreasing fractions $^1/_n$ of this measure, whereby "n" was determined by the number of oblique impressions made by the rounded end of a thin stylus around a central point in a specific sign. Thus $\Xi=^1/_2$ N_{39} , $\varpi=^1/_3$ N_{39} , and so on. The first sign of the latter units, N_{34} ,

Figure 9: Description of the fractions Σ and $\overline{\otimes}$ in [Eng98, p. 113]⁵⁹.

For instance, the first line contains the notations $1N_{34}$ $1N_{390}$; $2N_{20'}$ which can be translated "60 of the (grain rations containing) \rightleftharpoons (of grain); (grain involved:) $2 \bullet$ (of ground barley)". This calculation contradicts the assumed numerical relationship $10N_1 = 1N_{14'}$, since as was well known the measure represented by the sign N_{39} was $1/_5$ of that represented by N_1 , so that $60 \times 1/_5 = 12$ and not 20, as $2N_{14'}$ would imply. Instead of relying on complicated

Figure 10: The sign \bigcirc used as a capacity measure within otherwise translated text in [Eng98, p. 116].

⁵⁹The text erroneously has N_{34} instead of N_{24} .

Die halbkreisförmigen Griffeleindrücke gehen manchmal in mehr oder weniger eckige Formen über (\P)⁰⁸⁵. Es gibt aber auch Einer in Form von regelrechten – meist mehr oder weniger schräggestellten – Keilen (\P), die öfters neben halbrunden Einern vorkommen und mit diesen kontrastieren°86. Selten treten mit \triangledown gebildete Zahlen auf 687 (sie entsprechen den bariga-Zahlen im Hohlmaßsystem, s.u. 7.4).

The cal	culati	ons:						
Obv. i	1	$60 \times {}^{1}/_{5} \bowtie$	()	=	12 × ⋅ □ =	$2 \times 10^{\circ}$		
	2	$120 \times {}^{1}/_{10} \triangleright$	(⊠)	=	12 × ⋅ □ =	$2 \times 10^{\circ}$		
	3	$120 \times {}^{1}/_{15} \triangleright$	(₹)	=	8 × 100 =	$1 \times 10^{\circ}$	$2 \times \infty$	
	4	$300 \times 1/_{20} \triangleright$	(i⊠i)	=	15 × ₁⇔ =	$2 \times 10^{\circ}$	3 × ₁□>	
	5	$600 \times 1/_{25} \triangleright$	(129)	=	24 × ==	$4 \times 10^{\circ}$		
Rev. i	1	1200				1 × - • • ;		-
Obv. i	6	$6000^{1}\hspace{-0.1cm}/_{30} \text{l}\hspace{-0.5cm} >$	(GAR+6N_{57})	=	200 × 1≈ = 1 × 1□	$3\times 10^{\circ} \rm M_{\odot}^{\circ}$	2 × 100	
ii	1				30 × 10⇒ =			1 × 🖘
	2	$180 \times \frac{1}{5}$	(DUG+AŠa)	=	36 × ₁□ =	$6 \times \bullet$		
	3	$300 \times 1/_{15} \triangleright$	(KAŠ _a)	=	20 × ₁⇒ =	$3 \times 10^{\circ}$	$2 \times =$	
Rev. i	3	600			1 × •	4 ×	3× 1□	1× 🖘
					1 × ¹• •	1 ×	5 × 1□	
					1 × □	$3 \times 10^{\circ}$	$2 \times \infty$	
					1×10^{-1}	4×0.00	3 × ₁⊳	1× 🖘
Grand t	total o	of groats used:			$1 \times 1 \longrightarrow 2 \times 1$	9 × 0.00	4× ₽	1 × 🖃
Grand t	total o	of malt used: 1N4	₁₇ 4N ₂₀ 3N ₅ 11	N ₄ ;	$_{2a}$ (rev. i 3) \times $^{3}/_{5} \approx$	8ו.	4× ₪	1×≂
Obv. i ii Rev. i	1 2 3 3	$6000 \times ^{1}/_{30}$ D $120 \times \approx ^{1}/_{4}$ D $180 \times ^{1}/_{5}$ D $300 \times ^{1}/_{15}$ D 600 of groats used:	(DUG _a +U _{2a}) (DUG+AŠ _a) (KAŠ _a)	æ = =	$200 \times D = 1 \times D$ $30 \times D = 36 \times D = 36 \times D = 20 \times D = 1 \times 0$ 1×0	3 × 2 • 2 5 × 2 • 2 6 × 2 • 2 3 × 2 • 2 4 × 2 • 2 1 × 2 • 2 4 × 2 • 2 9 × 2 • 2	2 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 1	$\begin{array}{c} -1 \times z \\ 1 \times z \\ 1 \times z \\ -1 \times z \end{array}$

Figure 6. Transliteration and calculations of $MSVO\ 4,\ 66.$

Figure 12: Calculations from [P005468] transcribed in [Eng01, p. 132] using modern mathematical notation combined with some of the proposed characters.

strong similarities between "area" 1 and "area" 3 systems, the sign with two concentric discs (\bigcirc , notated N_{50}^{27}) remains problematic. It never appears in any numerical combination with the sign with a single disc (\bigcirc ,

Figure 13: Discussion of \bullet and \bullet ⁶⁰ in [Chao3, p. 6].

⁶⁰The statement that these do not co-occur refers to the texts from ED I–II Ur; these signs co-occur both earlier and later in areas, with different relations as previously discussed.

1/15, etc., of gur, we would expect the metrogram gur to appear in sub-column ii. In a certain way, it does for larger measures: the notation ⊢ T \ ⊞ could be understood as 1 \ \frac{1}{5}\ gur.^{27}\ However, the metrogram gur does not appear for lower measures. It would not be consistent to attribute different functions to the same grapheme, according to the relative importance (be it great or small) of the quantity, so the signs + and + cannot be considered klasmatograms.

The signs iku and cse_3 constitute by themselves measures of surface areas. These measures are usually followed by the sign GAN_2 , which means either surface or field and

Metrological tablets from the end of the 4th millennium (Nissen, Damerow and Englund 1993, 55-59, to MSVO 1, nos. 2-3) contain a discrete set of numerical signs with specific surface area reference:

1(iku) represents a surface of 3600m² . 1(eše₃) represents a surface of 21,600m² etc.

Figure 14: OB capacities⁶¹ and fourth millennium areas in [Proo9, p. 9].

formed by only two signs \(\) and \(\), repeated as many times as necessary; this type of notation is highly standardized. Second, the order of magnitude of the numbers noted in this system is not indicated: 1, 60, 60², 60³, 1/60, 1/60², etc. are written in the same way, with the vertical wedge . The third feature concerns the exact function of

Figure 15: Description of the SPVS in [Cha12, p. 58], using the already-encoded signs I and **⟨**.

> one step. The scribes of the Early Dynastic Period (c. 2600 BC), for instance, represented the number 648, 000 with: **F000**

Figure 16: Discussion of large numbers illustrated by \[\begin{align*} \begin{al

repetition of the same sign refers to both the capacity unit signified-often but not necessarily written immediately afterwards-and its value. The units of measurement are written in descending order from left to right—just as we would write 3 km, 120 m, 50 cm. For example:

DDD še bar ∇ ba-rí-zu

'3 gubar (capacity units) and 1 parīsu'.

Figure 17: Partial transliteration of [P240597, recto 5 3] DDD 🗯 🗘 ▽ ➪ 💾 🗐 in [Cha12, p. 61].

> This is particularly true of the signs 7, 5, 5 and 5, whose form explicitly denotes the fractions 1/6, 2/6, 3/6, and 4/6 of the barig capacity measure written
>
> in Mesopotamia—also transcribed by Assyriologists as 1 bán, 2 bán, 3 bán, and 4 bán with reference to the bán measure worth 1/6 of the barig. At Ebla, the sign ♥ is most often associated with the parīsu measure, while the signs , , , and to refer to 1, 2, 3,

Figure 18: Discussion in [Cha12, p. 64] of the relation between ₹-₺ and □ in Mesopotamia and in Ebla.

⁶¹The cuneiform text is Unicode-encoded.

⁶²Compare \diamondsuit \biguplus in system $G_{\text{Ur III}/OB}$. Sign order can be variable in early texts, see [Fox16, p. 8]. See [P010773], also discussed in [Fri07, p. 148], for an example of

→ and [P274845; P241764] for examples of $n \bullet \not\models$.

shape. The principle of notation is additive: each sign is noted as many times as necessary (e.g., transliterated as $2(\$ar_2)$ 1(ge\$'u) 3(u), means $2 \times 3600 + 1 \times 600 + 3 \times 10$). The system is based on an alternation of factors ten and

Figure 19: Explanation of the structure of the number ●● ● • in [Pro20, p. 350].

might think of one fabric and a half, ¹¹ but the presence of notations with " $2^{D} 2^{U}$ ", " $3^{D} 3^{U}$ ", and " $6^{D} 6^{U}$ " (Fig. 1) elements excludes that one deals with fractions, as these notations are not consistent with those of Šuruppag's weight measurement system. ¹² The notation " 1^{D} gada" in o. ii 1 and r. vi 1, along with the total of "39

Fig. 1. Combinations of numerals attested in Š. 742.

Figure 20: Discussion of the contrast between ▷ and ¬ numerals in [Gor23, p. 162].

```
as, for example, in TM.75.G.3125 = ARET III 107 o. iv 1, "4^{\mathbf{D}} 'a_3·da-um*u^9-2 \stackrel{\checkmark}{\sim} 4^{\mathbf{\nabla}} aktum 4^{\mathbf{D}}ib<sub>2</sub>*u^9×3^{\mathbf{\nabla}} sa<sub>6</sub> gunu<sub>3</sub>" (Fig. 2).
```

Figure 21: Transliteration in [Gor23, p. 163] of [P242293, *recto* 4 1] incorporating untransliterated numerals.

3.5 Non-numeric usage

The beginning of the scribal art is a single wedge. That one has six pronunciations; it also stands for 'sixty'⁶³. Do you know its reading⁶⁴?

Examenstext A⁶⁵

Many of the cuneiform numerals are used with a logographic or phonetic value. For example, the sign - has, *inter alia*, the values aš, rum, and dili. While the horizontal numerals are most frequently written \triangleright in the Early Dynastic period⁶⁶,

 $^{^{63}}$ The reader will recall that $\eta e \tilde{s}_2$ is written $\ref{thm:property}$, with a larger wedge than $\ref{thm:property}$; however, these signs have merged by the time Examenstext A is composed.

 $^{^{64}}$ Besides η es $_2$, a look at [OSL] shows that the values diš, ge $_3$, makkaš, sa η tak $_4$, and tal $_4$ are attested both in [ePSD2] and in lexical lists. The sign is also used for the Akkadian word ana in the Neo-Assyrian period.

⁶⁵Translation from and composite text after [BLMS].

⁶⁶A [CDLI] search for "(asz@c)" finds 3296 ED texts, while a search for "(asz)" finds 81 ED texts, of which 46 also contain "(asz@c)".

such non-numeric usage is almost 67 always written -, for instance:

- in personal names in administrative texts, such as the following, which all contain ▷ numerals:
 - ◄ أ⁶⁸ in [P010424, rev. 15; P010458, obv. 15; P010459, obv. 25'] from ED IIIa أبو صلايخ,
 - → in [P010960, obv. 25] from ED IIIa Šuruppag,
 - 通じー in [P251641, obv. 43] from ED IIIb Adab,
 - <1 in [P252866, obv. 23] from ED IIIb Adab,
 - ♣♦ ♣ in [P298637, rev. 2 4] from ED IIIb Umma;
- in the Sumerian word

 u₂-rum, "property" in ED IIIb Nirsu administrative texts which contain

 numerals, such as [P020006, obv. 2 3; P020008, rev. 1 2; P020018, rev. 1 2; P020018, rev. 1 2; P020024, obv. 1 4; P020030, obv. 3 1];
- in lexical texts:
 - in the divine name ***** 戶 □ □ in the lexical texts [P010570, rev. 2 4; P010572, obv. 3 6], where the entries are prefixed with □.
 - in the word ← dili, "small fish" in [P010578, obv. 2 5], witness to Early Dynastic Fish,
 - in the same word with a determinative, ¬ ¼ dili^{ku}, in [P010586, obv. 4 4, 6], witness to Early Dynastic Food, which starts with ¬ numerals.

This is a clear contrast between - and \square in this period, and genuine ambiguity can arise if it is lost; for instance, the personal name - \blacktriangleleft occurs on its own line in the aforementioned administrative texts; a line \square \blacktriangleleft would instead be read as "one slave".

3.6 The limited benefits of diachronic encoding for numerals

The argument in favour of diachronic encoding is that it facilitates interoperability in a variety of use cases, as we have outlined in §3.1. While these benefits are real and now visible for cuneiform signs, similar considerations are not generally applicable to curviform numerals.

Diachronic reference works such as sign lists and dictionaries tend to not include numbers, or when they do, they treat them separately, and include signs such as — that have both numeric and non-numeric values in both the main list and the section on numbers. For instance, [Sch35, pp. 123 sqq.] lists all of ——***** together with \square ——**** Distribution of the sign list, since they have non-numeric values of the sign list, since they have non-numeric values of the sign list, where its values of the sign list. Where its values of the sign list, where its values of the sign list of the sign list, where its values of the sign list of the sign list. The sign list is the sign list, where its values of the sign list of the sign list. The sign list is the sign list, which has numbers throughout the sign list; but that sign list does not show glyphs predating the Old Babylonian period, nor does it comprehensively cover the numerals used in the Ur III and Old Babylonian periods, as, for instance, it does not have "—**** used in system $G_{\text{Ur}, \text{III}/OB}$.

Composite texts rarely have witnesses both from the Early Dynastic period and later; the kinds of texts that do, chiefly lexical and literary texts, do not con-

⁶⁷Exceptions are discussed in §3.7.1.

⁶⁸Possibly a toponym, see [Pos, p. 195].

⁶⁹Non-numeric values of — were discussed in §3.5; → has the values man₃ and min₅, and is used for the word didli, "several, various"; → has the value eš₆.

tain numbers to the extent that administrative texts do. Further, there tend to be changes 70 to the text between Early Dynastic and later witnesses that prevent a diachronic encoding of such composites. For numerals, the switch from \triangleright to ! numerals prevents diachronic encoding even if \triangleright were unified with \blacktriangleright . For instance, the lexical list Early Dynastic Food, already mentioned in §3.5, contains some numbers, and has a witness from the Old Akkadian period covering these numbers: [P215653, a 1'-6']; however, they are written with ! numerals, whereas they are written with \blacktriangleright numerals in the Early Dynastic witnesses; since ! and \blacktriangleright are distinct 71 characters, the \blacktriangleright - \blacktriangleright unification does not help.

More generally, since numbers are so deeply tied to metrology, and since metrological systems change between the Early Dynastic and later periods⁷², there is little opportunity for a diachronic representation of numeric quantities.

In the case of analyses such as [Rom23, *sub* "Adding Corpora"], it is interesting to note that numeric expressions are removed prior to the conversion of the corpus to Unicode cuneiform for further analysis.

3.7 Compatibility considerations

A disunification twenty years after the fact, affecting all numerals, would ordinarily be a serious compatibility issue. Fortunately, with the exception of one character discussed below, we are not aware of any font using curviform glyphs for the already-encoded numerals. In fact we are not aware of any font designed for a style earlier than Old Babylonian, except for fonts mimicking the representative glyphs from the code charts, which are primarily Ur III, but sometimes earlier or later, as described in [UTR56, §2.4]. The lack of dedicated Ur III fonts may be explainable by the chartlike fonts⁷³ being good enough for most purposes; the lack of Early Dynastic fonts, by the aforementioned issues with numeral unification making the representation of any text with numerals intractable.

3.7.1 The case of ŠAR₂

The character U+122B9 CUNEIFORM SIGN SHAR2 has a circular reference glyph.

In most texts from the Early Dynastic IIIb and Old Akkadian period 4, a contrast

⁷⁰Compare, e.g., in the Instructions of Šuruppag, 三文章 与口》中型 / 《《长玉玉 in the ED IIIa witness [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 中型 《《本本》 《《本本》 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 中型 《《本本》 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 中型 《《本本》 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 中型 《《本本》 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 中型 《本本》 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 中型 《本本》 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243, obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243], obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243], obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243], obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243], obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243], obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243], obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243], obv. 2 7], also discussed in §3.7.1, and 三文章 [P222243], obv. 2 7], also discussed in §3.7.1, and [P2222243], obv. 2 7], also discussed in §3.7.1, and [P2222243], obv. 2 7], also discussed in §3.7.1, and [P2222243], obv. 2 7], also discussed in §3.7.1, and [P2222243], obv. 2 7], also

⁷¹Besides the contrasts in numeric usage mentioned in §3.3.3, these (already-encoded) characters were clearly not unifiable because of the many contrasts in non-numeric usage between them; several values of — which are not shared with ! have already been mentioned, but perhaps most striking is the fact that, in the Neo-Assyrian period, — is used for the preposition *ina*, "in", and ! for the preposition *ana*, "to".

 $^{^{72}}$ See, e.g., [Pow87, p. 493; Robo8, p. 55] on the unification of metrologies in the Old Akkadian period, resulting in the systems described in §3.3.

⁷³Most prominently Noto Sans Cuneiform, a system font on both Windows—as part of Segoe UI Historic—and macOS.

⁷⁴For example, in personal names:

[—] 具食◇紅 in [P020019, rev. 12] from ED IIIb Nirsu;

[—] 河下◇町☆ in [Po20182, obv. 2 9], also from ED IIIb Nirsu;

^{— ♦ ★ ♦} in [P222186, obv. 3 3] from ED IIIb Umma;

between non-numeric $\$ar_2$ written \diamondsuit and numeric $1(\$ar_2^c)$ written \blacksquare can be observed, similar to the contrast between \vdash and \trianglerighteq previously discussed in \$3.5. However, in lexical lists from \S uruppag and $Ebla^{75}$, as well as in the *Stèle des vautours*, non-numeric $\$ar_2$ is curviform:

```
— * # ♠ • and * # • • • in [P010566, obv. 10 10, 11];
```

- ● → and ★ → in [P010576, rev. 3 16, 17];
- lacktriangle in [P240986, recto 3 3]⁷⁶;
- ● **紅** � in [P222399, obv. 17 9, 18 11, 22 12] ⁷⁷.

It would be disruptive to the diachronic representation of text if non-numeric $\$ar_2$ were to have two different representations. The character U+122B9 CUNEIFORM SIGN SHAR2 should therefore be used in those cases, with its curviform glyph \blacksquare , identical to the glyph of the proposed U+12579 \blacksquare CUNEIFORM NUMERIC SIGN ONE N45. Since the archaizing style of texts wherein non-numeric $\$ar_2$ is curviform solidly predates the transition from \blacksquare to \diamondsuit in the relevant metrological systems, there is no need to represent a \diamondsuit - \blacksquare contrast, so these characters can have the same glyph in specialist archaizing Early Dynastic fonts.

Since cuneiform U+122B9 CUNEIFORM SIGN SHAR2 effectively merges with U+1212D CUNEIFORM SIGN HI, the reference glyph should remain as it is, *i.e.*, curviform, so that the contrast between reference glyphs within the Cuneiform block remains clear; see [UTR56, §2.4]. Since system fonts follow the reference glyphs, and since extant specialist fonts target styles where U+122B9 is unambiguously cuneiform, there are no compatibility issues.

Note that in rare cases, such as [P222243, obv. 2 7] from ED IIIa Adab, non-numeric \leftarrow (here with the value rum) is written \triangleright . It is out of scope for this proposal to decide whether such occurrences should be treated as anomalous spellings, encoded as U+12550 \triangleright cuneiform numeric sign one NO1, or as stylistic

⁷⁶From copy in [Man81, ELLes 397].

 $^{^{77}}$ Note however * on [P222399, obv. 6 17], see Figure 22. Curviform non-numeric šar $_2$ is clearly archaizing in ED IIIb Nirsu; one might suppose that the scribe slipped into their modern ways here

distinctions, encoded as U+12038 cuneiform SIGN ASH with a curviform glyph. in practice this would often be determined by the transliteration from which the cuneiform text is generated; it is noteworthy that as of this writing, the [CDLI] transliteration (UR2-1(aš@c)) and the [ePSD2] one (uru $_8$ rum) of this word disagree on that aspect. Since — has a cuneiform reference glyph, this does not pose any compatibility concerns.

3.7.2 Transliteration

The situation is more complicated for numbers. Many transliterations do not represent the type of numeral used, instead interpreting the whole numeric expression and transcribing it with delimiters or units as needed to disambiguate. For instance, \P from [P305639, rev. 21] may be transliterated as 95 gur, as in [Feu04, vol. 2, p. 62]. The numerals may also be transliterated separately, but solely by their values in terms of the overt unit, as in [EbDA] transliterations: the aforementioned \P values in terms of the overt unit, as in [P240533, recto 3 3] is transliterated "20-1-1/2 gu_2 -bar 7 π nig $_2$ -sagšu 2-1/2 an-zam $_x$ reading both vand \P as 1/2, but not distinguishing them.

⁷⁸As on [P249253]

 $^{^{79}}$ As of this writing, [EbDA] actually has an-zam $_{\chi}$, with U+1D6A greek subscript small letter chi.

 $^{^{80}}$ \blacksquare interpreted as a unit, as discussed in §3.3.

⁸¹short for nigida, an older reading of bariga; see [Lan50, p. 376; Pow75, p. 181; Fox22, p. 9].

example is [Mol14, p. 39], which uses 1a for -, 1d for !, 1ac for -, 1dc or !2dc for - depending on reading, etc. The literature on the Uruk and Early Dynastic I–II periods uses a different set of transliteration conventions that also disambiguate numeral shapes, as will be discussed in §4.

While there exist transliterations that distinguish — from I but not \mathbb{R} from —, such as the ones used in [DCCMT], the trend, especially in more recent works in third millennium studies, seems to be to represent numeral shape; for example, [MV24] gave an example of the input syntax used by the new "Urban Economy Begins" project as "10 + 5c(GUR) + 2(BARIGA) + 1(BAN2)" for • \mathbb{R} \mathbb{R} with a c indicating that the GUR numerals are curviform, and the parenthetical GUR indicating that these are \mathbb{R} rather than \mathbb{R} numerals. The "tradition of cavalierly dispensing with numerical notations in notations of administrative documents", as [Eng04, p. 30] describes it, seems to be fading.

3.8 Conclusions

Co-occurences of curviform and cuneiform numerals are not anecdotal in the Early Dynastic period, nor are they the result of scribal idosyncrasy. Instead, they represent systematic contrasts between metrological systems, between individual units within metrological system, and between numeric usage and phonetic or logographic usage. This contrastive usage is reflected in modern publications. The contrast frequently applies to individual numerals, rather than to the span of entire numeric expressions.

While it would be technically possible to handle this contrast as a stylistic distinction, this approach has no real benefit, and is highly inconvenient, as it would require any treatment of Early Dynastic administrative texts to use multiple cuneiform fonts, often within single numeric expressions. Further, if that contrast is lost in plain-text interchange, the text can be misinterpreted: (is a length of three ropes, but is an area of three bur; could be read as one and one would be one and a half is a personal name, but would be "one slave".

In addition, there would be a risk of confusion about character identity should fontmakers attempt to treat the curviform and cuneiform numerals as unified. A designer concerned about the numeric-syllabic $\triangleright - -$ contrast, and wishing to support diachronic encoding between systems $S_{\text{Ur III}/OB}$ and S, might give the I numeral series (which is typically only used numerically in the Early Dynastic period) the glyphs of the \triangleright numeral series, since the clear $I - \triangleright$ identification involves the same rotation; this would however make it impossible to represent capacity measures that use \triangleright . Similarly, in an effort to support diachronic encoding for 1/2 (iku), one might be tempted to give \searrow the glyph of \triangleright , thereby rendering the font unusable for quantities measured using the \searrow numeral series; an ED I - II Ur font designer could decide to give \nwarrow the same glyph as \diamondsuit (that of the proposed \bigcirc), according to the older area system, making it impossible to represent the newer system.

4 Rationale for ED-Uruk numeral unification

A complete rationale for disunification between the non-numeric signs used in the fourth millennium and the already-encoded cuneiform signs will be given in the forthcoming proto-cuneiform encoding proposal. The core issue with extending the cuneiform script further back in time is that, since 1987, fourth millennium studies have used a different model of character identity and associated transliteration conventions, with names being given to structurally different glyphs, and no attempt being made at assigning phonetic values to them.

This is not a mere classification of glyph variants, as contrastive meanings of these systematic variants can often be reconstructed, with, *e.g.*, signs KAŠ_a, KAŠ_b, and KAŠ_c, depicting filled jars with a spout (a), a handle (c), or neither (b), being understood as referring to containers of different substances, see [Engo1, pp. 34 sq.]. However, not all identified systematic variants are understood, and the general approach to character identity is closer to that used for undeciphered or partially deciphered scripts.

As part of the development of these conventions, a classification of fourth millennium numeric signs was developed; see [DE87]. This classification assigns to each unit numerals an identifier formed by the letter N with a numeric subscript (sometimes with an additional alphabetic subscript): N_1 is \triangleright , N_{14} is \bullet , N_{34} is \triangleright , etc. Transliterations of numeric expression then use those to identify the type of number used, thus $5N_1$ is \triangleright , and $5N_{14}$ is \bullet .

In contrast with the use of parenthetical unit names, this approach does not require interpreting the quantity being counted. This is valuable in contexts where numerals are being used atypically, as conventional transliterations can otherwise force a dubious interpretation. For instance, the [CDLI] transliteration of problem of problem of problem in [P283802, rev. 1 6, 2 2] currently uses (barig@c) for the vertical numerals, since on numerals are typically capacity measures; but [Gor23] interprets these instead as counting linen textiles. As a result, the fourth millennium conventions for numeral transliteration are used in Early Dynastic texts, especially those from the ED I–II period, even though the Sumerian text uses classical assyriological transliteration conventions; see [Cha03, p. 6 n. 27].

While the non-numeric signs are treated as undeciphered, the metrological systems used in the fourth millennium are well understood, as can be seen in [DE87, p. 165]. As a result, contrary to the non-numeric proto-cuneiform conventions, these numeric transliteration conventions are compatible with the classical ones described in §3.7.2; they are indeed used interchangeably, as in [P011104] which uses the notation u@f in [ePSD2], but N14@f in [CDLI]. Indeed, the numerals are used similarly in Early Dynastic metrological systems, and are visually identical.

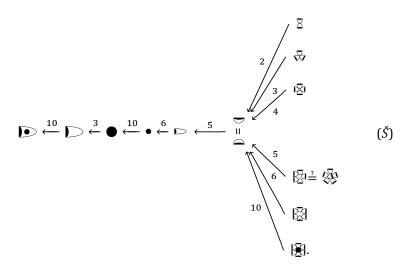
A disunification of numerals between the third and fourth millennium would therefore induce confusion as to which numerals should be used in third millennium studies, and would needlessly duplicate the encoding of at least seventy characters; by splitting the attestations, these separate encoding proposals would run into additional difficulties to supply evidence for encoding.

Note that the structural variants designated by letters in fourth millennium notation have systematically been encoded, as they have occasionally be found to carry distinct numeric meaning. For instance, \mathbb{R} N_{30c} is listed as a variant of \mathbb{R} N_{30a} in [DE87, p. 166], where the numeric value of either in relation to \mathbb{R} \mathbb{R} \mathbb{R} still unknown, but their values are found in [Eng04, p. 33] to be \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} whereas

$$|\Xi| = \frac{1}{6} - .$$

5 Considerations on individual numeral series

Usages of the characters U+12550–U+12597, under subheadings "Common Numerals", "Numerals used for land areas", and "Early Dynastic capacity measures", have already been discussed in §3.4. The variant forms of fractions of the iku are not unifiable with the ordinary ones: $\frac{4}{7}$ is never used as a capacity measure, nor as one half in any other metrological system, contrary to $\frac{1}{7}$.


The character \forall represents both the usages $\frac{1}{2}$ and 1 ban₂, whereas U+12226 \forall cuneiform sign mash and U+1244F \forall cuneiform numeric sign one ban2 are disunified. This disunification is motivated by the unrelated origins of maš (logographic, meaning "goat"), always resembling \forall , and 1 ban₂, descended from \forall . One could argue that based on their etymologies, U+1244F would make more sense as the sign used for $\frac{1}{2}$, but U+12226 is used as the transliteration MAŠ is frequent, see, *e.g.*, [Hue11, p. 165].

The characters U+12550–U+12597 are used in the bisexagesimal counting system, whose factor diagram is as follows [Fri78, p. 15; DE87, p. 165; NDE93, p. 28], with ▷ being the unit:

This system is used to count rations of discrete dry grain products, cheese, and fresh fish; see [DE87, pp. 132–134][28]NissenDamerowEnglund1993[34]Englund2004. It is well attested in the fourth millennium, but is also attested in Early Dynastic IIIa Šuruppag. The reference glyph for § is based on the design in [DE87; NDE93], rather than the one in [Eng04; Eng23], as the latter requires the use of grey, whereas the earlier one is black and white. The highest attested number in this system is § [P003595].

The characters U+12597-U+125B0, U+125B6-U+125BD are used in the grain capa-

city system [DE87, pp. 136-139, 165; NDE93, p. 28; Eng01, p. 4; Eng04, pp. 33, 39]:

The signs U+125B1-U+125B5 are listed together with them in [Engo1, p. 29] under "dry cereal products and rations: numerical signs in ideographic use". Since the \bullet numerals up to 5 are encoded based on their use in system S, there is no need to find the highest attested quantity measured in system S.

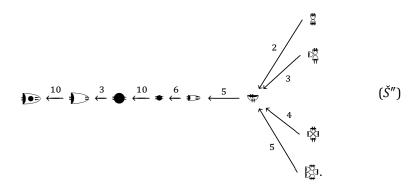
The characters U+125BE-U+125D0 are used in a variant of system *S* used to count dead animals, as well as and jars of certain types of beer; see [DE87, p. 131; NDE93, p. 28; Eng04, p. 40 n. 23]:

$$\triangleright \stackrel{6}{\leftarrow} \stackrel{10}{\leftarrow} \triangleright. \tag{S'}$$

The highest attested number in this system is [P006365]. The sign \implies is also used in a liquid capacity system, see [DE87, p. 131; NDE93, p. 29; Eng04, p. 33].

The characters U+125D1-U+125E9 are used in a variant of the bisexagesimal system used to count a certain kind of rations, possibly a type of fish; see [DE87, pp. 135, 165; NDE93, p. 28]:

The highest well-preserved number in this system is **E E** in [P005153]; there is also a damaged **E** in [P004804].

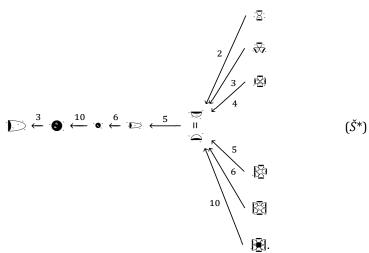

The characters U+125EA-U+125FD are used in a variant of system \check{S} probably used to measure malted barley, see [DE87, p. 139; NDE93, p. 29; Eng01, p. 17 n. 30]:

$$\bigoplus \stackrel{10}{\longleftarrow} \stackrel{6}{\longleftarrow} \bowtie \stackrel{5}{\longleftarrow} \bowtie \stackrel{2}{\longleftarrow} \boxtimes$$

$$(\check{S}')$$

The highest attested quantity in this system is \bigcirc \bigcirc \bigcirc \bigcirc , in [P005363]. The numeral \bigcirc N_{45a} is not included in [DE87, pp. 165 sq.], and the numeral \bigcirc N_{24a} appears there only in brackets, without a name; both appear in [NDE93, p. 29; Eng04, p. 33] with the names $N_{45'}$ and $N_{24'}$, and are listed in [Eng23] with their ATF names N45~a and N24~a. They are attested in [CDLI] transliterations.

The characters U+125FE-U+12622 are used in a variant of system \check{S} probably used to measure emmer, see [DE87, p. 140, p. 155 n. 67; NDE93, p. 29]:



The fractions are not listed in any of [DE87; NDE93; Eng04], but those that are included are attested in [CDLI] and listed in [Eng23]. As noted in [DE87, p. 140] \clubsuit N_{46} appears to also represent a quantity larger than \clubsuit , with $3 \clubsuit 2 \clubsuit 5 \clubsuit 2 \clubsuit 1 \clubsuit$ attested in [P003330]. [DE87, p. 140] suggests $\clubsuit = 6 \clubsuit$ based on proto-Elamite $\clubsuit = 6 \spadesuit$, with the factor diagram

$$\bullet \stackrel{6?}{\longleftarrow} \stackrel{10}{\longleftarrow} \stackrel{3}{\longleftarrow} \stackrel{10}{\longleftarrow} \stackrel{6}{\longleftarrow} \stackrel{5}{\longleftarrow} \stackrel{5}{\longleftarrow} \stackrel{7}{\longleftarrow} \stackrel{7}{\longrightarrow} \stackrel{7}{\longleftarrow} \stackrel{7}{\longleftarrow} \stackrel{7}{\longleftarrow} \stackrel{7}{\longleftarrow} \stackrel{7}{\longleftarrow} \stackrel{7}{\longleftarrow} \stackrel{7}{\longleftarrow} \stackrel{7}{\longrightarrow} \stackrel{7}{\longleftarrow} \stackrel{7}{\longrightarrow} \stackrel{7}{\longrightarrow$$

reused in later works. Given that this ratio is questionable, and that $5 \bigcirc$ is not attested, we have neither included $5 \bigcirc$ nor $3 \bigcirc$. The highest attested clearly understood quantity in this system is $2 \bigcirc$ in [P002673].

The characters U+12623–U+12642 are used in a variant of system \check{S} probably used to measure barley groats, see [DE87, p. 141; NDE93, p. 29; Eng01, p. 3 n. 7, p. 17 n. 30].

The fractions \boxtimes , \bigotimes , and \boxtimes are listed in [DE87], the last one in brackets without a name. \boxtimes is called N_{28*} in [NDE93, p. 29; Eng04, p. 33]. All fractions included here are attested in [CDLI] transliterations and listed in [Eng23]. The highest attested quantity is \boxtimes \boxtimes in [P005461].

The characters U+12643–U+1264B are used in a system whose function is unknown, attested only in the Uruk IV period, see [DE87, pp. 143 sq.; NDE93, pp. 27 sq.]:

$$\bullet \xleftarrow{10} \bowtie \xleftarrow{2} \boxtimes \xleftarrow{2} \leadsto \xleftarrow{4} \bowtie \xrightarrow{?} \boxed{1}, \boxed{1}. \tag{E}$$

Again as the higher numerals are common, there is no need from a character encoding perspective to search for the highest attested quantity.

The "flat" characters U+1264c–U+12686 are used in various metrological systems in ED I–II Ur, see the factor diagrams in [Cha03, pp. 4 sq.]. These factor diagrams determine most of the upper bounds for the encoded numerals. The highest attested quantity in the "Cereal 2 system" with rectangular signs (similar to system \check{S}'') is $\Box \bar{z} = \bar{z} =$

6 Characters not included in this proposal

Some numerals previously proposed in [L2/23-190], as well as some other numerals known to exist in the third millennium, are not included in this proposal. Some should be proposed at a later date; others are likely not encodable.

6.1 Fourth millennium numerals

The following eight numeral series from [DE87, p. 166] are not included; they are all listed as under *Nichteinordenbare Zahlzeichen* in [DE87, p. 147]. On these (and two others, possibly N_{57} and N_{58}), [NDE93, p. 27] write "Ten of the sixty numerical signs contained in the list in figure 27, moreover, do not belong to any of the identified systems. Three of them were apparently scribbled by an awkward pupil. As to four of those remaining, we are not sure whether they constitute derivations of other, as yet unknown numerical signs or whether they are in fact numerical signs at all. For at least two of the ten signs, $[N_{23}]$ and $[N_{43}]$, we can affirm that each formed part of two additional systems, about which we know nothing due to the fact that no informative texts have been unearthed with notations in these systems."

- N_{13} \triangle . [DE87, p. 147] mentions [P002551] as the only attestation. [CDLI] now transliterates this 2(N04), not in [Eng23]. Presumably representable as a rotated \triangleright , as here.
- N_{16} and N_{17} . Described as "vermutlich mit ideographischer Funktion" in [DE87, p. 147]. N_{17} is only attested in [P000524], a witness to [Q000028]. N_{16} is attested in similar context in the same [P000524], but also in other artefacts, including [P283918] and [P283919] where notes by Englund in the [CDLI] transliteration suggest it is numeric, equal to $\frac{1}{20} = N_{16}$ should probably be encoded in the Archaic Cuneiform Numerals block.
- N_{23} . In the current transliterated [CDLI] corpus, attested in one Uruk V artefact, and four Uruk IV artefacts. Similar in shape to proto-Elamite N_{23} , which is well-attested (53 artefacts) and well-understood (part of a decimal system, where it means 100). Best encoded as part of a proto-Elamite proposal, where we would clearly have 1–9, and given appropriate Script_Extensions.

- N_{43} ; according to [DE87, p. 147], probably part of a variant of system \check{S} .
- N_{44} , N_{53} , and N_{55} : Only attested in [P003855], which contains no other text. Presumably these are the "awkward pupil" signs.

In addition, the following are not included:

- N_{10} . Only attested in [P001319] according to [DE87, p. 143], but that text now has N_{11} in its [CDLI] transliteration. Not in [Eng23].
- N₅₇ and N₅₈. Dependent on the main proto-cuneiform proposal, whose rationale will justify the disunification from and \(\bigcirc \). These should be encoded in a different block to avoid confusion with and \(\bigcirc \), since the Archaic Numerals block contains numerals unifiable between Pcun and Xsux.
- N₅₉. Possibly a variant of ₽ according to [DE87, p. 147].
- N_{30b} . Not attested in [CDLI] transliterations, not included in Englund's more recent works such as [Eng01, p. 29], nor in [Eng23].

The well-understood U_4 numerals, documented in [Eng88, pp. 136 sqq.] and listed in [Eng23; L2/23-190], have not been included as they are likewise dependent on the disunification of proto-cuneiform, and should be encoded in a different block to avoid confusion with \circlearrowleft . Some additional numeral series from [Eng23; L2/23-190] are not included due to lack of documentation on their usage. In general, only numerals that are part of a well-understood metrological system have been included. In particular, numerals such as 12 \bullet (attested in [P200010]) have not been encoded, since the metrological systems involving \bullet numerals should not allow for a numeral beyond $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$

In addition, numerals that are not attested have not been included, unless they are part of a series where higher numerals in the metrological system are attested; thus the unattested \longrightarrow and \longrightarrow , which are not in [Eng23], are included, because is attested in [P006365], in a context where it is clearly used as part of system S'. However, 1(N30C~b), which is in [Eng23], and is the obvious counterpart of \longrightarrow in system S'', therefore presumably equal to $\frac{1}{10}$ \Longrightarrow , is not included, as it is not attested in [CDLI] transliterations at this time.

6.2 Third millennium numerals

The sign $N_{48}^{\rm f}$ listed in [Eng23; L2/23-190] only has questionable attestations in [CDLI] transliterations, and is not mentioned in [Cha03]. It has not been included.

Early Dynastic IIIb Nirsu regnal years use $\sim \times \setminus$ numerals (1–9). these are extremely well attested: a [CDLI] search for "(|ASZxDISZ@t|)" finds 1482 artefacts, all ED IIIb, of which 1447 are from Nirsu. These could be encoded in the Cuneiform Numbers and Punctuation block; together with 7–9 $^{\wedge}$, this would fill the block.

Some Old Akkadian artefacts have $\triangleright \times$ (LAK 824) or \times , which has recently been found to mean 6000. The [CDLI] transliterations do not appear to distinguist the curviform and cuneiform versions of these signs. These signs appear to be associated with $6 \triangleright$ or $6 \times$. Further collation 82 is needed to understand exactly what needs to be encoded.

6.3 Stacking patterns

The already-encoded numerals in the Cuneiform Numbers and Punctuation block distinguish some $stacking\ patterns$; for instance 91 is encoded both as U+12446 $\mbox{\ H}$ and as U+1240E $\mbox{\ H}\mbox{\ H}$. This is in part due to contrastive usage of stacking patterns. For instance, besides $\mbox{\ I}$ and $\mbox{\ H}$ which are characteristic of bariga measures, four bariga is written $\mbox{\ H}$ even where 41 is written $\mbox{\ H}$, as in [P255010, obv. 2 3, rev. 1 17; P292843, obv. 4, rev. 5]. Another contrast is that between the stacking patterns used in scratch calculations in the SPVS, often $\mbox{\ H}$ \mb

However, the stacking patterns from earlier periods are not separately encoded; for instance, in ED IIIb Nirsu, $\langle\!\langle 2(u)\rangle\rangle$ often has one $\langle\!\langle$ atop another. These older stacking patterns do not appear to be contrastive, are not marked in transliteration, and are not listed separately in sign lists nor assigned any different values. There is therefore no evidence of a need to encode them; instead, they should be considered style variants, and an ED IIIb Nirsu font should have an appropriate glyph for U+12399 $\langle\!\langle$ CUNEIFORM SIGN U U.

Likewise, many stacking patterns are attested for the curviform numerals proposed in this document, and it is not proposed to separately encode them. These distinctions would be incompatible with the state of the art in numeric transliterations, including those by Englund, who insisted on "a system of transliteration

 $^{^{82}\}mbox{In}$ the assyriological sense, not the Unicode sense.

Figure 23: The layout of case [P011099, rev. 2 3]; the numeral \$\frac{1}{2}\$ is rotated to fit the rounded corner of the tablet.

Figure 24: The layout of case [P020066, obv. 11]; the numeral \$\bigset\$ is spread across two lines. The text is read in the order \$\bigset\bigset\bigset\lambda\lambda\lambda\lambda\lambda, "twenty-two oxen, one year old".

that reflects in a strict fashion the physical realities of the cuneiform inscriptions" [Engo4, p. 30], and they are not needed to represent reference works. Idiosyncratic stacking patterns are in fact particularly common in Early Dynastic and earlier tablets, as they are structured in rectangular cases rather than lines, so that numerals may be laid out across the case in whichever way fits the available space; this is illustrated in Figure 23. Note also that the numerals need to be considerably enlarged in order to reproduce the layout of the tablets, so that \$\frac{1}{2}\$ often spans two lines of cuneiform signs, as shown in Figure 24. This is impractical when these numerals are set in text that contrasts them with the larger \int_\text{, and inconsistent} with actual practice when typesetting these numerals, as illustrated in Figure 8: reproducing the layout of tablets is not within the scope of plain text.

The reference glyphs use stacking patterns that are common in the Early Dynastic period, but that are also attested in the fourth millennium in the Uruk III period; the fourth millennium, especially the Uruk IV period, also frequently features numerals that use a more vertical layout, as illustrated in Figure 25. The later, more horizontal styles were chosen for two reasons: for the numerals used in the third and fourth millennium, usage in third millennium scholarship will be more frequent; and the horizontal layout poses fewer layout difficulties when set in lines of non-cuneiform text, as most modern scholarship is. Indeed, the absolute size of the indents ▷, ▷, •, and ● must remain consistent across the numeral series, lest a ▷ numeral be confused with an ▷ numeral. Since the single indents are frequently used in running text, as illustrated in §3.4.5, they need to be large enough

Figure 25: Three stacking patterns for U+12573 CUNEIFORM NUMERIC SIGN NINE N34. The one on the left is the reference glyph, used in Uruk III [P003499, obv. 1 1b; P004430, rev. 1 2], and widely afterwards, *e.g.*, ED IIIa Šuruppag [P010678, obv. 2], ED IIIb Nirsu [P020057, obv. 1 3], Old Akkadian Umma [P212464, obv. 11]. The ones in the middle and right are used in two Uruk IV tablets [P001243, rev. P004500, rev. 2]. All three Uruk examples are transliterated 9(N34) in [CDLI].

Figure 26: Variants of $\sqrt[3]{}$ and $\sqrt[3]{}$ from [Eng01, p. 31].

that the vertical stacking patterns are impractical.

Variant stacking patterns, if needed, may be handled at a higher level as stylistic distinctions; Figure 25 uses OpenType stylistic alternates, and Figure 23 rotates the character \$\\$, in both cases preserving the plain text backing.

6.4 Other glyph variants not reflected in transliteration

In addition to stacking patterns proper, [L2/23-190, pp. 128 sq.] proposes separately encoding variant glyphs that are not distinguished in transliteration, but are listed (under the same name) in [Eng23], thus proposing two characters for $\[\]$ and two characters for $\[\]$. These are merely illustrative of a wide continuum of attested glyphs; there are additional variants, as shown in Figure 26, and a cursory search on [CDLI] will find many attestations with further variation in the same vein. They should not be encoded. Only the systematic structural variants, which have been distinguished in transliteration based on a suspicion of distinct semantics, should be encoded.

Acknowledgements

Peter Constable and Karljürgen Feuerherm provided useful feedback on the wording. Robin Leroy authored the bulk of the text. Rick McGowan suggested including a note in the character names list to clarify the identity of shrunk numerals in the code charts. Erica Scarpa brought the need for encoding the curviform numerals to our attention on multiple occasions and suggested several crucial references, most importantly [Gor23] which clearly demonstrates contrastive textual usage of curviform and cuneiform numerals in modern publications. Steve Tinney provided essential assistance on the interpretation of the Sumerian texts and suggested useful references. Ken Whistler gave important advice on matters of encodability, roadmapping, code point choice, and names list editing.

The reference glyphs for most of the proposed characters whose Script_Extensions value contains Pcun are based on a font made by Anshuman Pandey for $\lfloor L2/23-190 \rfloor$, itself based on designs by Bob Englund in $\lfloor Eng23 \rfloor$. The reference glyphs for , -100, and -100 are based on designs by Steve Tinney. The glyphs were adjusted by Robin Leroy as described in 50 and -100 and -1

The Old Babylonian and Neo-Assyrian fonts used in §3.1 and in the epigraphs in §3.3 and §3.5 are *Santakku* and *Assurbanipal*, fonts created by Sylvie Vanséveren, available on the Hethitologie Portal Mainz [Van21]. The *CuneiformComposite* font by Steve Tinney is used when referring to the reference glyphs for already-encoded

cuneiform. *Noto Sans Cuneiform*, by Monotype Imaging, is used to for most of the cuneiform text in this document, with modifications (cuneiform glyph for \diamondsuit ŠAR₂, corrected glyps for \Longrightarrow UN and \Longrightarrow KALAM per [Uni16], alternate glyph \checkmark for \gt 1). Arabic text is set in *Scheherazade New* by SIL International; Traditional Chinese text is set in *Noto Serif TC* by Ken Lunde et al.; monospace text is set in *Consolas* by Luc(as) de Groot; the remainder of the text is set in *Cambria* and *Cambria Math* by Monotype Imaging and Tiro Typeworks.

References

Artefacts

THE COLUCTO	
[P000524]	IM 134791. Baghdad, Iraq: المتحف العراقي. CDLI: P000524. ORACC: dcclt/P000524.
[P001243]	VAT 14991. Berlin, Germany: Vorderasiatisches Museum. CDLI: P001243.
[P001319]	VAT 14803. Berlin, Germany: Vorderasiatisches Museum. CDLI: P001319.
[P002551]	VAT 16720. Berlin, Germany: Vorderasiatisches Museum. CDLI: P002551.
[P002673]	Excavation W 17729,au. CDLI: P002673.
[P003330]	HD: W 19726,a. Berlin, Germany: Deutsches Archäologisches Institut. CDLI: P003330.
[P003499]	Excavation number W 20274,001. CDLI: P003499.
[P003595]	HD: W 20274,97. Berlin, Germany: Deutsches Archäologisches Institut. CDLI: P003595.
[P003855]	HD: W 20522,2. Berlin, Germany: Deutsches Archäologisches Institut. CDLI: P003855.
[P004430]	IM 074345. Baghdad, Iraq: المتحف العراقي. CDLI: P004430.
[P004500]	IM 134965. Baghdad, Iraq: المتحف العراقي. CDLI: P004500.
[P004804]	IM 135570. Baghdad, Iraq: المتحف العراقي. CDLI: P004804.
[P005153]	Ashm 1926-0642. Oxford, United Kingdom: Ashmolean Museum. CDLI: P005153.
[P005363]	Berlin 004. Berlin, Germany. CDLI: P005363.

NBC 05829. New Haven, Connecticut, United States: Nies Babylonian [P005461] Collection, Yale Babylonian Collection. CDLI: P005461. [P005468] IM 023426. Baghdad, Iraq: المتحف العراقي. CDLI: P005468. BM 128895. London, United Kingdom: British Museum. [P005773] CDLI: P005773. [P006365] Anonymous. CDLI: P006365. [P010424] المتحف العراقي :IM 067642. Baghdad, Iraq CDLI: P010424. ORACC: epsd2/P010424. [P010458] IM 081445. Baghdad, Iraq: المتحف العراقي. CDLI: P010458. ORACC: epsd2/P010458. [P010459] .المتحف العراقي :Baghdad, Iraq المتحف العراقي : CDLI: P010459. ORACC: epsd2/P010459. VAT 12760 +. Berlin, Germany: Vorderasiatisches Museum. [P010566] CDLI: P010566. ORACC: epsd2/P010566. ORACC: dcclt/P010566. [P010570] VAT 12626. Berlin, Germany: Vorderasiatisches Museum. CDLI: P010570. ORACC: epsd2/P010570. ORACC: dcclt/P010570. VAT 12644. Berlin, Germany: Vorderasiatisches Museum. [P010572] CDLI: P010572. ORACC: epsd2/P010572. ORACC: dcclt/P010572. [P010576] VAT 12751 +. Berlin, Germany: Vorderasiatisches Museum. CDLI: P010576. ORACC: dcclt/P010576. [P010578] VAT 12693. Berlin, Germany: Vorderasiatisches Museum. CDLI: P010578. ORACC: dcclt/P010578. [P010586] VAT 12770. Berlin, Germany: Vorderasiatisches Museum. CDLI: P010586. ORACC: dcclt/P010586. VAT 12593. Berlin, Germany: Vorderasiatisches Museum. [P010678] CDLI: P010678. ORACC: dccmt/P010678. Ist Š 0188. Istanbul, Turkey: İstanbul Arkeoloji Müzeleri. [P010773] CDLI: P010773. ORACC: dccmt/P010773.

[P010876] Ist Š 0648. Istanbul, Turkey: İstanbul Arkeoloji Müzeleri. CDLI: P010876. ORACC: epsd2/P010876. [P010960] VAT 12745. Berlin, Germany: Vorderasiatisches Museum. CDLI: P010960. ORACC: epsd2/P010960. [P011099] VAT 12438. Berlin, Germany: Vorderasiatisches Museum. CDLI: P011099. ORACC: epsd2/P011099. [P011104] VAT 12624. Berlin, Germany: Vorderasiatisches Museum. CDLI: P011104. ORACC: epsd2/P011104. [P020006] VAT 04439. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020006. ORACC: epsd2/P020006. [P020008] VAT 04430. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020008. ORACC: epsd2/P020008. [P020016] VAT 04865. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020016. ORACC: epsd2/P020016. [P020018] VAT 04800. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020018. ORACC: epsd2/P020018. [P020019] VAT 04793. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020019. ORACC: epsd2/P020019. [P020024] VAT 04795. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020024. ORACC: epsd2/P020024. [P020030] VAT 04633. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020030. ORACC: epsd2/P020030. VAT 04731. Berlin, Germany: Vorderasiatisches Museum. [P020054] CDLI: P020054. ORACC: epsd2/P020054. [P020057] VAT 04747. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020057. ORACC: epsd2/P020057. [P020065] VAT 04639. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020065. ORACC: epsd2/P020065. [P020066] VAT 04810. Berlin, Germany: Vorderasiatisches Museum.

CDLI: P020066.

ORACC: epsd2/P020066.

[P020090] VAT 04609. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020090. ORACC: epsd2/P020090. [P020092] VAT 04428. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020092. ORACC: epsd2/P020092. [P020129] VAT 04713. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020129. ORACC: epsd2/P020129. VAT 04899. Berlin, Germany: Vorderasiatisches Museum. [P020137] CDLI: P020137. ORACC: epsd2/P020137. [P020182] VAT 04405. Berlin, Germany: Vorderasiatisches Museum. CDLI: P020182. ORACC: epsd2/P020182. [P102305] X.3.139. Atlanta, Georgia, United States: Michael C. Carlos Museum, Emory University. CDLI: P102305. ORACC: epsd2/P102305. [P142357] YBC 01793. New Haven, Connecticut, United States: Yale Babylonian Collection. CDLI: P142357. ORACC: epsd2/P142357. [P142827] Ashm 1924-0667. Oxford, United Kingdom: Ashmolean Museum. CDLI: P142827. ORACC: epsd2/P142827. [P200010] MS 4648. Oslo, Norway: Schøyen Collection. CDLI: P200010. [P212464] WML unn 003. Liverpool, United Kingdom: World Museum. CDLI: P212464. [P213162] PULiège 0028. Université de Liège. CDLI: P213162. ORACC: epsd2/P213162. ORACC: dccmt/P213162. [P215653] AS 15375 21. Paris, France: Musée du Louvre. CDLI: P215653. ORACC: dcclt/P215653. Louvre Collections: ark:/53355/cl010436723. AO 13485. Paris, France: Musée du Louvre. [P220927] CDLI: P220927. ORACC: epsd2/P220927. [P221266] AO 13825. Paris, France: Musée du Louvre. CDLI: P221266. ORACC: epsd2/P221266. Louvre Collections: ark:/53355/cl010138527.

[P221291] AO 13850. Paris, France: Musée du Louvre. CDLI: P221291. ORACC: epsd2/P221291. [P221305] AO 13864. Paris, France: Musée du Louvre. CDLI: P221305. ORACC: epsd2/P221305. YBC 08446. New Haven, Connecticut, United States: Yale Babylonian [P221530] Collection. CDLI: P221530. ORACC: epsd2/P221530. [P221531] YBC 08444. New Haven, Connecticut, United States: Yale Babylonian Collection. CDLI: P221531. ORACC: epsd2/P221531. Erm 14039. Saint Petersburg, Russia: Государственный Эрмитаж. [P221746] CDLI: P221746. ORACC: epsd2/P221746. [P221814] Erm 14045. Saint Petersburg, Russia: Государственный Эрмитаж. CDLI: P221814. ORACC: epsd2/P221814. [P221815] Erm 14046. Saint Petersburg, Russia: Государственный Эрмитаж. CDLI: P221815. ORACC: epsd2/P221815. [P222186] FLP 0003. Philadelphia, Pennsylvania, United States: Free Library of Philadelphia. CDLI: P222186. ORACC: epsd2/P222186. OIM A00645 + OIM A00649a-i. Chicago, Illinois, United States: In-[P222243] stitute for the Study of Ancient Cultures, West Asia & North Africa (formerly Oriental Institute) Museum. CDLI: P222243. ORACC: epsd2/P222243. [P222399] Stèle des vautours. BM 023580 (= AO 16109) + AO 00050 + AO 02436 + AO 02437 + AO 02438. Paris, France: Musée du Louvre. CDLI: P222399. ORACC: etcsri/Q001056. [P232278] Gudea E. AO 00006. Paris, France: Musée du Louvre. CDLI: P232278. ORACC: etcsri/Q001544. Gudea G. AO 00007. Paris, France: Musée du Louvre. [P232280] CDLI: P232280. ORACC: etcsri/Q001546. [P235312] USC 6710. Los Angeles, California, United States: University of Southern California.

CDLI: P235312.

ORACC: epsd2/P235312.

[P240531]	Excavation number TM.75.G.00265. CDLI: P240531. EbDA: 1415.
[P240532]	Excavation number TM.75.G.00266. CDLI: P240532. EbDA: 1324.
[P240533]	Excavation number TM.75.G.00267. CDLI: P240533. EbDA: 1379.
[P240545]	Excavation number TM.75.G.00299. CDLI: P240545.
[P240548]	Excavation number TM.75.G.00302. CDLI: P240548. EbDA: 1350.
[P240579]	Excavation number TM.75.G.00341. CDLI: P240579. EbDA: 1364.
[P240597]	Excavation number TM.75.G.00407. CDLI: P240597.
[P240609]	Excavation number TM.75.G.00440. CDLI: P240609. EbDA: 1378.
[P240653]	Excavation number TM.75.G.00535. CDLI: P240653. EbDA: 1382.
[P240654]	Excavation number TM.75.G.00536. CDLI: P240654. EbDA: 1383.
[P240655]	Excavation number TM.75.G.00537. CDLI: P240655. EbDA: 1358.
[P240675]	Excavation number TM.75.G.00557. CDLI: P240675. EbDA: 1371.
[P240697]	Excavation number TM.75.G.00579. CDLI: P240697. EbDA: 1381.
[P240964]	Excavation number TM.75.G.01392. CDLI: P240964. ORACC: dccmt/P240964. EbDA: 3184.
[P240986]	Excavation number TM.75.G.01415. CDLI: P240986. ORACC: dcclt/P240986.

[P241708] Excavation number TM.75.G.02143. CDLI: P241708. Ebda: 3173. [P241764] Excavation number TM.75.G.02200. CDLI: P241764. [P241904] Excavation number TM.75.G.02346. CDLI: P241904. Ebda: 3183. ORACC: dccmt/P241904. [P242293] Excavation number TM.75.G.03125. CDLI: P242293. Ebda: 217. [P249253] Code de Hammurabi. Sb 00008. Paris, France: Musée du Louvre. CDLI: P249253. [P251641] MS 2464. Oslo, Norway: Schøyen Collection. CDLI: P251641. ORACC: epsd2/P251641. [P252866] MS 3830. Oslo, Norway: Schøyen Collection. CDLI: P252866. ORACC: epsd2/P252866. [P255010] YBC 04698. New Haven, Connecticut, United States: Yale Babylonian Collection. CDLI: P255010. Anonymous. [P271238] CDLI: P271238. ORACC: epsd2/P271238. [P274845] CUNES 50-08-001. Ithaca, New York, United States: Department of Near Eastern Studies, Cornell University. CDLI: P274845. Ist Š 0742. Arkeoloji Müzeleri. [P283802] CDLI: P283802. ORACC: epsd2/P283802. CUNES 50-06-203. Ithaca, New York, United States: Department of [P283918] Near Eastern Studies, Cornell University. CDLI: P283918. [P283919] CUNES 50-06-217. Ithaca, New York, United States: Department of Near Eastern Studies, Cornell University. CDLI: P283919. NBC 05385. New Haven, Connecticut, United States: Nies Babylonian [P292843] Collection, Yale Babylonian Collection. CDLI: P292843. [P298637] NBC 06978. New Haven, Connecticut, United States: Nies Babylonian Collection, Yale Babylonian Collection. CDLI: P298637.

ORACC: epsd2/P298637.

[P305639] YBC 04398. New Haven, Connecticut, United States: Yale Babylonian

Collection. CDLI: P305639.

[P307255] YBC 06219. New Haven, Connecticut, United States: Yale Babylonian

Collection. CDLI: P307255.

[P309594] YBC 08761. New Haven, Connecticut, United States: Yale Babylonian

Collection. CDLI: P309594.

ORACC: epsd2/P309594.

[P386847] AO 06377. Paris, France: Musée du Louvre.

CDLI: P386847.

[0000028] *Archaic Food.* Composite text.

CDLI: Q000028.

ORACC: dcclt/Q000028.

[Q000782] *The instructions of Šuruppag.* Composite text.

CDLI: Q000782.

ORACC: epsd2/Q000782.

ETCSL transliteration: c.5.6.1; translation: t.5.6.1.

ISO and Unicode documents

[ISO15924] ISO 15924/RA. "ISO 15924 Code Lists". In: *Codes for the representation of names of scripts – Codes pour la représentation des noms d'écritures*. ISO 15924.

https://www.unicode.org/iso15924/codelists.html.

[L2/03-162] M. Everson and K. Feuerherm. *Basic principles for the encoding of*

Sumero-Akkadian Cuneiform. 25th May 2003.

UTC: L2/03-162.

ISO/IEC JTC 1/SC 2/WG 2: N2585.

[L2/03-393R] M. Everson, K. Feuerherm and S. Tinney. Preliminary proposal to

encode the Cuneiform script in the SMP of the UCS. 3rd Nov. 2003.

UTC: L2/03-393R.

ISO/IEC JTC 1/SC 2/WG 2: N2664R.

[L2/04-036] M. Everson, K. Feuerherm and S. Tinney. Revised proposal to encode

the Cuneiform script in the SMP of the UCS. 29th Jan. 2004.

UTC: L2/04-036.

ISO/IEC JTC 1/SC 2/WG 2: N2698.

[L2/04-099] L. Anderson. *Unification of Cuneiform Numbers*. 2004.

UTC: L2/04-099.

[L2/04-189] M. Everson, K. Feuerherm and S. Tinney. Final proposal to encode

the Cuneiform script in the SMP of the UCS. 8th June 2004.

UTC: L2/04-189.

ISO/IEC JTC 1/SC 2/WG 2: N2786.

[L2/12-208] M. Everson, C. Jay Crisostomo and S. Tinney. *Proposal for Early Dynastic Cuneiform*. 13th June 2012.

UTC: L2/12-208.

ISO/IEC JTC 1/SC 2/WG 2: N4278.

[L2/23-190] A. Pandey. *Revised proposal to encode Proto-Cuneiform in Unicode*.

11th July 2023. UTC: L2/23-190.

[L2/23-196] A. Pandey. Proposal to encode Proto-Elamite in Unicode. 18th Aug.

2023.

UTC: L2/23-196.

[L2/24-159] P. Constable, ed. Minutes of UTC Meeting 180 (Redmond, 23rd-25th July

2024). 29th July 2024.

UTC: L2/24-159.

[UAX50] K. Lunde and K. Ishii, eds. *Unicode Vertical Text Layout*. Unicode

Standard Annex #50. An integral part of *The Unicode Standard*. The

Unicode Consortium.

https://www.unicode.org/reports/tr50/.

[Uni16] The Unicode Consortium. *The Unicode Standard*. Version 16.0.0. The

Unicode Consortium, 10th Sept. 2024.

ISBN: 978-1-936213-34-4.

https://www.unicode.org/versions/Unicode16.0.0/core-spec/.

[UTR56] R. Leroy, ed. *Unicode Cuneiform Sign Lists*. Unicode Technical Report

#56. The Unicode Consortium.

https://www.unicode.org/reports/tr56/.

Online corpora and related projects

[BLMS] S. Tinney, M. Geller, J. Peterson and L. Vacín, eds. *Bilinguals in Late Mesopotamian Scholarship*. 2014–.

ORACC: blms.

[CDLI] É. Pagé-Perron, J. L. Dahl, B. Lafont, J. Renn, R. K. Englund and P.

Damerow, eds. Cuneiform Digital Library Initiative. 2000-.

https://cdli.mpiwg-berlin.mpg.de.

[DCCLT] N. Veldhuis, S. Tinney, M. Fitzgerald, J. Cooper, J. Peterson, J. W. Carna-

han, T. Tanaka and C. Jay Crisostomo, eds. Digital Corpus of Cuneiform

Lexical Texts. 2003-.

ORACC: dcclt.

[DCCMT] E. Robson, ed. *The Digital Corpus of Cuneiform Mathematical Texts*.

2007-.

ORACC: dccmt.

[EbDA] L. Milano, M. Maiocchi, F. Di Filippo, R. Orsini, E. Scarpa, M. Surdi

et al., eds. Ebla Digital Archives. 2007-.

http://ebda.cnr.it/.

[eBL] E. Jiménez, Z. Földi, A. Hätinen, A. Heinrich, T. Mitto, G. Rozzi, I. Khait,

J. Laasonen, F. Simonjetz et al., eds. electronic Babylonian Library.

2023-.

https://www.ebl.lmu.de/.

[ePSD2] S. Tinney, P. Jones and N. Veldhuis, eds. *The electronic Pennsylvania Sumerian Dictionary*. 2nd ed. 2017–. http://oracc.org/epsd2.

[ETCSL] J. A. Black, G. Cunningham, J. Ebeling, E. Flückiger-Hawker, E. Robson, J. Taylor and G. Zólyomi, eds. *The Electronic Text Corpus of Sumerian Literature*. Oxford, 1998–2006. http://etcsl.orinst.ox.ac.uk/.

[OSL] N. Veldhuis, S. Tinney et al., eds. *Oracc Sign List*. 2014–. http://oracc.org/osl/.

Other documents

[Arc15] A. Archi. *Ebla and Its Archives. Texts, History, and Society.* Studies in ancient Near Eastern records 7. Walter de Gruyter, 2015. ISBN: 978-1-61451-716-0. DOI: 10.1515/9781614517887.

[Arc89] A. Archi. "Tables de comptes eblaïtes". In: *Revue d'assyriologie et d'archéologie orientale* 83.1 (1989). Ed. by P. Amiet and P. Garelli, pp. 1–6. ISSN: 0373-6032.

[Bor10] R. Borger. *Mesopotamisches Zeichenlexikon*. Alter Orient und Altes Testament 305. Ugarit-Verlag, 2010.

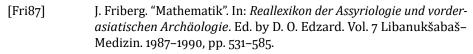
[Cap02] R. Caplice. *Introduction to Akkadian*. 4th ed. Editrice Pontificio Istituto Biblico, 2002.
ISBN: 88-7653-566-7.

[Cat13] A. Catagnoti. *La paleografia dei testi dell'amministrazione e della cancelleria di Ebla*. Quaderni di Semitistica 9. Università di Firenze, 2013.

ISBN: 8890134054.

[Chao3] G. Chambon. "Archaic Metrological Systems from Ur". In: *Cuneiform Digital Library Journal* 2003.5 (23rd Dec. 2003). ISSN: 1540-8779. http://cdli.ucla.edu/pubs/cdlj/2003/cdlj2003_005.html.

[Cha12] G. Chambon. "Numeracy and Metrology". In: *The Oxford Handbook of Cuneiform Culture*. Ed. by K. Radner and E. Robson. Oxford University Press, 18th Sept. 2012, pp. 51–67.
ISBN: 9780199557301.


DOI: 10.1093/oxfordhb/9780199557301.013.0003.

[Civ85] M. Civil. "Sur les "livres d'écoliers" à l'époque paléo-babylonienne". In: *Miscellanea babylonica. Mélanges offerts à Maurice Birot.* Ed. by J.-R. Kupper and J.-M. Durand. Paris: Éditions Recherche sur les Civilisations, 1985, pp. 67–78.

[DE87] P. Damerow and R. K. Englund. "Die Zahlzeichensysteme der archaischen Texte aus Uruk". In: M. W. Green and H. J. Nissen. *Zeichenliste der archaischen Texte aus Uruk*. Archaische Texte aus Uruk 2. Gebr. Mann Verlag, 1987. Chap. 3, pp. 117–165. Repr. https://cdli.mpiwg-berlin.mpg.de/files-up/publications/englund1 987a.pdf.

- [Dei22] A. Deimel. *Liste der archaischen Keilschriftzeichen von Fara*. Wissenschaftliche Veröffentlichungen der Deutschen Orient-Gesellschaft 40. J. C. Hinrichs'sche Buchhandlung, 1922.
- [Engo1] R. K. Englund. "Grain Accounting Practices in Archaic Mesopotamia". In: *Changing Views on Ancient Near Eastern Mathematics*. Ed. by J. Høyrup and P. Damerow. Berliner Beiträge zum Vorderen Orient 19. Dietrich Reimer Verlag, 2001, pp. 1–35.
- [Eng04] R. K. Englund. "Proto-Cuneiform Account-Books and Journals". In: Creating Economic Order. Record-keeping, Standardization and the Development of Accounting in the Ancient Near East. Ed. by M. Hudson and C. Wunsch. International Scholars Conference of Ancient Near Eastern Economies 4. CDL Press, 2004. Chap. 1, pp. 23–46.
- [Eng23] R. K. Englund. *Proto-cuneiform sign list*. 2023. https://cdli-gh.github.io/proto-cuneiform_signs/.
- [Eng88] R. K. Englund. "Administrative Timekeeping in Ancient Mesopotamia". In: *Journal of the Economic and Social History of the Orient* 31.2 (1988).
- [Eng98] R. K. Englund. "Texts from the Late Uruk Period". In: *Mesopotamien. Späturuk-Zeit und Frühdynastische Zeit*. Orbis Biblicus et Orientalis 160/1. 1998, pp. 13–233.

 ISBN: 3-7278-1166-8.
- [Feu04] K. G. Feuerherm. "Abum-waqar and His Circle. A Prosopographical Study". PhD thesis. University of Toronto, 2004.
- [Fox16] D. A. Foxvog. "Introduction to Sumerian Grammar". In: *Cuneiform Digital Library Preprints* 2016.2 (4th Jan. 2016). https://cdli.mpiwg-berlin.mpg.de/articles/cdlp/2.0.
- [Fox22] D. A. Foxvog. "Elementary Sumerian Glossary (revised 2022)". In: *Cuneiform Digital Library Preprints* 2022.3.1 (11th Apr. 2022). https://cdli.mpiwg-berlin.mpg.de/articles/cdlp/3.1.
- [Frio7] J. Friberg. A Remarkable Collection of Babylonian Mathematical Texts. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, 2007. Manuscripts in the Schøyen Collection Cuneiform Texts 1. Manuscripts in the Schøyen Collection 6. ISBN: 978-0-387-34543-7.
- [Fri78] J. Friberg. A Method for the Decipherment, through Mathematical and Metrological Analysis, of Proto-Sumerian and Proto-Elamite Semi-Pictographic Inscriptions. The Third Millenium Roots of Babylonian Mathematics 1. Department of Mathematics, Chalmers University of Technology, 1978.
- [Fri79] J. Friberg. *The Early Roots of Babylonian Mathematics*. 2. Department of Mathematics, Chalmers University of Technology, 1979.
- [Fri86] J. Friberg. "Three Remarkable Texts from Ancient Ebla". In: *Vicino Oriente* 6 (1986), pp. 3–25. ISSN: 0393-0300. The Early Roots of Babylonian Mathematics 3.

- [Gor23] F. Gori. "On Lapis Lazuli and Linen in Šuruppag Texts. An Analysis Through the Lens of Ebla Studies". In: *Studia Eblaitica* 9 (2023), pp. 160–166. ISSN: 2364-7124.
- [Gor24] F. Gori. "Numeracy in Early Syro-Mesopotamia. A study of accounting practices from Fāra to Ebla". PhD thesis. Università degli studi di Verona, 2024.

 https://iris.univr.it/bitstream/11562/1114808/1/Diss_Fiammetta_Gori.pdf.
- [Hue11] J. Huehnergard. *A Grammar of Akkadian*. 3rd ed. Brill, 2011. ISBN: 978-1-57506-941-8.
- [JJ24] T. Jauhiainen and H. Jauhiainen. "Advancing Cuneiform Text Dating Through Automatic Analysis". 69th Rencontre Assyriologique Internationale (8th–12th July 2024). 11th July 2024 14:00.
- [Kre98] M. Krebernik. "Die Texte aus Fāra und Tell Abū Ṣalābīḫ". In: *Mesopotamien. Späturuk-Zeit und Frühdynastische Zeit*. Orbis Biblicus et Orientalis 160/1. 1998, pp. 235–427.
 ISBN: 3-7278-1166-8.
- [Lan50] B. Landsberger. "Assyriologische Notizen". In: *Die Welt des Orients* 1.5 (1950).
- [Lec12] C. Lecompte. "Des chiffres et des digues: à propos de deux textes présargoniques de Ĝirsu et d'une notation numérique inhabituelle". In: *Altorientalische Forschungen* 39.1 (Dec. 2012), pp. 81–86. DOI: 10.1524/aofo.2012.0006.
- [Lec16] C. Lecompte. "ED IIIb metrology: texts from Lagas". In: *CDLI:wiki. A Library of Knowledge of the Cuneiform Digital Library Initiative*. 12th Apr. 2016. https://cdli.ox.ac.uk/wiki/doku.php?id=ed_iii_metrological_systems.
- [Lec20] C. Lecompte. "The Measurement of Fields During the Pre-sargonic Period". In: *Mathematics, Administrative and Economic Activities in Ancient Worlds*. Ed. by C. Michel and K. Chemla. Why the Sciences of the Ancient World Matter 5. Springer, 2020. Chap. 8, pp. 283–344.
- [Man81] P. Mander. "Lista dei segni dei testi lessicali di Ebla". In: *Testi lessicali monolingui della biblioteca L. 2769*. Ed. by G. Pettinato. Materiali epigrafici di Ebla 3. Napoli: Istituto universitario orientale, 1981, pp. 285–382.
- [Mol14] M. Molina. Sargonic Cuneiform Tablets in the Real Academia de la Historia. The Carl L. Lippmann Collection. Real Academia de la Historia, 2014.
 ISBN: 978-84-15069-71-3.

[MV24] M. Maiocchi and S. Volpi. "Reassessing Economic History in the Early Dynastic Period. Sources, Methods, and Perspectives within the frame of the "Urban Economy Begins" Project". 69th Rencontre Assyriologique Internationale (8th–12th July 2024). 12th July 2024 16:00.

[NDE93] H. J. Nissen, P. Damerow and R. K. Englund. Archaic Bookkeeping.
 Early Writing and Techniques of Economic Administration in the Ancient Near East. Trans. by P. Larsen. The University of Chicago Press, 1993.
 ISBN: 0-226-58659-6.

[Oel22] J. Oelsner. *Der Kodex Ḥammu-rāpi*. dubsar 4. Zaphon, 2022. ISBN: 978-3-96327-008-6.

[Pos] J. N. Postgate. *City of Culture 2600 BC. Early Mesopotamian History and Archaeology at Abu Salabikh*. Archaeopress. ISBN: 9781803276694.
DOI: 10.32028/9781803276694.

[Pow71] M. Powell. "Sumerian Numeration and Metrology". PhD thesis. University of Minnesota, 1971.

[Pow72] M. Powell. "Sumerian Area Measures and the Alleged Decimal Substratum". In: *Zeitschrift für Assyriologie und Vorderasiatische Archäologie* 62.2 (1972), pp. 165–221. ISSN: 0084-5299.

[Pow75] M. Powell. In: *Journal of Cuneiform Studies* 27.3 (July 1975), pp. 180–188. Rev. of H. Limet. *Étude de documents de la période d'Agadé appartenant à l'Université de Liège*. Bibliothèque de la Faculté de Philosophie et Lettres de l'Université de Liège 206. Paris: Les Belles Lettres, 1973.

[Pow87] M. Powell. "Maße und Gewichte". In: *Reallexikon der Assyriologie und vorderasiatischen Archäologie*. Ed. by D. O. Edzard. Vol. 7 Libanukšabaš–Medizin. 1987–1990, pp. 457–530.

[Proo9] C. Proust. "Numerical and Metrological Graphemes: From Cuneiform to Transliteration". In: *Cuneiform Digital Library Journal* 2009.1 (22nd June 2009). ISSN: 1540-8779. http://cdli.ucla.edu/pubs/cdlj/2009/cdlj2009_001.html.

[Pro20] C. Proust. "Early-Dynastic Tables from Southern Mesopotamia, or the Multiple Facets of the Quantification of Surfaces". In: Mathematics, Administrative and Economic Activities in Ancient Worlds. Ed. by C. Michel and K. Chemla. Why the Sciences of the Ancient World Matter 5. Springer, 2020. Chap. 9, pp. 345–395.

[Robo8] E. Robson. *Mathematics in Ancient Iraq. A Social History*. Princeton University Press, 2008.

ISBN: 978-0-691-09182-2.

[Rob19] E. Robson. "Oracc metrology guidelines". In: *Oracc: The Open Richly Annotated Cuneiform Corpus*. 18th Dec. 2019.

ORACC: doc/help/editinginatf/metrology/metrologicaltables.

[Rob22] E. Robson. "Overview of Metrological Systems". In: *The Digital Corpus of Cuneiform Mathematical Texts*. 2022.

ORACC: dccmt/Metrology.

[Rom23] A. Romach. Stylometric Analysis for Akkadian Cuneiform Texts. 2023-. https://github.com/ARomach/Cuneiform-Stylometry. [Rom24] A. Romach. "The Neo Assyrian Land Sale Documents from Dur-Katlimmu. A Stylometric Analysis of Their Scribal Features". 69th Rencontre Assyriologique Internationale (Helsinki, 8th-12th July 2024). 10th July 2024 12:00. [Sch10] W. Schramm. Akkadische Logogramme. Göttinger Beiträge zum Alten Orient 5. Universitätsverlag Göttingen, 2010. ISBN: 978-3-941875-65-4. DOI: 10.17875/gup2010-511. [Sch35] N. Schneider. Die Keilschriftzeichen der Wirtschaftsurkunden von Ur III. Editrice Pontificio Istituto Biblico, 1935. [Svä+24] S. Svärd, M. Lorenzon, J. Töyräänvuori, J. Valk, T. Alstola, E. Bennett, R. Uotila and T. Auranne, eds. RAI 69 Abstracts. July 2024. https://www.helsinki.fi/assets/drupal/2024-07/RaiAbstractB ookAjoitettuJaPäivätty_1.pdf. [Tin19] S. Tinney. "ATF Inline Tutorial". In: Oracc: The Open Richly Annotated Cuneiform Corpus. 18th Dec. 2019. ORACC: doc/help/editinginatf/primer/inlinetutorial/index.html. S. Vanséveren. Unicode Cuneiform. 10th Sept. 2021. [Van21] http://hethiter.net/cuneifont.

ISO/IEC JTC 1/SC 2/WG 2

PROPOSAL SUMMARY FORM TO ACCOMPANY SUBMISSIONS FOR ADDITIONS TO THE REPERTOIRE OF ISO/IEC 10646.1

Please fill all the sections A, B and C below.

Please read Principles and Procedures Document (P & P) from http://std.dkuug.dk/JTC1/SC2/WG2/docs/principles.html for guidelines and details before filling this form.

Please ensure you are using the latest Form from http://std.dkuug.dk/JTC1/SC2/WG2/docs/summaryform.html.

Please ensure you are using the latest Form from http://std.dkuug.dk/JTC1/SC2/WG2/docs/summaryform.html.

See also http://std.dkuug.dk/JTC1/SC2/WG2/docs/roadmaps.html for latest Roadmaps.

A. Administrative

2. Requester's name: Robin Leroy 3. Requester type (Member body/Liaison/Individual contribution): Individual contribution 4. Submission date: 2024-09-14 5. Requester's reference (if applicable): 6. Choose one of the following: This is a complete proposal: (or) More information will be provided later:				
4. Submission date: 5. Requester's reference (if applicable): 6. Choose one of the following: This is a complete proposal: YES				
5. Requester's reference (if applicable): 6. Choose one of the following: This is a complete proposal: YES				
6. Choose one of the following: This is a complete proposal: YES				
This is a complete proposal: YES YES				
(or) More information will be provided later.				
P. Taskuisal Consul				
B. Technical – General				
Choose one of the following: a. This proposal is for a new script (set of characters): YES YES				
Proposed name of script: Archaic Cuneiform Numerals				
b. The proposal is for addition of character(s) to an existing block:				
Name of the existing block:				
2. Number of characters in proposal:				
Proposed category (select one from below - see section 2.2 of P&P document):				
A-Contemporary B.1-Specialized (small collection) B.2-Specialized (large collection)				
C-Major extinct D-Attested extinct E-Minor extinct				
F-Archaic Hieroglyphic or Ideographic X G-Obscure or questionable usage symbols				
4. Is a repertoire including character names provided? YES				
a. If YES, are the names in accordance with the "character naming guidelines"				
in Annex L of P&P document?				
b. Are the character shapes attached in a legible form suitable for review? YES				
5. Fonts related:				
a. Who will provide the appropriate computerized font to the Project Editor of 10646 for publishing the				
standard?				
Robin Leroy				
b. Identify the party granting a license for use of the font by the editors (include address, e-mail, ftp-site, etc.):				
Robin Leroy (eggrobin@unicode.org)				
6. References:				
a. Are references (to other character sets, dictionaries, descriptive texts etc.) provided? YES				
b. Are published examples of use (such as samples from newspapers, magazines, or other sources) of proposed characters attached? YES				
' '				
 Special encoding issues: Does the proposal address other aspects of character data processing (if applicable) such as input, 				
presentation, sorting, searching, indexing, transliteration etc. (if yes please enclose information)?				
Prosontation, sorting, socioning, indexing, transitionation sto. (if you produce onlocke information).				
8. Additional Information:				
Submitters are invited to provide any additional information about Properties of the proposed Character(s) or Script				
that will assist in correct understanding of and correct linguistic processing of the proposed character(s) or script.				
Examples of such properties are: Casing information, Numeric information, Currency information, Display behaviour				
information such as line breaks, widths etc., Combining behaviour, Spacing behaviour, Directional behaviour, Default				
Collation behaviour, relevance in Mark Up contexts, Compatibility equivalence and other Unicode normalization				

see Unicode Character Database (http://www.unicode.org/reports/tr44/) and associated Unicode Technical Reports for information needed for consideration by the Unicode Technical Committee for inclusion in the Unicode Standard.

[.] Form number: N4502-F (Original 1994-10-14; Revised 1995-01, 1995-04, 1996-04, 1996-08, 1999-03, 2001-05, 2001-09, 2003-11, 2005-01, 2005-09, 2005-10, 2007-03, 2008-05, 2009-11, 2011-03, 2012-01)

C. Technical - Justification

Has this proposal for addition of character(s) been submitted before?			
If YES explain			
2. Has contact been made to members of the user community (for example: National Body,			
user groups of the script or characters, other experts, etc.)?	YES		
If YES, with whom? Karljürgen Feuerherm, Erica Scarpa, and Steve Tinney.			
If YES, available relevant documents: This document.			
3. Information on the user community for the proposed characters (for example:			
size, demographics, information technology use, or publishing use) is included?	YES		
Reference: This document.			
4. The context of use for the proposed characters (type of use; common or rare) Reference:	rare		
5. Are the proposed characters in current use by the user community?	YES		
If YES, where? Reference: Scholarly publications. This document, §3.4.5.			
6. After giving due considerations to the principles in the P&P document must the proposed characters be	e entirely		
in the BMP?	NO		
If YES, is a rationale provided?			
If YES, reference:			
7. Should the proposed characters be kept together in a contiguous range (rather than being scattered)?			
8. Can any of the proposed characters be considered a presentation form of an existing			
character or character sequence?	NO		
If YES, is a rationale for its inclusion provided?			
If YES, reference:			
9. Can any of the proposed characters be encoded using a composed character sequence of either			
existing characters or other proposed characters?	NO		
If YES, is a rationale for its inclusion provided?			
If YES, reference:			
10. Can any of the proposed character(s) be considered to be similar (in appearance or function)			
to, or could be confused with, an existing character?	NO		
If YES, is a rationale for its inclusion provided?			
If YES, reference:			
11. Does the proposal include use of combining characters and/or use of composite sequences?	NO		
If YES, is a rationale for such use provided?			
If YES, reference:			
Is a list of composite sequences and their corresponding glyph images (graphic symbols) provided?)		
If YES, reference:			
12. Does the proposal contain characters with any special properties such as			
control function or similar semantics?	NO		
If YES, describe in detail (include attachment if necessary)			
13. Does the proposal contain any Ideographic compatibility characters?			
If YES, are the equivalent corresponding unified ideographic characters identified?			
If YES, reference:			