7/15/25, 9:27 AM Proposed Draft UTS #58: Unicode Link Detection and Serialization

LN Technical Reports

L2/25-205

nicode® Technical Standard #58
UNICODE LINK DETECTION AND SERIALIZATION

Version 17.0 (draft 4)

Editors Mark Davis

Date 2025-06-27

This Version https://www.unicode.org/reports/tr58/tr58-1.html
Previous Version none

Latest Version https://www.unicode.org/reports/tr58/

Latest Proposed Update https://www.unicode.org/reports/tr58/proposed.html
Revision 1
Summary

There are flaws in certain ways that URLs are typically handled, flaws that substantially affect their usability for most people in the world — because most

people's writing systems don't just consist of A-Z.
This document specifies two consistent, standardized mechanisms that address these problems, consisting of:

1. link detection: a mechanism for detecting URLs embedded in plain text that properly handles non-ASCII characters, and
2. minimally escaping: a mechanism for minimal escaping of non-ASCII code points in the Path, Query, and Fragment portions of a URL.

These two mechanisms are aligned, so that: a minimally escaped URL string between two spaces in flowing text is accurately detected, and a detected URL

works when pasted into address bars of major browsers.

Status

This is a draft document which may be updated, replaced, or superseded by other documents at any time. Publication does not imply endorsement by the

Unicode Consortium. This is not a stable document; it is inappropriate to cite this document as other than a work in progress.

A Unicode Technical Standard (UTS) is an independent specification. Conformance to the Unicode Standard does not imply conformance to any UTS.

Please submit corrigenda and other comments with the online reporting form [Feedback]. Related information that is useful in understanding this document is
found in the References. For more information see About Unicode Technical Reports and the Specifications FAQ. Unicode Technical Reports are governed by

the Unicode Terms of Use.
Contents

1 Introduction
2 Conformance
UTS58-C1
UTS58-C2
UTS58-C3
3 Link Detection
3.1 Parts of a URL
3.2 Processes
3.3 Initiation
3.4 Termination
3.5 Properties
3.5.1 Link_Termination Property
3.5.2 Link_Paired_Opener Property
3.6 Termination Algorithm
3.6.1 Link-Detection Algorithm
3.7 Property Assignments
3.7.1 Link_Termination=Hard
3.7.2 Link_Termination=Soft
3.7.3 Link_Termination=Open, Link_Termination=Close
3.7.4 Link_Termination=Include
4 Minimal Escaping
4.1 Minimal Escaping Algorithm
5 Email Addresses
5.1 Minimal Quoting Algorithm
6 Security Considerations
7 Property Data
8 Test Data
9 Stability
10 Migration
10.1 Migration: Link Detection
10.2 Migration: Link Serialization
References
Acknowledgments
Modifications

1 Introduction

The standards for URLs and their implementations in browsers generally handle Unicode quite well, permitting people around the world to use their writing
systems in those URLs. This is important: in writing their native languages, the majority of humanity uses characters that are not limited to A-Z, and they expect

https://www.unicode.org/reports/tr58/tr58-1.html

1/8

https://www.unicode.org/
https://www.unicode.org/
https://www.unicode.org/reports/
https://www.unicode.org/reports/tr58/tr58-1.html
https://www.unicode.org/reports/tr58/
https://www.unicode.org/reports/tr58/proposed.html
https://www.unicode.org/reporting.html
https://www.unicode.org/reports/about-reports.html
https://www.unicode.org/faq/specifications.html
https://www.unicode.org/copyright.html
https://www.unicode.org/reports/tr58/stability
R McGowan
Text Box
L2/25-205

7/15/25, 9:27 AM Proposed Draft UTS #58: Unicode Link Detection and Serialization

other characters to work equally well. But there are certain ways in which their characters fail to work seamlessly. For example, consider the common practice of
providing user handles such as:

» x.com/rihanna
« bsky.app/profile/jaketapper.bsky.social
« www.instagram.com/vancityreynolds/

« www.youtube.com/@Z 3=

The first three of these works well in practice. Copying from the address bar and pasting into text provides a readable result. However, the fourth example
illustrates that copying handles with non-ASCII characters result in the unreadable https://www.youtube.com/@%ED%95%91%ED%81%AC%ED%90%81 in

many browsers (Safari excepted). The names also expand in size: https://hi.wikipedia.org/wiki/ﬂ%’l?ﬂT_Tﬁ?ﬁ turns into
https://hi.wikipedia.org/wiki/%E0%A4%AE %E0%A4%B9%E0%A4%BE %E0%A4%A4%E0%A5%8D % E0%A4%AE %E0%A4%BE_%E0%A4%97 %E0%A4%BE %E0%A¢

(While many people cannot read "ﬂ%’l?ﬂT_Tﬁiﬂ“, nobody can read
%E0%A4%AE%EQ0%A4%BI%E0%A4%BE%E0%A4%A4%E0%A5%8D%E0%A4%AE%E0%A4%BE_%E0%A4%97 %E0%A4%BE %E0%A4%82%E0%A4%AT %E0%A
This unintentional obfuscation also happens with URLs using Latin-script characters, such as

https://en.wikipedia.org/wiki/Anton%C3%ADn_Dvo%C5%99%C3%A1k — and very few languages using Latin-script characters are limited to the ASCII letters A-

Z; English being a notable exception This situation is doubly frustrating for people because the un-obfuscated URLs such as https://www.youtube.com/@ % 3%

and https://en.wikipedia.org/wiki/Antonin_Dvorak work fine as plain text; you can copy and paste them back into your address bar — they go to the right page

and display properly in the address bar.

Notes

« Following WHATWG URL: Goals, this specification uses the term URL broadly, as including unescaped non-ASCII characters; that is, as utilizing the
formal definition of IRIs. See also the W3C's An Introduction to Multilingual Web Addresses.

« In examples, links will be shown with a background color, to make the extent of the linkification clear.

« Serialization is the process of translating data into a format that can be stored or transmitted, and exactly reconstructed later. This document is
concerned with serialization of a URL expressed in Unicode as people would see in an address bar into a readable textual form, not serialization into
an internal format such as Punycode.

There is one other area that needs to be fixed in order to not treat non-English languages as second-class citizens. With most email programs, when someone
pastes in the plain text:

» The page https://ja.wikipedia.org/wiki/ 77)L X)L k - 77 A > < 2 & A > contains information about Albert Einstein.
and sends to someone else, they receive it as:
« The page https://ja.wikipedia.org/wiki/ 77)L X)L & - 774 > < 2 &2 A > contains information about Albert Einstein.

URLs are also “linkified” in many other applications, such when pasting into a word processor (triggered by typing a space afterwards, for example). However,
many products (many text messaging apps, video messaging chats, etc.) completely fail to recognize any non-ASCII characters past the domain name. And
even among those that do recognize such non-ASCII characters, there are gratuitous differences in where they stop linkifying.

Linkification is the process of adding links to URLs in plain text input, such as in emails, text messaging, or video meeting chats. The first step in this process is
link detection, which is determining the boundaries of spans of text that contain URLs. That substring can then have a link applied to it in output text. The
functions that perform these operations are called a linkifier and link detector, respectively.

The specifications for a URL don’t specify how to handle link detection, since they are only concerned with the structure in isolation, not when it is embedded
within flowing text. The lack of a clear specification for link detection also causes many implementations to overuse percent escaping for non-ASCII characters
when converting URLs into plain text.

The linkification process for URLs is already fragmented — with different implementations producing very different results — but it is amplified with the addition of
non-ASCII characters, which often have very different behavior. That is, developers’ lack of familiarity with the behavior of non-ASCII characters has caused the
different implementations of linkification to splinter. Yet non-ASCII characters are very important for readability. People do not want to see the above URL
expressed in escaped ASCII:

» The page https://ja.wikipedia.org/wiki/ 77)L X)L k- A 22 &4
>">https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%29%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B
contains information about Albert Einstein.

For example, take the lists of links on List of articles every Wikipedia should have in the available languages. When those are tested with major products, there
are significant differences: any two implementations are likely to linkify those differently, such as terminating the linkification at different places, or not linkifying at
all. That makes it very difficult to exchange URLs between products within plaintext, which is done surprisingly often — definitely causing problems for
implementations that need predictable behavior.

This inconsistency causes problems for users and software companies. Having consistent rules for linkification also has additional benefits, leading to solutions
for the following reported problems:

« If a system allows users to have their own user ids that end up in URLSs, like https://www.linkedin.com/in/my.user.name, it can avoid user ids that have
problematic linkification behavior, like trailing periods after path segments.

» Because linkification cannot be predicted for URLs with non-ASCII characters, common practice is to exchange them with escaped characters, which gives
unreadable results such as the long line above.

If linkification behavior becomes more predictable across platforms and applications, applications will be able to do minimal escaping. For example, in the
following only one character would need escaping, the %29 — representing an unmatched “)”:

o https://ja.wikipedia.org/wiki/ 7 /L NJL F %297 A 2 XA ¥~

Providing a consistent, predictable solution that works well across the world’s languages requires standardized algorithms to define the behavior, and the
corresponding Unicode character properties covering all Unicode characters.

2 Conformance

UTS58-C1. For a given version of Unicode, a conformant implementation shall replicate the same link detection results as those produced by Section 3, Link
Detection Algorithm.

UTS58-C2. For a given version of Unicode, a conformant implementation shall replicate the same minimal escaping results as those produced by Section 4,
Minimal Escaping.

https://www.unicode.org/reports/tr58/tr58-1.html 2/8

https://url.spec.whatwg.org/#goals
https://www.ietf.org/rfc/rfc3987.html
https://www.w3.org/International/articles/idn-and-iri/
https://en.wikipedia.org/wiki/Punycode
https://meta.wikimedia.org/wiki/List_of_articles_every_Wikipedia_should_have

7/15/25, 9:27 AM Proposed Draft UTS #58: Unicode Link Detection and Serialization

UTS58-C3. For a given version of Unicode, a conformant implementation shall replicate the same email link detection results as those produced by Section 5,
‘Email Addresses.

3 Link Detection

The following table shows the relevant parts of a URL. For clarity, the separator characters are included in the examples. For more information see WhatWG's
URL: Example URL Components .

Parts of a URL
Protocol | Host (incl. Domain) | Port | Path Query Fragment
https:// | docs.foobar.com :8000 | /knowledge/area/ ?name=article&topic=seo | #top
Note that the Protocol, Port, Path, Query, and Fragment are each optional.
Processes
There are two main processes involved in Unicode link detection.
1. Initiation. This requires determining the point within plaintext where the parsing of a URL starts. When the scheme is present for a URL (such as “http://”),

determining the start of link detection is simple. However, the scheme for an URL is commonly omitted when URLs are represented in text. For example,
the string “adobe.com” should be recognized as being an URL when it occurs in the body of an email message, even though it does not have a scheme.

2. Termination. This requires determining the point within plaintext where the parsing of a URL ends. A formal reading of the URL specs allows almost any
character in certain fields, so it is insufficient for separating the end of the URL from the non-URL text after it.

Initiation

The start of a URL is easy to determine when it has a known protocol (eg, “https://”).

Implementations have also developed heuristics for determining the start of the URL when the protocol is elided, taking advantage of the fact that there are
relatively few top-level domains. And those techniques can be easily applied to internationalized domain names, which still have strong limitations on the valid
characters. So the end of the domain name is also relatively easy to determine. For more information, see UTS #46, Unicode IDNA Compatibility Processing

The parsing up to the path, query, or fragment is as specified in WHATWG URL: 4.4. URL parsing.

For example, implementations must terminate link detection if a forbidden host code point is encountered, or if the host is a domain and a forbidden domain code
point is encountered. Implementations must not linkify if a domain is not a registrable domain. The terms forbidden host code point, forbidden domain code point,
and registrable domain are defined in WHATWG URL: Host representation.

For example, an implementation would parse to the end of microsoft.com and google.de, foo.pd, or xn--j1ay.xn--p1ai.

Termination

Termination is much more challenging, because of the presence of characters from many different writing systems. While small, hard-coded sets of characters
suffice for an ASCII implementation, there are over 150,000 Unicode characters, many with quite different behavior than ASCII. While in theory, almost any
Unicode character can occur in certain fields in an URL, in practice many characters have very restricted usage in URLs.

Initiation stops at any Path, Query, or Fragment, so the termination process takes over with a “/, “?”, or “#” character. Each Path, Query, or Fragment can contain
most Unicode characters. The key is to be able to determine, given a Part (such as a Query), when a sequence of characters should cause termination of the link
detection, even though that character would be valid in the URL specification.

It is impossible for a link detection algorithm to match user expectations in all circumstances, given the variation in usage of various characters both within and
across languages. So the goal is to cover use cases as broadly as possible, recognizing that it will sometimes not match user expectations in certain cases.

Exceptional cases (URLs that need to use characters that would terminate) can still be appropriately linkified if those few characters are represented with %
escapes.

At a high level, this specification defines three features:

1. A method for identifying when to terminate link detection based on properties that define contexts for terminating the parsing of a URL.

« This addresses the question, for example, when a trailing period should be counted as part of a link or not.
2. A method for identifying balanced quotes and brackets that enclose a URL

« This addresses the distinction, for example, of enclosing the entire URL in parentheses, vs. URLs that contain a part that is enclosed in parens, etc.
3. An algorithm for doing the above, together with an enumerated property and a mapping.

One of the goals is also predictability; it should be relatively easy for users to understand the link detection behavior at a high level.
Properties

This specification defines two properties: Link_Termination (LTerm) and Link_Paired_Opener (LOpener).

Link_Termination Property

Link_Termination is an enumerated property of characters with five enumerated values: {Include, Hard, Soft, Close, Open}
Value | Description / Examples

Include There is no stop before the character; it is included in the link.

Example: letters
o https://ja.wikipedia.org/wiki/ 77)L N JL k- T A 2 XA ">https:/lja.wikipedia.org/wiki/ 7L NIV k- T A 2 kA v

Hard The URL terminates before this character.

Example: a space

« Go to https://ja.wikipedia.org/wiki/ 77)L NJL k- 774 2 2 Z A ">https://ja.wikipedia.org/wiki/ 7)L X)L k- T A 22 24 > to find the
material.

https://www.unicode.org/reports/tr58/tr58-1.html 3/8

https://url.spec.whatwg.org/#example-url-components
https://www.iana.org/domains/root/db
https://www.unicode.org/reports/tr46/
https://url.spec.whatwg.org/#url-parsing
https://url.spec.whatwg.org/#host-representation

7/15/25, 9:27 AM Proposed Draft UTS #58: Unicode Link Detection and Serialization
Value | Description / Examples
Soft The URL terminates before this character, if it is followed by /\p{Link_Termination=Soft}*(\p{Link_Termination=Hard}|$)/

Example: a question mark

« https://ja.wikipedia.org/wiki/ 77)L ~NJL k- 77 A > 2 Z A > ?abc">https://ja.wikipedia.org/wiki/ 7)L NJL k- A 222 & A > 2abe
« https://ja.wikipedia.org/wiki/ 77)L N)L k- 7 A v 2 Z A > ">httpsi/lja.wikipedia.org/wiki/ 77)L NIV k- A 22 %A 7 abe
« https://ja.wikipedia.org/wiki/ 77)L NJL & - 7 A 2 2 XA ">https:/lja.wikipedia.org/wiki/ 7)L NIV k- T A a8 A 7
Close | If the character is paired with a previous character in the same Part (path, query, fragment) and in the same subpart (that is, not across interior '/' in a
path, or across '&' or '="in a query, it is treated as Include. Otherwise it is treated as Hard.

Example: an end parenthesis

« https://ja.wikipedia.org/wiki/(7 /L RV RYT A > 2 Z A4 Y TA a4 V)
« (https://ja.wikipedia.org/wiki/ 77)L ~JL k ">https://ja.wikipedia.org/wiki/ 77)L NIV B)T A v a & A v
o (https://ja.wikipedia.org/wiki/ 7)L NIV T A 2 R A v
Open | Used to match Close characters.
Example: same as under Close
Link_Paired_Opener Property

Link_Paired_Opener is a string property of characters, which for each character in \p{Link_Termination=Close}, returns a character with
\p{Link_Termination=Open}.

Example

1. Link_Paired_Opener('}) =='{'
The specification of the characters with each of these property values is given in Property Assignments.
Termination Algorithm

The termination algorithm assumes that a domain (or other host) has been successfully parsed to the start of a Path, Query, or Fragment, as per the algorithm in
WHATWG URL: 3. Hosts (domains and IP addresses) .

This algorithm then processes each final Part [path, query, fragment] of the URL in turn. It stops when it encounters a code point that meets one of the
terminating conditions and reports the last location in the current Part that is still safely considered part of the link. The common terminating conditions are based
on the Link_Termination and Link_Paired_Opener properties:

e ALink_Termination=Hard character, such as a space. Within a Path, “?” and “#” are handled as Hard. Within a Query, “# is handled as Hard.

o ALink_Termination=Soft character, such as a ? that is followed by a sequence of zero or more soft characters, then either a Hard character or the end of the
text.

o ALink_Termination=Close character, such as a] that does not have a matching open character in the same Part of the URL. The matching process uses the
Link_Paired_Opener property to determine the correct Open character, and matches against the top element of a stack of Open characters.

More formally:

The termination algorithm begins after the Host (and optionally Port) have been parsed, so there is potentially a Path, Query, or Fragment. In the algorithm
below, each of those Parts has an initiator character, zero or more terminator characters, and zero or more clearStackOpen characters.

Part initiator | terminators | clearStackOpen Conditions

path I [?7#] [

query 7 [# [=&]

fragment ‘# [~} I}

fragment directive (text) | :(~itext= | [{:~:}] [-&,] Only invoked if in a fragment or in a fragment directive.

There may be multiple fragment directives in a single URL.

If a future type of directive is defined, a new row will be needed in this table to reflect its structure.

Link-Detection Algorithm
In the following:

o cp[i] refers to the i code point in the string being parsed, cp[start] is the first code point being considered, and n is the length of the string.
» For more information on text fragments, see URL Fragment Text Directives.

1. Set 1astsafe to 0 — this marks the offset after the last code point that is included in the link detection (so far).
2. Set part to the Part whose initiator == cp[i]. If there is none, stop and return 1astsafe.
3. Clear the openstack.
4. Loopfromi=0ton-1
1. Set LT to Link_Termination(cp[i])
2. If part.clearstackopen contains cp[i], clear the openstack.
3. If LT == Include
1. If part.terminators contains cp[i]
1. Set part to the Part whose initiator == cp[i]
2. Clear the openstack.

https://www.unicode.org/reports/tr58/tr58-1.html 4/8

https://url.spec.whatwg.org/#hosts-(domains-and-ip-addresses)
https://wicg.github.io/scroll-to-text-fragment/#syntax

7/15/25, 9:27 AM Proposed Draft UTS #58: Unicode Link Detection and Serialization

2. Set lastsafe to be i+1
3. Continue loop
4. If LT == soft
1. Continue loop
5. If LT == Hard
1. Stop and return lastsafe
6. If LT == open
1. Push cp[i] onto openstack
2. Set lastsafe to be i+1
3. Continue loop.
7.1f LT == Close
1. If openstack is empty
1. Stop and return lastsafe
2. Set lastopen to the pop of openstack
3. If Link_Paired_Opener(cp[i]) == lastOpen
1. Set lastsafe to be i+1
2. Continue loop.
4. Else stop and return lastsafe.
5. After the loop terminates, return lastsafe.

For ease of understanding, this algorithm does not include all features of URL parsing. In implementations, the algorithm can be optimized in various ways, of
course, as long as the results are the same.
Property Assignments

The property assignments are currently derived according to the following descriptions. A full listing of the assignments are supplied in Property Data. Note that
most characters that cause link termination are still valid, but require % encoding.

Link_Termination=Hard

Whitespace, non-characters, eprecated characters, controls, private-use, surrogates, unassigned,...
* [\p{whitespace}\p{NChar}[\p{C}-\p{Cf}]\p{deprecated}]

Link_Termination=Soft

Termination characters and ambiguous quotation marks:

e \p{Term}
e \p{lb=qu}

Link_Termination=Open, Link_Termination=Close

Derived from Link_Paired_Opener property
Link_Termination=Include

All other code points

Link_Paired_Opener

if BidiPairedBracketType(cp) == Close then Link_Paired_Opener(cp) = BidPairedBracket(cp)
else if cp == ">" then Link_Paired_Opener(cp) = "<"

else Link_Paired_Opener(cp) = \x{0}

See Bidi_Paired_Bracket.

4 Minimal Escaping

The goal is to be able to generate a serialized form of a URL that:

1. is correctly parsed by modern browsers and other devices
2. minimizes the use of percent-escapes
3. is completely link-detected when isolated.
1. For example, “abc.com/path1./path2.” would serialize as "abc.com/path./path2%2E" so that linkification will identify all of the serialized form within
plaintext such as “See abc.com/path./path2%2E for more information”.
2. If not surrounded by Hard characters, the linkification may extend beyond the bounds of the serialized form. For example, “See
Xabc.com/path./path2%2EX for more information”.

The minimal escaping algorithm is parallel to the linkification algorithm. Basically, when serializing a URL, a character in a Path, Query, or Fragment is only
percent-escaped if it is: Hard, Close when unmatched, or Soft when it is the code point in the part.

Minimal Escaping Algorithm
In the following:

e cp[i] refers to the ith code point in the part being serialized, cp[e] is the first code point in the part, and n is the number of code points.

« The algorithm assumes that the Path, Query, and Fragment have the normal interior escaping for syntactic characters such as the part.terminators and a
“/” within part of a Path.

« A URL's internal model may contain bytes that arise from a page being in a legacy (non-UTF-8) character encoding. It is important, especially in the Query,
to maintain those bytes even when they are invalid in UTF-8, such as %FF or %C2%C2. If the URL is known to originate in a page with a legacy character
encoding (such as in an href value in that page), or is otherwise detected to have any invalid UTF-8 sequences, then an alternate serialization strategy
should be used, such as percent-escaping each non-ASCII byte.

https://www.unicode.org/reports/tr58/tr58-1.html 5/8

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[\p{whitespace}\p{NChar}[\p{C}-\p{Cf}]\p{deprecated}]&g=gc
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BTerm%7D&g=gc&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=\p{lb=qu}
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BBidi_Paired_Bracket_Type%21%3DNone%7D&g=Bidi_Paired_Bracket_Type&i=Bidi_Paired_Bracket

7/15/25, 9:27 AM Proposed Draft UTS #58: Unicode Link Detection and Serialization
1. Set output to ™
2. Process each Part up to the Path, Query, and Fragment in the normal fashion, successively appending to output
3. For each part in any non-empty Path, Query, Fragment, successively:
1. Append to output: part.initiator
2. Set copiedAlready = 0
3. Clear the openstack
4. Loopfromi=0ton-1
1. If part.terminators contains cp[i]
1. Set LT to Hard
2. Else set LT to Link_Termination(cp[i])
. If part.clearstackopen contains cp[i], clear the openStack.
4. If LT == Include
1. Append to output: any code points between copiedAlready (inclusive) and i (exclusive)
2. Append to output: cp[i]
3. Set copiedalready to i+1
4. Continue loop
5. If LT == Hard
1. Append to output: any code points between copiedalready (inclusive) and i (exclusive)
2. Append to output: percentEscape(cp[i])
3. Set copiedAlready to i+1
4. Continue loop
6. If LT == soft
1. Continue loop
7.1fLT == Open
1. Push cp[i] onto openstack
2. Do the same as LT == Include
8. If LT == Close
1. Set 1astopen to the pop of openstack, or O if the openstack is empty
2. If Link_Paired_Opener(cp[i]) == lastOpen
1. Do the same as LT == Include
3. Else do the same as LT == Hard
5. If part is not last
1. Append to output: all code points between copiedalready (inclusive) and n (exclusive)
6. Else if copiedAlready < n
1. Append to output: all code points between copiedAlready (inclusive) and n - 1 (exclusive)
2. Append to output: percentEscape(cp[i])
4. Return output.

w

The algorithm can be optimized in various ways, of course, as long as the results are the same. For example, the interior escaping for syntactic characters can
be combined into a single pass.

Additional characters can be escaped to reduce confusability, especially when they are confusable with URL syntax characters, such as a ? character in a path.
See Security Considerations below.

5 Email Addresses

Email address link detection applies similar principles. An email address is of the form local-part@domain-name. The algorithm is invoked whenever an '@’
character is encountered at index n. The pseudocode uses some subfunctions defined after the main body.

t LocalPartUnquoted be the set consisting of [\p{Link_Termination=Include} - [\ "(),\:-<>@\[-\][\{\}]]

2. Let LocalPartquoted be the set consisting of ["\p{Link_Termination=Hard}["\\]]

3. Scan forward from n+1 to determine if the '@' sign is followed by a valid domain name (terminating at index end).

4. If there is no such valid domain name, then return a failure code indicating that there was no email address containing that '@'".
5. Else scan backward through the text from i =n - 1 down to -1

1.If i <o, set start = @ and terminate scanning.

2. Elseifi=n -1
1. If cp[i] =™, set start to be quotestart(cp, n-2) and terminate scanning
2. Elseif cp[i] ="., set start = n and terminate scanning
3. Else if cp[i] ="'
1. If cp[i+1] =", set start = i+2 and terminate scanning.
2. Else continue scanning backwards.

4. Else if cp[i] is not in LocalPartUnquoted, set start =i + 1 and terminate scanning.

5. Else if Link_Termination(cp[i]) # Include, Set start =i + 1 and terminate scanning.

6. Else continue scanning backwards.
6. If cp[start] =".", set start = start + 1.
7. If start 2 n, then return a failure code indicating that there was no email address containing that '@'".
8. Else return the pair start, end.

?The function quotestart(cp, beforequote) processes as follows and returns the start point.

1. Scan backward through the text from i = beforequote down to -1
2.Ifi <e, return e
3. Elsef cp[i] =" or cp[i] ="\’

1. Set slashCount = getBackslashCountBefore(cp, i)

https://www.unicode.org/reports/tr58/tr58-1.html 6/8

https://util.unicode.org/UnicodeJsps/confusables.jsp?a=%3F

7/15/25, 9:27 AM Proposed Draft UTS #58: Unicode Link Detection and Serialization

2. If s1ashcount is odd, return i + 1

3. Else i =i - slashcount — _Skip over slashes_

4. Continue scanning backwards.
4. Else if cp[i] is not in LocalPartquoted, return start =i + 1 - _Almost all assigned characters are permitted_
5. Continue scanning backwards.

The function getBackslashcountBefore(cp, i) simply determines the number of '\' characters before the offset i and returns that number.

‘A quoted local-part may include a broad range of Unicode characters. See RFC6530. For linkification, the values in a quoted local-part — while broader than in
:an unquoted locale-part — are more restrictive to prevent accidentally including linkifying more text than intended, especially since those code points are unlikely:
to be handled by mail servers in any event. The algorithm can be optimized in various ways, including can be adapted to produce an algorithm that is single-
pass, as long as it produces the same results. For details of the format, see RFC6530.

Review Note: The algorithm is somewhat simpler than for URLs, because the structure is simpler. There are slight complications to the algorithm to handle

quoted locale-parts and because a valid email 1ocal-part cannot start or end with a ".", or containa "..".

This algorithm includes as much as possible given those constraints, for example:

See @example. = No valid domain name

See @example.com No linkification

See@example.com No linkification

See abcd@example.com Stop backing up when a space is hit

See .abcd@example.com Start after the "."

See x..abcd@example.com Start after the ".."

See x.abcd@example.com Include the medial dot.

See 7L UL k.7 ILAUL + @example.com Handle non-ASCII

See "\ T @ /LR KL TILAIL Handle quoted local-parts, which can contain most characters. The " and \ need to be escaped as \" and

\\.
b ."@example.com

Minimal Quoting Algorithm
The Minimal quoting algorithm for email addresses is straightforward:

« |f the email address would be completely linkified by the above algorithm without quoting, then don't quote the local-part; otherwise quote it
» To quote the local-part:

1. Escape each instance of ™" or '\' by inserting an extra '\' before it.

2. Then surround the whole by "™ characters

6 Security Considerations

The security considerations for Path, Query, and Fragment are far less important than for Domain names. See UTS #39: Unicode Security for more information
about domain names.

There are documented cases of how Format characters can be used to sneak malicious instructions into LLMs; see Invisible text that Al chatbots understand and
humans can’t? URLs are just a small part of the larger problem of feeding clean text to LLMs, both in building them and in querying them: making sure the text
does not have malformed encodings, is in a consistent Unicode Normalization Form (NFC), and so on.

For security implications of URLs in general, see UTS #39: Unicode Security Mechanisms. For related issues, see UTS #55 Unicode Source Code Handling. For
display of BIDI URLs, see also HL4 in UAX #9, Unicode Bidirectional Algorithm.

7 Property Data

The assignments of Link_Termination and Link_Paired_Opener property values are in https://www.unicode.org/Public/17.0.0/1inks/.

o LinkTermination.txt
o LinkPairedOpener.txt

‘Review Note: For comparison to the related General_Category values, see the characters in:

o (Close_Punctuation + Final_Punctuation - BidiPairedBracketType=Close)
« (Initial_Punctuation + Open_Punctuation - BidiPairedBracketType=Open)

8 Test Data

The format for test files is not yet settied, but the files might look something like the following, in https: //www.unicode.org/Public/17.0.0/1inks/.

o LinkificationTest.txt
o SerializationTest.txt

Review Note: Additional test data with URLs is slated to be added.

9 Stability

As with other Unicode Properties, the algorithms and property derivations may be changed somewhat in successive versions to adapt to new information and
feedback from developers and end users.

10 Migration

An implementation may wish to just make minimal modifications to its use of existing URL link detection and serialization code. For example, it may use imported
inbraries for these services. The following provides some examples as to how that can be done.

https://www.unicode.org/reports/tr58/tr58-1.html 718

https://datatracker.ietf.org/doc/html/rfc6530
https://datatracker.ietf.org/doc/html/rfc6530
https://www.unicode.org/reports/tr39/#Limited_Contexts_for_Joining_Controls
https://arstechnica.com/security/2024/10/ai-chatbots-can-read-and-write-invisible-text-creating-an-ideal-covert-channel/
https://arstechnica.com/security/2024/10/ai-chatbots-can-read-and-write-invisible-text-creating-an-ideal-covert-channel/
https://www.unicode.org/reports/tr39/
https://www.unicode.org/reports/tr55/
https://www.unicode.org/reports/tr9/#HL4
https://www.unicode.org/Public/17.0.0/links/LinkTermination.txt
https://www.unicode.org/Public/17.0.0/links/LinkPairedOpener.txt
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5Cp%7BPe%7D%5Cp%7BPf%7D-%5B%3Abpt%3Dc%3A%5D%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5Cp%7BPs%7D%5Cp%7BPi%7D-%5Cp%7Bbpt%3Do%7D%5D&g=&i=
https://www.unicode.org/Public/17.0.0/links/LinkificationTest.txt
https://www.unicode.org/Public/17.0.0/links/SerializationTest.txt

7/15/25, 9:27 AM Proposed Draft UTS #58: Unicode Link Detection and Serialization

Migration: Link Detection

The implementation may call its existing code library for link detection, but then post-process. Using such post-processing can retain the existing performance
and feature characteristics of the code library, including the recognition of the Scheme and Host, and then refine the results for the Path, Query, and Fragment.
The typical problem is that the code library terminates too early. For code libraries that 'mostly' handle non-ASCII characters this will be a fraction of the detected
links.

1. Call the existing code library.

2. Let S be the start of the link in plain text as detected by the existing code library, and E be the offset at the end of that link.
3. If E is at the end of the string, or if the code point following E has the value Link_Termination=Hard, then return S and E.

4. Scan backwards to find the last initiator ([/?#]).

5. Follow the Termination Algorithm from that point on.

Migration: Link Serialization

The implementation calls its existing code library for the Scheme and Host. It then invokes code implementing the Minimal Escaping algorithm for the Path,
Query, and Fragment.

References

‘TBD

Acknowledgments

Thanks to the following people for their contributions and/or feedback on this document: ‘Arnt Gulbrandsen;, Dennis Tan, Elika Etemad, Hayato Ito,

Modifications
The following summarizes modifications from the previous revision of this document.
Draft 4

» Fleshed out Table of Contents (not highlighted).

« Rationalized the handling of fragment directives.

+ Removed old review notes and Review Issues section.

» Fleshed out Email section, and added a corresponding conformance clause.
» Added Stability and Migration sectionssection.

» Various copy-edits, only highlighted where material.

Modifications for previous versions are listed in those respective versions.

© 2024-2024 Unicode, Inc. This publication is protected by copyright, and permission must be obtained from Unicode, Inc. prior to any reproduction, modification, or other use not permitted by the Terms of Use.
Specifically, you may make copies of this publication and may annotate and translate it solely for personal or internal business purposes and not for public distribution, provided that any such permitted copies and
modifications fully reproduce all copyright and other legal notices contained in the original. You may not make copies of or modifications to this publication for public distribution, or incorporate it in whole or in part
into any product or publication without the express written permission of Unicode.

Use of all Unicode Products, including this publication, is governed by the Unicode Terms of Use. The authors, contributors, and publishers have taken care in the preparation of this publication, but make no express
or implied representation or warranty of any kind and assume no responsibility or liability for errors or omissions or for consequential or incidental damages that may arise therefrom. This publication is provided “AS-
IS” without charge as a convenience to users.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc. in the United States and other countries.

https://www.unicode.org/reports/tr58/tr58-1.html 8/8

https://www.unicode.org/copyright.html
https://www.unicode.org/copyright.html

