1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

LN Technical Reports

L2/26-052

Draft Unicode® Technical Standard #58

UNICODE LINK DETECTION AND FORMATTING:
URLS AND EMAIL ADDRESSES

Version 17.0 (draft 7)

Editors Mark Davis, Markus Scherer

Date 2025-12-29

This Version https://www.unicode.org/reports/tr58/tr58-1.html
Previous none

Version

Latest Version https://www.unicode.org/reports/tr58/

Latest Proposed | https://www.unicode.org/reports/tr58/proposed.html
Update

Revision 1

Summary

When URLs are stored and exchanged in structured data, the start and end of each URL is clear, and
it can be parsed according to the relevant specifications. However, when URLs appear as unmarked
strings in text content, detecting their boundaries can be challenging. For example, some characters
that are often used as sentence-level punctuation in text, such as parentheses, commas, and periods,
can also be valid characters within a URL. Implementations often do not behave intuitively and
consistently.

When a URL is inserted into text, non-ASCII characters and “special” characters can be percent-
encoded, which can make it easy for a later process to find the start and end of the URL. However,
escaping more characters than necessary, especially normal letters, can make the URL illegible for a
human reader.

Similar problems exist for email addresses.

This document specifies two consistent, standardized mechanisms that address these problems,
consisting of:

1. link detection: mechanisms for detecting URLs and email addresses embedded in plain text
that properly handles non-ASCII characters, and

2. minimally escaping: mechanisms for minimal escaping of non-ASCII code points in the Path,
Query, and Fragment portions of a URL, and in the local-part of an email address.

The focus is on links with the Schemes http:, https:, and mailto: — and links where those Schemes
are missing but implied. For these cases, the two mechanisms of detecting and formatting are aligned,
so that: a minimally escaped URL string between two spaces in flowing text is accurately detected,
and a detected URL works when pasted into address bars of major browsers.

Status

This is a draft document which may be updated, replaced, or superseded by other documents at any
time. Publication does not imply endorsement by the Unicode Consortium. This is not a stable

https://www.unicode.org/reports/tr58/tr58-1.html 117

https://www.unicode.org/
https://www.unicode.org/
https://www.unicode.org/reports/
https://www.unicode.org/reports/tr58/tr58-1.html
https://www.unicode.org/reports/tr58/
https://www.unicode.org/reports/tr58/proposed.html
R McGowan
Text Box
L2/26-052

1/15/26, 11:15 AM

Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses
document; it is inappropriate to cite this document as other than a work in progress.

A Unicode Technical Standard (UTS) is an independent specification. Conformance to the
Unicode Standard does not imply conformance to any UTS.

Please submit corrigenda and other comments with the online reporting form [Feedback]. Related
information that is useful in understanding this document is found in the References. For more

information see About Unicode Technical Reports and the Specifications FAQ. Unicode Technical
Reports are governed by the Unicode Terms of Use.

Contents

1 Introduction

1.1 URLs
1.2 Email Addresses

1.3 Displaying Unmarked URLs and Email Addresses

2 Conformance
UTS58-C1
UTS58-C2
UTS58-C3
3 Link Detection
3.2 Processes
3.3 Initiation
3.4 Termination
3.5 Properties
3.5.1 Link_Term Property
3.5.2 Link_Bracket Property
3.6 Termination Algorithm
3.6.1 Link-Detection Algorithm
4 Minimal Escaping
4.1 Minimal Escaping Algorithm
5 Email Addresses
5.1 Minimal Quoting Algorithm
6 Property Data
6.1 Property Assignments
Link_Term=Hard
Link_Term=Soft
Link_Term=Open, Link_Term=Close
Link_Term=Include

Link Bracket

Link Email
7 Test Data
8 Security Considerations
9 Stability
10 Migration

10.1 Migration: Link Detection
10.2 Migration: Link Formatting
References
Acknowledgments
Modifications

--

__

..........................

1 Introduction

1.1 URLs

The standards for URLs and their implementations in browsers generally handle Unicode quite well,
permitting people around the world to use their writing systems in those URLs. This is important: in

https://www.unicode.org/reports/tr58/tr58-1.html

2117

https://www.unicode.org/reporting.html
https://www.unicode.org/reports/about-reports.html
https://www.unicode.org/faq/specifications.html
https://www.unicode.org/copyright.html

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

writing their native languages, the majority of humanity uses characters that are not limited to A-Z, and
they expect other characters to work equally well. But there are certain ways in which their characters
fail to work seamlessly. For example, consider the common practice of providing user handles such as:

¢ Xx.com/rihanna
o bsky.app/profile/jaketapper.bsky.social
o www.instagram.com/vancityreynolds/

o www.youtube.com/@E 3=

The first three of these work well in practice. Copying from the address bar and pasting into text
provides a readable result. However, the last example contains non-ASCII characters. In many
browsers this turns into an unreadable string:

o www.youtube.com/@%E 3 & (desirable display)
¢ https://www.youtube.com/@%ED%95%91%ED%81%AC%ED%90%81 (in many browsers)

The names also expand in size and turn into very long strings:

. https://hi.wikipedia.org/wiki/ﬁ%’l?ﬂT_Tﬁ%ﬂ
o https://hi.wikipedia.org/wiki/%EQ0%A4%AE%E0%A4%B9...%E0%A5%80

While many people cannot read "ﬂ%ﬂjﬁﬁﬁ", nobody can read
%EQ0%A4%AE%EQ0%A4%B9...%E0%A5%80. This unintentional obfuscation also happens with URLs
using Latin-script characters:

¢ https://en.wikipedia.org/wiki/Antonin_Dvorak
» https://en.wikipedia.org/wiki/Anton%C3%ADn_Dvo%C5%99%C3%A1k

Very few languages using Latin-script characters are limited to the ASCII letters A-Z; English being a
notable exception. This situation is doubly frustrating for people because the un-obfuscated URLs

such as https://www.youtube.com/@2E 3 & and https://en.wikipedia.org/wiki/Antonin_Dvofak work fine
as plain text; you can copy and paste them back into your address bar — they go to the right page and
display properly in the address bar.

Notes

* This specification uses the term URL broadly, as including unescaped non-ASCI|
characters; in other words, treating it as matching the formal definition of IRIs.
Standardizing on the term “URL” and avoiding the terms “URI” and “IRI” follows the practice
promoted by the WHATWG in [URL Standard: Goals].

See also the W3C'’s [An Introduction to Multilingual Web Addresses].

* In examples, links will be shown with a background color, to make the extent of the
linkification clear.

1.2 Email Addresses

Email addresses should also work well for all languages. With most email programs, when someone
pastes in the plain text:

« The page https://ja.wikipedia.org/wiki/ 77)L ~JL | - 77 A >3 2 Z 4 > contains information about
Albert Einstein.

and sends to someone else, they receive it as:

» The page https://ja.wikipedia.org/wiki/ 77)L ~JL | - 77 A > 2 Z 4 > contains information about
Albert Einstein.

1.3 Displaying Unmarked URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 3117

https://www.ietf.org/rfc/rfc3987.html
https://url.spec.whatwg.org/#goals
https://www.w3.org/International/articles/idn-and-iri/

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

URLSs are “linkified” in many applications, such when pasting into a word processor (triggered by typing
a space afterwards, for example). However, many products (many text messaging apps, video
messaging chats, etc.) completely fail to recognize any non-ASCII characters past the domain name.
And even among those that do recognize such non-ASCII characters, there are gratuitous differences
in where they stop linkifying.

Linkification is the process of adding links to URLs and email addresses in plain text input, such as in

email body text, text messaging, or video meeting chats. The first step in this process is link detection,
which is determining the boundaries of spans of text that contain URLs. That substring can then have

a link applied to it in output text. The functions that perform these operations are called a link detector
and linkifier, respectively.

The specifications for a URL don’t specify how to handle link detection, since they are only concerned
with the structure in isolation, not when it is embedded within flowing text. The lack of a clear
specification for link detection also causes many implementations to overuse percent escaping for
non-ASCII characters when converting URLSs into plain text.

Different implementations linkify URLs and email addresses differently even when they contain only
ASCII characters. The differences are even greater when non-ASCII characters are used. Handling

letters of all writing systems well is very important for usability. Consider the last example above of a
sentence in an email when displayed with a percent-escaped URL.:

e The page https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB...%E3%83%B3 contains
information about Albert Einstein.

For example, take the lists of links on [List of articles every Wikipedia should have] in the available
languages. When those links are tested with major products, there are significant differences: any two
implementations are likely to linkify those differently, such as terminating the linkification at different
places, or not linkifying at all. That makes it very difficult to exchange URLs between products within
plain text, which is done surprisingly often — definitely causing problems for implementations that
need predictable behavior.

This inconsistency causes problems for users and software companies. Having consistent rules for
linkification also has additional benefits, leading to solutions for the following reported problems:

+ If a system allows users to have their own user ids that end up in URLs, like
https://www.linkedin.com/in/my.user.name, it can avoid user ids that have problematic linkification
behavior, like trailing periods after path segments.

o Because linkification cannot be predicted for URLs with non-ASCII characters, common practice
is to exchange them with escaped characters, which gives unreadable results such as the long
line above.

If linkification behavior becomes more predictable across platforms and applications, applications will

be able to do minimal escaping. For example, in the following only one character would need
escaping, the %29 — representing an unmatched “)”:

« https://ja.wikipedia.org/wiki/ 77 /L NJL %297 A > a2 XA~
Providing a consistent, predictable solution that works well across the world’s languages requires
standardized algorithms to define the behavior, and the corresponding Unicode character properties
covering all Unicode characters.

2 Conformance

UTS58-C1. For a given version of Unicode, a conformant implementation shall replicate the same link
detection results as those produced by Section 3, Link Detection Algorithm.

UTS58-C2. For a given version of Unicode, a conformant implementation shall replicate the same
minimal escaping results as those produced by Section 4, Minimal Escaping.

https://www.unicode.org/reports/tr58/tr58-1.html 4117

https://meta.wikimedia.org/wiki/List_of_articles_every_Wikipedia_should_have

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

UTS58-C3. For a given version of Unicode, a conformant implementation shall replicate the same
email link detection results as those produced by Section 5, Email Addresses.

3 Link Detection

The following table shows the relevant parts of a URL. For clarity, the separator characters are
included in the examples. For more information see [WhatWG URL: Example URL Components].

Table 3-1. Parts of a URL

Scheme | Host (incl. Domain) | Port | Path Query Fragment
https:// | docs.foobar.com :8000 | /knowledge/area/ | ?name=article&topic=seo | #top
Notes:

o The Scheme, Port, Path, Query, and Fragment are each optional.
o Each of the Parts may have internal structure, such as:

o The Host just consists of a domain, which consists of a list of one or more labels separated
by "." such as example.com. ()The syntax of a URI actually permits a userinfo component,
such as username:password@example.com, but its use is deprecated due to security concerns.

o The Path consists of one or more segments, separated by "/".

o The Query typically consists of one or more key-value pairs, separated by "&"; where each
key is separated from its value by "=". (There are other possible structures, but this
structure is seen most commonly.

o The Fragment has various possible structures defined by web applications, and at the end
can contain one or more fragment directives, starting with a separator ":~:", and separated
again by the sequence ":~:".

+ The goal for this specification is to handle the Query and Fragment structures that are most
common, where matching brackets shouldn't typically span internal separators.

Processes
There are two main processes involved in Unicode link detection.

1. Initiation. This requires determining the point within plain text where the parsing of a URL starts.
When the Scheme is present for a URL (such as “http://”), determining the start of link detection
is simple. However, the Scheme for a URL is commonly omitted when URLs are represented in
text. For example, the string “adobe.com” should be recognized as being a URL when it occurs in
the body of an email message, even though it does not have a Scheme.

2. Termination. This requires determining the point within plain text where the parsing of a URL
ends. A formal reading of the URL specs allows almost any character in certain URL parts, so it
is insufficient for separating the end of the URL from the non-URL text after it.

There are two special cases. Both of these introduce some complications in the algorithm, because
each of the Parts have different internal syntax and different initial characters, and can be followed by
different Parts.

1. "Soft" characters are not included in the link, unless they are followed by other characters that
would be included.

o Example:
1. With “See abc.com?def!” the ! is not included.
2. However, with “See abc.com?deflghi” it would be.

2. Closing brackets are not included in the link, unless they have a matching opening bracket —
that doesn’t cross syntax characters.

o Example: For ‘)
1. Not included with “(See abc.com?def=a). And...”

https://www.unicode.org/reports/tr58/tr58-1.html 5/17

https://url.spec.whatwg.org/#example-url-components
http://abc.com/?def
http://abc.com/?def

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses
E 2. Is included with “See abc.com?def=(a). And...”

The algorithm is a single-pass algorithm with backup, that is, remembering the latest ‘safe’ point to
break, and returning that where necessary. It also has a stack, so that it can determine when a closing
bracket matches.

Initiation
The start of a URL is easy to determine when it has a known Scheme (eg, “https://”).

Implementations have also developed heuristics for determining the start of the URL when the Scheme
is elided, taking advantage of the fact that there are relatively few top-level domains. And those
techniques can be easily applied to internationalized domain names, which still have strong limitations
on the valid characters. So the end of the domain name is also relatively easy to determine. For more
information, see UTS #46, Unicode IDNA Compatibility Processing.

The parsing up to the path, query, or fragment is as specified in [WHATWG URL: 4.4. URL parsing].

For example, implementations must terminate link detection if a forbidden host code point is
encountered, or if the host is a domain and a forbidden domain code point is encountered.
Implementations must not linkify if a domain is not a registrable domain. The terms forbidden host
code point, forbidden domain code point, and registrable domain are defined in [WHATWG URL: Host
representation].

For example, an implementation would parse to the end of microsoft.com and google.de, foo.pd, or
xn--j1ay.xn--p1ai.

Termination

Termination is much more challenging, because of the presence of characters from many different
writing systems. While small, hard-coded sets of characters suffice for an ASCIl implementation, there
are over 150,000 Unicode characters, many with quite different behavior than ASCII. While in theory,
almost any Unicode character can occur in certain URL parts, in practice many characters have very
restricted usage in URLSs.

Initiation stops at any Path, Query, or Fragment, so the termination process takes over with a “/”, “?”,
or “#” character. Each Path, Query, or Fragment can contain most Unicode characters. The key is to
be able to determine, given a URL Part (such as a Query), when a sequence of characters should
cause termination of the link detection, even though that character would be valid in the URL
specification.

It is impossible for a link detection algorithm to match user expectations in all circumstances, given the
variation in usage of various characters both within and across languages. So the goal is to cover use
cases as broadly as possible, recognizing that it will sometimes not match user expectations in certain
cases. Exceptional cases (URLs that need to use characters that would terminate) can still be
appropriately linkified if those few characters are represented with % escapes.

At a high level, this specification defines three features:

1. A method for identifying when to terminate link detection based on properties that define contexts
for terminating the parsing of a URL.

o This addresses the question, for example, when a trailing period should be included in a
link or not.

2. A method for identifying balanced quotes and brackets that enclose a URL.

» This addresses the distinction, for example, of enclosing the entire URL in parentheses, vs.
URLSs that contain a segment that is enclosed in parens, etc.

3. An algorithm for doing the above, together with an enumerated property and a mapping property.

The focus is on the high-runner cases.

https://www.unicode.org/reports/tr58/tr58-1.html 6/17

https://www.iana.org/domains/root/db
https://www.unicode.org/reports/tr46/
https://url.spec.whatwg.org/#url-parsing
https://url.spec.whatwg.org/#host-representation
https://url.spec.whatwg.org/#host-representation

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

o Links for http:/, https://, and mailto:
» Instances where those schemes are omitted.
o Handling internal structures of queries and fragments that most often occur.

One of the goals is also predictability; it should be relatively easy for users to understand the link
detection behavior at a high level.

Properties

--

__

This specification defines tthree properties. The first two are used in URL link detection and formatting,
and the last is used in email link detection and formatting.

e Link_Term
e Link Bracket
e Link_Email

‘The short property names are identical to the long property names.

Link_Term Property

Link_Term is an enumerated property of characters with five enumerated values: {Include, Hard, Soft,
Close, Open}
The short property value aliases are the same as the long ones.

Table 3-2. Link_Term Property Values

Value |Description/ Examples
Include | There is no stop before the character; it is included in the link.

Example: letters
o https://ja.wikipedia.org/wiki/ 77)L NJL k- T A 2 XAV

Hard The URL terminates before this character.

Example: a space

 Go to https://ja.wikipedia.org/wiki/ 7L XJL b = 74 >3 2 &4 > to find the material.
Soft The URL terminates before this character, if it is followed by /\p{Link_Term=Soft}*
(\p{Link_Term=Hard}|$)/

Example: a question mark

« https://ja.wikipedia.org/wiki/ 77)L X)Lk - 7 A 222 %A > ?abc
« https://ja.wikipedia.org/wiki/ 7L X)Lk« A > 2 &4 >?abe
o https://ja.wikipedia.org/wiki/ 7L NIk« TA 2 R A 7
Close | If the character is paired with a previous character in the same URL Part (path, query,
fragment) and within the same sequence of characters delimited by separators as

described in the Termination Algorithm below, it is treated as Include. Otherwise it is
treated as Hard.

https://www.unicode.org/reports/tr58/tr58-1.html 717

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses
Value |Description/ Examples

Example: an end parenthesis

o https://ja.wikipedia.org/wiki/(7 /L RIL M T A > a8 A>T A a4 V)
o (https://ja.wikipedia.org/wiki/ 77)L NJL)7 A a2 xA »
o (https://ja.wikipedia.org/wiki/ 77)L NV b T A v a XA v

Open | Used to match Close characters.

Example: same as under Close
Link_Bracket Property

Link_Bracket is a string property of characters, which for each character in \p{Link_Term=Close},
returns a character with \p{Link_Term=Open}.

Example

1. Link_Bracket(}') =='{'

Link_Email Property

Link_Email is a binary property of characters, indicating the characters that can normally occur in the
local-part of an email address, such as owkpdtnc@example.om

Example

1. Link_Email('o’) == 'Yes'

The specification of the characters with each of these property values is given in Property
Assignments.

Termination Algorithm

The termination algorithm assumes that a domain (or other host) has been successfully parsed to the
start of a Path, Query, or Fragment, as per the algorithm in [WHATWG URL:3. Hosts (domains and IP
addresses)].

This algorithm then processes each final URL Part [path, query, fragment] of the URL in turn. It stops
when it encounters a code point that meets one of the terminating conditions and reports the last
location in the current URL Part that is still safely considered inside the link. The common terminating
conditions are based on the Link_Term and Link_Bracket properties:

e A Link_Term=Hard character, such as a space.
o In addition, while processing a certain URL Part, its corresponding terminator characters
and sequences also terminate that URL Part.

e ALink_Term=Soft character, such as a ? that is followed by a sequence of zero or more soft
characters, then either a Hard character or the end of the text.

e AlLink_Term=Close character, such as a] that does not have a matching open character in the
same Part of the URL. The matching process uses the Link_Bracket property to determine the
correct Open character, and matches against the top element of a stack of Open characters.

More formally:

The termination algorithm begins after the Host (and optionally Port) have been parsed, so there is
potentially a Path, Query, or Fragment. In the algorithm below, each Part has three sets of Action
strings that affect transitions within and between Parts::

https://www.unicode.org/reports/tr58/tr58-1.html 8/17

https://url.spec.whatwg.org/#hosts-(domains-and-ip-addresses)
https://url.spec.whatwg.org/#hosts-(domains-and-ip-addresses)

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

Sequence Sets Actions
Initiator Starts the Part
Terminator Set Terminates the Part

ClearStackOpen Set | Clears the stack of open brackets within the Part

Here are the sets of zero or more strings in each Sequence Set for each Part. (UnicodeSet notation is
used here and elsewhere in this document, in which a backslash is used to escape characters like &.)

Table 3-3. Link Termination by URL Part

Part Initiator | Terminator set | ClearStackOpen set
path A [7#] 1

query e [#] [=\&]

fragment #' [~ I

fragment directive | :~: 1 N&{:~}H

Fragment directives:

« The initiator is only activated if already in a fragment or in a fragment directive.

There may be multiple fragment directives in a single URL.

o Currently the only fragment directive that has been defined is the text directive, as in
https://example.comi#:~:text=foo&text=bar.

» Additional fragment directives may be defined in the future, and their internal structure may differ
from that of the text directive. At that time, this algorithm will need to be adjusted, including new
rows in the table above and adjusting the initiators, terminators, and clearStackOpen.

+ For more information, see [URL Fragment Text Directives].

——

iReview Note: In a fragment directive, the comma and ampersand are separators, and thus cause the !
istack of open brackets to be cleared. The dash '-' is an affix to the comma, rather than a separator, as |
the following syntax shows: ’

__

Link-Detection Algorithm
In the following:

e cp[i] refers to the ith code point in the string being parsed, cp[start] is the first code point being
considered, and n is the length of the string.

» A stack (openstack) is used for matching brackets. A limit is required for security; the value 125 is
chosen deliberately to far exceed any reasonable number of paired brackets.

1. Set 1astsafe = start — this marks the offset after the last code point that is included in the link
detection (so far).

2. Set part = none.
. Clear the openstack.
4. Loop fromi = startton - 1
1. If part # none and one of the part.terminators matches at i

w

1. Set previousPart = part.
2. Set part = none.

2. If part == none then try to match one of the URL Part initiators at i.
1. If none of the initiators match, then stop and return 1astsafe.

https://www.unicode.org/reports/tr58/tr58-1.html 9/17

https://wicg.github.io/scroll-to-text-fragment/#syntax

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses
2. Set part according to which URL Part’s initiator matches.

. If part is a Fragment Directive and previouspart is neither a Fragment nor a Fragment
Directive, then stop and return lastsafe.

. Set i to just after the matched part.initiator.
. Set lastsafe = i.
. Clear the openstack.
7. Continue loop
3. If one of the part.clearstackopen elements matches at i
1. Set i to just after the matched part.clearstackopen element.
2. Set lastsafe = i.
3. Clear the openstack.
4. Continue loop
4. Set LT = Link_Term(cp[i]).
5. If LT == Include
1. Set lastsafe = i + 1.
2. Continue loop
6. If LT == soft
1. Continue loop
7. If LT == Hard
1. Stop and return 1astsafe
8. If LT == open
1. Ifiopenstack.length() == 125, then stop and return 1astsafe.
2. Push cp[i] onto openstack
3. Set lastsafe = i + 1.
4. Continue loop.
9. If LT == Close
1. If openstack.isEmpty(), then stop and return 1astsafe.
2. Set lastopen = openStack.pop().
3. If Link_Bracket(cp[i]) == lastOpen
1. Set 1astsafe = i + 1.
2. Continue loop.
4. Else stop and return 1astsafe.
5. After the loop terminates, return 1astsafe.

w

[o)TNé) BN

As usual, any algorithm that produces the same results is conformant. Such algorithms can be
optimized in various ways, and adapted to be single-pass.

For ease of understanding, this algorithm does not include all features of URL parsing. In
implementations, the algorithm can be optimized in various ways, of course, as long as the results are
the same.

4 Minimal Escaping
The goal is to be able to generate a serialized form of a URL that:

1. is correctly parsed by modern browsers and other devices
2. minimizes the use of percent-escapes
3. is completely link-detected when isolated.

1. For example, “abc.com/path1./path2.” would serialize as "abc.com/path1./path2%2E" so
that linkification will identify all of the serialized form within plain text such as “See
abc.com/path1./path2%2E for more information”.

https://www.unicode.org/reports/tr58/tr58-1.html

10/17

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

2. If not surrounded by Hard characters, the linkification may extend beyond the bounds of the
serialized form. For example, “See Xabc.com/path1./path2%2EX for more information”.

The minimal escaping algorithm is parallel to the linkification algorithm. Basically, when serializing a
URL, a character in a Path, Query, or Fragment is only percent-escaped if it is: Hard, Close when
unmatched, or Soft when it is (in) a URL Part terminator in the enclosing URL Part.

Minimal Escaping Algorithm

This algorithm only handles the formatting of the Path, Query, and Fragment URL Parts. Formatting of
the Scheme, Host, and Port should be done as is customary for those URL Parts. For the Host
(domain name), see also UTS #46: Unicode IDNA Compatibility Processing and its ToUnicode
operation.

In the following:

e cp[i] refers to the ith code point in the URL part being serialized, cp[e] is the first code point in
the part, and n is the number of code points.

« The algorithm assumes that the Path, Query, Fragment, and Fragment directives already have
the normal interior escaping for syntactic characters, including the the part.terminators and
part.clearStack, to prevent them from being interpreted as literals:

For Path, that means that literal [?#/] must be escaped.

For Query, that means that literal [+#=\&] must be escaped. The + is in addition, because
of its use as a replacement for space.

For Fragment, that means that the first character of a literal ":~:" must be escaped.

For Fragment directive, that means that [\&,] must be escaped, as well as the first
character of a literal ":~:".

o

(o]

o

o

+ A URL's internal model may contain bytes that arise from a page being in a legacy (non-UTF-8)
character encoding. It is important, especially in the Query, to maintain those bytes even when
they are invalid in UTF-8, such as %FF or %C2%C2. If the URL is known to originate in a page
with a legacy character encoding (such as in an href value in that page), or is otherwise detected
to have any invalid UTF-8 sequences, then an alternate formatting strategy should be used, such
as percent-escaping each non-ASCII byte.

1. Set output = "*
2. For each URL part in any non-empty Path, Query, Fragment, successively:
1. Append to output: part.initiator
2. Set copiedAlready = 0
3. Clear the openstack
4, Loopfromi=oeton - 1
1. If one of the part.terminators matches at i
1. Set LT = Hard
2. Else set LT = Link_Term(cp[i])
3. If one of the part.clearstackopen elements matches at i, clear the openstack.
4.1f LT == Include

1. Append to output: any code points between copiedalready (inclusive) and i
(exclusive)

2. Append to output: cp[i]
3. Set copiedAlready = i + 1
4. Continue loop

5. If LT == Hard

1. Append to output: any code points between copiedalready (inclusive) and i
(exclusive)

2. Append to output: percentEscape(cp[i])

https://www.unicode.org/reports/tr58/tr58-1.html

11/17

https://www.unicode.org/reports/tr46/
https://www.unicode.org/reports/tr46/#ToUnicode
https://www.unicode.org/reports/tr46/#ToUnicode

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses
3. Set copiedAlready = i + 1
4. Continue loop
6. If LT == Soft
1. Continue loop
7.1f LT == open
1. If openstack.length() == 125
2. Else push cp[i] onto openstack and do the same as LT == Include
8. If LT == Close
1. Set 1astOpen = openStack.pop(), or O if the openstack is empty
2. If Link_Bracket(cp[i]) == lastOpen
1. Do the same as LT == Include
3. Else do the same as LT == Hard
5. If part is not last
1. Append to output: all code points between copiedalready (inclusive) and n (exclusive)
6. Else if copiedAlready < n

1. Append to output: all code points between copiedalready (inclusive) and n - 1
(exclusive)

2. Append to output: percentEscape(cp[n - 1])
3. Return output.

As usual, any algorithm that produces the same results is conformant. Such algorithms can be
optimized in various ways, and adapted to be single-pass.

Additional characters can be escaped to reduce confusability, especially when they are confusable
with URL syntax characters, such as a ? character in a path. See Security Considerations below.

5 Email Addresses

Email address link detection applies similar principles. An email address is of the form local-
part@domain-name. The local-part can include unusual characters by quoting: enclosing itin "...", and
using backslash to escape those characters. For example, "john\ doe"@example.com contains an
escaped space. However, the quoted local-part format is very rarely implemented, so this algorithm
does not support it. Implementations are free to extend this algorithm to support such quoted email
local-part formats. The algorithm is invoked whenever an '@' character is encountered at index n, and
another process has determined that the '@’ sign is followed by a valid domain name. The algorithm
scans backward from the '@' sign to find the start of the local-part, terminating at index end (exclusive).
if there is a "mailto:" before the local-part, then that is also included.

The only complications are introduced by the requirement in the specifications that the local-part
cannot start or end with a ".", nor contain "..". For details of the format, see [RFC6530].

The algorithm uses the property Link_Email to scan backwards, as follows.

1. If n = o, fail to match.

2.1fn > eand cp[i] == '.", fail to match.
3. Scan backward through the text from i = n - 1 down to e.
1. If cp[i] == '."
1. If cp[i + 1] == ,’fa tO h

2. Else continue scanning backward.
2. Else if cp[i] is notin Link_Email, set start = i + 1 and terminate scanning.
3. Else continue scanning backwards.

https://www.unicode.org/reports/tr58/tr58-1.html 12/17

https://util.unicode.org/UnicodeJsps/confusables.jsp?a=%3F
https://datatracker.ietf.org/doc/html/rfc6530

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses
4. If cp[start] == '.", fail to match.

5. Ifist n;, fail to match.

6. If "mailto:" is immediately before start, then set start = start-7.

7. Return a match for the pair start, end.

As usual, any algorithm that produces the same results is conformant. Such algorithms can be
optimized in various ways, and adapted to be single-pass.

A quoted local-part may include a broad range of Unicode characters. See [RFC6530]. For linkification,
the values in a quoted local-part — while broader than in an unquoted locale-part — are more
restrictive to prevent accidentally including linkifying more text than intended, especially since those
code points are unlikely to be handled by mail servers in any event.

Table 5-1. Email Address Link Detection Examples

See abcd@example.com Stop backing up when a space is hit

See x.abcd@example.com Include the medial dot.

See 7ILNJL k. TILAIL k @example.com Handle non-ASCII

See @example. &% No valid domain hame
See @example.com No local-part

See john.@example.com No valid local-part
See john..doe@example.com No valid local-part
See .john.doe@example.com No valid local-part

——

‘Review Note: The algorithm causes linkification to fail in where the dots are illegal, such as: the last 3 !
iexamples. For the last two cases, instead of failing, the linkification could stop just before the]
iproblematic dots, such as: "john..doe@example.com" and ".john.doe@example.com". That approach

__

Minimal Quoting Algorithm

The Minimal quoting algorithm for email addresses is trivial, given that the quoted forms are not
supported.

6 Property Data

The assignments of Link_Term and Link_Bracket property values are defined by the following files:.

e LinkTerm.txt
e LinkBracket.txt
¢ LinkEmail.txt

Property Assignments

The initial property assignments are based on the following descriptions. However, their values may
deviate from these descriptions in future versions. See Stability. Note that most characters that cause
link termination are still valid, but require % encoding.

Link_Term=Hard
Whitespace, non-characters, deprecated characters, controls, private-use, surrogates, unassigned,...

https://www.unicode.org/reports/tr58/tr58-1.html 13/17

https://datatracker.ietf.org/doc/html/rfc6530
https://www.unicode.org/review/pri509/draft7/LinkTerm.txt
https://www.unicode.org/review/pri509/draft7/LinkBracket.txt
https://www.unicode.org/review/pri509/draft7/LinkEmail.txt

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses
e [\p{whitespace}\p{NChar}[\p{C}-\p{Cf}]\p{deprecated}]

Link_Term=Soft
Termination characters and ambiguous quotation marks:

e \p{Term}
* \p{lb=qu}

Link_Term=Open, Link_Term=Close

if Bidi_Paired_Bracket_Type(cp) == Open then Link_Term(cp) = Open

else if Bidi_Paired_Bracket Type(cp) == Close then Link_Term(cp) = Close

else if cp =="<" then Link_Term(cp) = Open

else if cp == ">" then Link_Term(cp) = Close

Link_Term=Include

All other code points

Link_Bracket

if Bidi_Paired_Bracket_Type(cp) == Close then Link_Bracket(cp) = Bidi_Paired_Bracket(cp)

else if cp == ">" then Link_Bracket(cp) = "<"

else Link_Bracket(cp) = «
Only characters with Link_Term=Close have a Link_Bracket mapping.

See Bidi_Paired_Bracket_Type.

--
__

——

e (Close_Punctuation + Final_Punctuation - BidiPairedBracketType=Close)
o (Initial_Punctuation + Open_Punctuation - BidiPairedBracketType=0Open)

__

Link_Email
In the ASCII range, the characters are as specified for ASCII, as per RFC 5322, Section 3.2.3. That is:
o [[a-zA-Z][0-9]_\-!1?2"\{\} */\&# % ~* + = | ~\§]]
Outside of the ASCII range, the characters follow UAX31 identifiers. That is:
o \p{XID_Continue}
The reasons for this are that non-ASCII in the local-part are less commonly supported at this point,
and the local-parts supported on most mail servers that go beyond ASCII are likely to have

restrictions similar to programming identifiers. Implementations could also customize the set, and it
can be broadened in the future.

7 Test Data

https://www.unicode.org/reports/tr58/tr58-1.html 14/17

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[\p{whitespace}\p{NChar}[\p{C}-\p{Cf}]\p{deprecated}]&g=gc
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BTerm%7D&g=gc&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=\p{lb=qu}
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BBidi_Paired_Bracket_Type%21%3DNone%7D&g=Bidi_Paired_Bracket_Type&i=Bidi_Paired_Bracket
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5Cp%7BPe%7D%5Cp%7BPf%7D-%5B%3Abpt%3Dc%3A%5D%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5Cp%7BPs%7D%5Cp%7BPi%7D-%5Cp%7Bbpt%3Do%7D%5D&g=&i=
https://www.rfc-editor.org/rfc/rfc5322.html#section-3.2.3

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

The following test files supply data for testing conformance to this specification. The format of each
test is explained in the header of the test.

o iLinkDetectionTest.txt

¢ LinkFormattingTest.txt

8 Security Considerations

The security considerations for Path, Query, and Fragment are far less important than for Domain
names. See UTS #39: Unicode Security for more information about domain names.

——

‘Review Note: We could add something like the following:

Implementers may consider some additional restrictions on characters based on security
iconsiderations, such as using UTS #39 Unicode Security Mechanisms. For example, an
implementation could test whether any characters in a detected link span had
ldentifier_Status=Restricted, and if so, not apply a link to that span. Note that simply forcing those .
icharacters to be percent-escaped in link formatting doesn't generally solve any problems; if anything, |

For security implications of URLs in general, see UTS #39: Unicode Security Mechanisms. For related
issues, see UTS #55 Unicode Source Code Handling. For display of BIDI URLs, see also HL4 in UAX
#9, Unicode Bidirectional Algorithm.

9 Stability

As with other Unicode Properties, the algorithms and property derivations may be changed in
successive versions to adapt to new information and feedback from developers and end users.

* Unassigned code points may change property values as they are assigned. All new characters
will be extremely low-frequency.

o Characters that are assigned may, in rare cases, change values as more information about the
character is determined.

The practical impact is very limited, such as when character is not escaped on a formatting system,
but terminates the link on the detecting system.

10 Migration

An implementation may wish to just make minimal modifications to its use of existing URL link
detection and formatting code. For example, it may use imported libraries for these services. The
following provides some examples as to how that can be done.

Migration: Link Detection

The implementation may call its existing code library for link detection, but then post-process. Using
such post-processing can retain the existing performance and feature characteristics of the code
library, including the recognition of the Scheme and Host, and then refine the results for the Path,
Query, and Fragment. The typical problem is that the code library terminates too early. For code
libraries that 'mostly' handle non-ASCII characters this will be a fraction of the detected links.

1. Call the existing code library.

https://www.unicode.org/reports/tr58/tr58-1.html 15/17

https://www.unicode.org/review/pri509/draft7/LinkDetectionTest.txt
https://www.unicode.org/review/pri509/draft7/LinkFormattingTest.txt
https://www.unicode.org/reports/tr39/#Limited_Contexts_for_Joining_Controls
https://arstechnica.com/security/2024/10/ai-chatbots-can-read-and-write-invisible-text-creating-an-ideal-covert-channel/
https://arstechnica.com/security/2024/10/ai-chatbots-can-read-and-write-invisible-text-creating-an-ideal-covert-channel/
https://www.unicode.org/reports/tr39/
https://www.unicode.org/reports/tr55/
https://www.unicode.org/reports/tr9/#HL4
https://www.unicode.org/reports/tr9/#HL4

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

2. Let S be the start of the link in plain text as detected by the existing code library, and E be the
offset at the end of that link.

3. If E is at the end of the string, or if the code point at E, that is, the character immediately after the
offset at the end of the detected link, has the value Link_Term=Hard, then return S and E.

4. Scan backwards to find the last initiator of a Path, Query, or Fragment URL Part.

5. Follow the Termination Algorithm from that point on.
Migration: Link Formatting

The implementation calls its existing code library for the Scheme and Host. It then invokes code
implementing the Minimal Escaping algorithm for the Path, Query, and Fragment.

References

--

__

[RFC6530]

[URL Fragment Text Directives]

[WHATWG URL: 3. Hosts (domains and IP addresses)]
[WHATWG URL: 4.4. URL parsing]

[WhatWG URL: Example URL Components]
[WHATWG URL: Host representation]

Acknowledgments

Thanks to the following people for their contributions and/or feedback on this document: Arnt

Modifications

The following summarizes modifications from the previous revision of this document.

Draft 7

o Fixed Link_Email set in the ASCII range, now a positive set.
» Noted that the email linkification fails with illegal dot placement.

Draft 6

 Removed older change highlighting.
¢ Corrected TOC.

o The names for Link_Termination and Link_Paired_Opener have changed to Link_Term and
Link_Bracket. This change is not marked in the text, for ease of reading.

» Added the property Link_Email and the property file LinkEmail.txt

+ Moved Property Assignments to under Property Data, and made it clearer that it is the initial
derivation, and can change later.

o Dropped quoted local-part formats from email detection and minimized format.

* Moved section 6 (Security) down to just above 9 (Stability).

o Added some clarifying text.

» Narrowed the characters in email local-parts (Link_Email) to align better with XID_Contimue.

Praft5
. Inthetitle—! | Serializati E o biitle-
° J-I_te_J.I-E- -T

o Expanded-the-Summary-at-the-top;-and-clarified-theIntroduction:

https://www.unicode.org/reports/tr58/tr58-1.html 16/17

https://datatracker.ietf.org/doc/html/rfc6530
https://wicg.github.io/scroll-to-text-fragment/#syntax
https://url.spec.whatwg.org/#hosts-(domains-and-ip-addresses)
https://url.spec.whatwg.org/#url-parsing
https://url.spec.whatwg.org/#example-url-components
https://url.spec.whatwg.org/#host-representation

1/15/26, 11:15 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

Modifications for previous versions are listed in those respective versions.

© 2024-2025 Unicode, Inc. This publication is protected by copyright, and permission must be obtained from Unicode, Inc. prior to any
reproduction, maodification, or other use not permitted by the Terms of Use. Specifically, you may make copies of this publication and may
annotate and translate it solely for personal or internal business purposes and not for public distribution, provided that any such
permitted copies and modifications fully reproduce all copyright and other legal notices contained in the original. You may not make
copies of or modifications to this publication for public distribution, or incorporate it in whole or in part into any product or publication
without the express written permission of Unicode.

Use of all Unicode Products, including this publication, is governed by the Unicode Terms of Use. The authors, contributors, and
publishers have taken care in the preparation of this publication, but make no express or implied representation or warranty of any kind
and assume no responsibility or liability for errors or omissions or for consequential or incidental damages that may arise therefrom. This
publication is provided “AS-IS” without charge as a convenience to users.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc. in the United States and other countries.

https://www.unicode.org/reports/tr58/tr58-1.html 17/17

https://www.unicode.org/copyright.html
https://www.unicode.org/copyright.html

