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A  INTRODUCTION 
1  Overview 

1.1  Abstract 
This document is a draft proposal for the design of an international/multilingual text 
character encoding system, tentatively called Unicode. 

Unicode is intended to address the need for a workable, reliable world text encoding.  
Unicode could be roughly described as “wide-body ASCII” that has been stretched to 16 
bits to encompass the characters of all the world’s living languages.  In a properly 
engineered design, 16 bits per character are more than sufficient for this purpose. 

In the Unicode system, a simple unambiguous fixed-length character encoding is integrated 
into a coherent overall architecture of text processing.  The design aims to be flexible 
enough to support many disparate (vendor-specific) implementations of text processing 
software. 

A general scheme for character code allocations is proposed (and materials for making 
specific individual character code assignments are well at hand), but specific code 
assignments are not proposed here.  Rather, it is hoped that this document may evoke 
interest from many organizations, which could cooperate in perfecting the design and in 
determining the final character code assignments. 

 

1.2  Need for a new, world-wide ASCII 
Electronic transmission and storage of the written word are based on standard numerical 
encoding of text characters.  Currently much of the computing world relies on the character 
encoding for English text called 7-bit ASCII.  ASCII (American Standard Code for 
Information Interchange) is defined by the standards ANSI X3.4-1977 and ISO 646-1973 
(E).  ANSI is the American National Standards Institute, Inc., and ISO is the worldwide 
International Organization for Standardization. 

ASCII provides a common coinage for representing text content, permitting reliable 
exchange of English text among disparate software applications.  Less obviously, 
sequences of ASCII characters form structural elements that interlink diverse computer 
systems.  ASCII text files provide a widely-accepted file format among text-oriented 
programs (e.g. text editors, electronic mail), ASCII character streams provide one standard 
basis for file communication protocols, and ASCII text “filters” are capable of supporting 
an interesting class of text-processing applications. 

The problem with ASCII is simply that the people of the world need to be able to 
communicate and compute in their own native languages, not just in English.  Text 
processing systems designed for the 1990’s and the 21st century must accommodate Latin-
based alphabets for European languages such as French, German, and Spanish; and also 
major non-Latin alphabets such as Arabic, Greek, Hebrew, and Russian; and also “exotic” 
scripts of growing importance such as Hindi and Thai; not to mention the thousands of 
ideographic characters used in writing Chinese, Japanese, and Korean. 



What is needed is a new international/multilingual text encoding standard that is as 
workable and reliable as ASCII, but that covers all the scripts of the world. 

For reference, the table below ranks the world’s writing systems roughly in order of 
commercial importance, as measured by the total GNP of countries using each system: 

 
 

1.3  Technical summary of Unicode 
The power of ASCII comes from two simple properties: 

• Its workability in processing arises from a fixed length of character code (7 bits 
within an 8-bit byte) 

• Its reliability in conveying text content arises from a fixed one-to-one 
correspondence with the characters of the English alphabet 

Unicodes are the most straightforward multilingual generalization of ASCII codes: 

• Fixed length of character code (16 bits) 

• Fixed one-to-one correspondence with characters of the world’s writing systems 

That is, each individual Unicode code is an absolute and unambiguous assignment of a 16-
bit number to a distinct character. 

Since there are vastly more than 28 = 256 characters in the world, the 8-bit byte has become 
a useless commodity in the context of modern international/multilingual character 
encoding.  Stated otherwise, the evolution from ASCII to Unicode means precisely the 

Rank Writing System Languages % of 
World 
GNP 

1 Latin English, German, French, Spanish, Italian, 
Portuguese, Indonesian/Malay, ... 

68 

2 CJK ideographs Chinese, Japanese, (Korean) 14 
3 Cyrillic Russian, Ukrainian, ... 14 
4 Arabic Arabic, Persian, ... 3 
5 Devan_gar1 family Hindi, Bengali, Punjabi, Marathi, ... 1 
6 Korean (Hangul) Korean 1 
7 Dravidian family Telugu, Tamil, ...  
8 Greek Greek  
9 Khmer Thai, Lao, Khmer  
10 Hebrew Hebrew  



expansion of character codes from an 8-bit to a 16-bit basis.  In Unicode, the 8-bit byte 
plays no role of any kind. 

The name “Unicode” is intended to suggest a unique, unified, universal encoding.  A 
sequence of Unicodes (e.g. text file, string, or character stream) is called “Unitext”. 

 



 
 

The Unicode design includes major principles that support the pure 16-bit encoding: 

• characters vs. glyphs:  A clear and all-important distinction is made between 
characters, which are abstract text content-bearing entities, and glyphs, which are 
visible graphic forms.  This model permits the resolution of many problems 
regarding variant forms, ligatures, and so on. 

• CJK ideograph unification:  The clear model of characters and glyphs permits 
unification of tens of thousands of equivalent ideographs that are currently given 
separate codes in China, Japan, and Korea. 

• public vs. private:  The design provides for the distinction between common-use 
encodings which are public, and other encodings which are kept private so as to 
enable vendor-specific implementations, vertical-market applications, and so on. 

• plain vs. fancy text:  A simple but crucial distinction is made between plain text, 
which is a pure sequence of Unicodes, and fancy text, which is any text structure that 
bears additional information beyond pure character content. 

• process-based design:  The design is founded on the fact a text encoding exists 
solely to support the various processes that act upon text.  Thus processes such as 
rendering, filtering, and so on participate in the design. 

Unicode may find its initial utility as a standard international/multilingual interchange 
encoding, but it is also designed to serve as the basis for efficient internal text 
representation (a.k.a. process encoding) in any text environment where more than 256 
different characters are required. 
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1.4  Structure of this document 
The many aspects of text character encoding are highly interrelated, and indeed each topic 
is best conceived in terms of a conception of all the others.  Lacking hypertext or the ability 
to discuss all topics at once, the document is arranged as follows: 

• Part A is an overview of the major concepts of Unicode. 

• Part B is a detailed presentation of Unicode’s architectural underpinnings. 

• Part C applies the Unicode approach to major specific problems of character 
encoding. 

• Part D contains reference lists of particular details, including suggested 
Unicode allocations and assignments. 

Although the document is laid out from the general to the particular, solutions to the 
problems of character encoding actually evolve from the particular to the general.  For 
example, the definitions in Part B are made only because they were found necessary to 
handle the particular problems described in Part C.  Thus, the document may make an 
equal amount of sense if read backward. 

 

2  The 16-bit Approach 
The idea of expanding the basis for character encoding from 8 to 16 bits is so sensible, 
indeed so obvious, that the mind initially recoils from it.  There must be a catch to it, 
otherwise why didn’t we think of this long ago? 

The major catch is simply that the 16-bit approach requires ___________ (perestroika), i.e. 
restructuring our old ways of thinking.  Rather than struggling to salvage obsolete 8-bit 
encodings via horrendous “extension” contrivances, we need to recognize that the current 
absence of a standard international/multilingual encoding is a unique opportunity to rethink 
and revitalize the design concepts behind text encoding. 

However, there do exist specific concerns that initially appear to be the “catch” to a 16-bit 
encoding.  To some extent these concerns are overrated, and to some extent they are 
legitimate but inevitable.  This section outlines how the Unicode 16-bit approach either 
provides for these concerns or trades them off against the greater good.  A much longer list 
of detailed design issues is addressed in Section D. 

 

2.1  Sufficiency of 16 bits 
Are 16 bits, providing at most 65,536 distinct codes, sufficient to encode all characters of 
all the world’s scripts?  Since the definition of a “character” is itself part of the design of a 
text encoding scheme, the question is meaningless unless it is restated as:  Is it possible to 
engineer a reasonable definition of “character” such that all the world’s scripts contain 
fewer than 65,536 of them? 

The answer to this is Yes.  (Of course, the converse need not be true, i.e. it is certainly 
possible, albeit uninteresting, to come up with unreasonable definitions of “character” such 



that there are more than 65,536 of them.)  There are two main concepts in Unicode’s 
approach to this fundamental question: 

• The proper definition of character 

• The distinction of “modern-use” characters from “obsolete/rare” ones 

Proper definition of “character”:  Unicode does not confuse the notion of character with 
that of glyph.  There are far more glyphs than characters because of the existence of variant 
forms, rendering forms, and fragment glyphs that can be used to compose graphic forms 
dynamically.  Also, Unicode avoids tens of thousands of character replications by 
consolidating together the ideographic characters used in writing Chinese, Japanese, and 
Korean. 

Distinction of “modern-use” characters:  Unicode gives higher priority to ensuring utility 
for the future than to preserving past antiquities.  Unicode aims in the first instance at the 
characters published in modern text (e.g. in the union of all newspapers and magazines 
printed in the world in 1988), whose number is undoubtedly far below 214 = 16,384.  
Beyond those modern-use characters, all others may be defined to be obsolete or rare; these 
are better candidates for private-use registration than for congesting the public list of 
generally-useful Unicodes. 

In other words, given that the limitation to 65,536 character codes genuinely does satisfy 
all the world’s modern communication needs with a safety factor of about four, then one 
can decide up-front that preserving a pure 16-bit architecture has a higher design priority 
than publicly encoding every extinct or obscure character form.  Then the sufficiency of 16 
bits for the writing technology of the future becomes a matter of our active intention, rather 
than passive victimization by writing systems of the past. 

 

2.2  Relation of Unicode to ASCII and other existing codings 
Given two sequences of bits (“bit patterns”) that supposedly represent the same series of 
text characters in two different encoding systems, either: 

• the sequences are bit-for-bit identical, or 

• they are not identical, in which case they require explicit software conversion. 

Clearly, almost every possible pair of text encoding schemes require explicit software 
interconversion; that is, rarely is one encoding truly a pure “extension” of another.  Once 
the inevitability of explicit conversion processes is recognized, the proper design goals for 
“compatibility” of a new encoding scheme with existing encodings become: 

• to minimize the complexity of conversion processes 

• to minimize the number of conversion processes 

 



 
 

As an example of minimizing conversion complexity, interchange between ASCII text and 
Unitext is performed by a simple loop of the following operations: 

• To convert a 7-bit ASCII character to a Unicode: 
      • Preface it with the 9 bits 000000000. 

• To convert a Unicode to a 7-bit ASCII character: 
      • If the first 9 bits are 000000000, remove them. 
      • Otherwise, assign it to a junk code, e.g. SUB (hex 1A). 

Insofar as the above algorithms are quite trivial, ASCII text and Unitext may be said to be 
conversion-compatible.  One of the design priorities in making the particular Unicode 
assignment of character codes is to preserve “conversion-compatibility”, i.e. the simplicity 
of these conversion algorithms.  This approach is consistent with the Unicode philosophy 
that processes should be explicitly taken into account as part of the encoding system, rather 
than being implicitly taken for granted. 

Trivial interconversion with existing standards is easily attained for most alphabetic 
scripts.  Unfortunately, straightforward conversion mappings are not possible when it 
comes to the CJK ideographic characters.  Interconversion of these scripts is mainly a 
matter of indexing through a large table ... which after all is a trivial algorithm once the 
table is provided. 

The goal of minimizing the number of conversion processes is attained simply by using 
Unitext as an interchange code among disparate encoding systems.  Each system could be 
taught to speak Unitext as an interlingua, while optionally retaining its own “native 
language” for internal use and local communications.  Such a world might be visualized as 
in the figure below (the rectangles represent systems, the ovals represent the text encodings 
they support).  Evidently having each system implement only 1 conversion process to/from 
Unicode is vastly more efficient than implementing a number N of conversions that grows 
as new local encoding schemes are invented. 
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Since any new international/multilingual text encoding will inevitably require explicit 
conversion to/from existing encodings, this fact might as well be viewed as an opportunity.  
Within the bounds of “conversion-compatibility”, it releases new designs from the need for 
strict conformity with designs of the past.  With luck, the future of computing and 
electronic communications will be longer than the past.  A text encoding design with hopes 
of serving the 1990’s, and perhaps the 21st century, should be engineered primarily to best 
serve the future, not the past. 
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2.3  Twofold expansion of ASCII English text 
Nothing comes for free, and the price of Unicode’s fixed-length 16-bit character code 
design is the twofold expansion of ASCII (or other 8-bit-based) text storage, as seen in the 
figure on the previous page.  This initially repugnant consequence becomes a great deal 
more attractive once the alternative is considered. 

The only alternative to fixed-length encoding is a variable-length scheme using some sort 
of flags to signal the length and interpretation of subsequent information units.  Such 
schemes require flag-parsing overhead effort to be expended for every basic text operation, 
such as get next character, get previous character, truncate text, etc.  Any number of 
variable-length encoding schemes are possible (this fact itself being a major drawback); 
several that have been implemented are described in a later section. 

By contrast, a fixed-length encoding is flat-out simple, with all of the blessings attendant 
upon that virtue.  The format is unambiguous, unique, and not susceptible to debate or 
revision.  It is a logical consequence of the fundamental notion of character stream.  Since 
it requires no flag parsing overhead, it makes all text operations easier to program, more 
reliable, and (mainly) faster.  It also greatly facilitates the process of unambiguously 
interpreting text received from other systems, and the deciphering of text that is found 
embedded within some unknown or extinct data structure. 

Unquestionably the twofold expansion of ASCII text will engender increased storage space 
expense as Unitext is adopted.  However, it may be argued that this expense will not prove 
intolerable.  With regard to English text storage, systems may be divided into three 
categories: 

• Software:  Most system or application level software should contain little or no 
inherent English text.  Indeed, the prevailing requirement is for program-internal text 
to be internationalized into message files that can be made multilingual .... precisely 
the purpose for which Unicode is designed. 

• Compressor clients:  A few text-system clients create and store vast quantities of 
English text, and therefore make use of explicit compression/expansion processes.  
For these systems, Unicode will have no impact at all, since Unicode English text 
compresses to precisely the same size as ASCII English text. 

• Acceptor clients:  Nearly all text-system clients create and store quantities of 
English text small enough that it is not worth their while to use the currently 
available techniques for compressing ASCII English text by a factor of 2 or more.  
These clients unquestioningly accept the “wasteful” storage of ASCII in order to 
receive the benefits of its simplicity in processing.  There is no reason to alter this 
behavior when it comes to Unicode, given that the cost of storage media is still 
rapidly declining.  It turns out that in designing a text encoding to serve for the 
1990’s and beyond, the expense of storage space may be the least important factor 
that could be brought into consideration. 

Historically, computer and communication systems originally implemented 5-bit Baudot 
character encodings, but it was later discovered that these did not encompass lower-case 
letters.  Then 7-bit ASCII/ISO encodings were implemented, but it was later discovered 
that these did not encompass European languages beyond English.  Then 8-bit extended 



ISO encodings were implemented, but it was later discovered that these did not encompass 
Japanese.  Then 14-bit JIS and derivative encodings were implemented, but it was later 
discovered that these did not encompass Chinese. 

The bottom line is that the world of computing has now become a fully international and 
multilingual one, in which 5-bit, 7-bit, 8-bit, and 14-bit text architectures are all extinct.  
The modern length of a computer word is 32 bits, and the ultimate length of a character 
code is 16 bits.  All we have to do is recognize what is already true. 

 

3  The Unicode Proposal 
3.1  Background of the Unicode proposal 
Unicode has evolved from a dozen years of practical experience in implementing 
multilingual computer systems, beginning at Xerox Palo Alto Research Center.  This effort 
has included product or prototype implementation of the most important Latin-script 
languages (including Hausa, Hungarian, Polish, Turkish, Vietnamese, and many others), 
plus non-Latin-script languages including Amharic, Arabic, Armenian, Bulgarian, Chinese, 
Georgian, Greek, Hebrew, Hindi, Japanese, Korean, Persian, Russian, Ukrainian.  This 
work involved the creation of over 100,000 ideographic character images in various sizes 
and styles for Chinese, Japanese, and Korean, plus tables cross-referencing the many 
“standard” encodings of these characters. 

In 1978, the initial proposal for a set of “Universal Signs” was made by Bob Belleville at 
Xerox PARC.  Many persons contributed ideas to the development of a new encoding 
design.  Beginning in 1980, these efforts evolved into the Xerox Character Code Standard 
(XCCS) by the present author, a multilingual encoding which has been maintained by 
Xerox as an internal corporate standard since 1982, through the efforts of Ed Smura, Ron 
Pellar, and others. 

Unicode arose as the result of eight years of working experience with XCCS.  Its 
fundamental differences from XCCS were proposed by Peter Fenwick and Dave Opstad 
(pure 16-bit codes), and by Lee Collins (ideographic character unification).  Unicode 
retains the many features of XCCS whose utility have been proved over the years in an 
international line of communicating multilingual system products. 

 

3.2  Status of the Unicode proposal 
This document is currently a conceptual exploratory draft only.  It in no way represents the 
policy of Xerox Corporation, which currently uses the Xerox Character Code Standard in 
all of its systems products. 

Many aspects of Unicode remain to be perfected, and the design itself calls for an ongoing 
organization devoted to its maintenance, particularly in determining the public registration 
of new characters. 

If the idea of Unicode as a potential new ASCII does have validity, it should be of interest 
to many companies, standards bodies, and other organizations.  The hope is that this 
document may form the nucleus of a cooperative effort to finish the development of 



Unicode in a form satisfactory to all who have an interest in it.  If this effort were to be 
successful, it might naturally lead to the formation of an appropriate Unicode maintenance 
organization. 

Meanwhile, readers’ comments for improving Unicode design or its presentation in this 
draft are avidly solicited. 

 

B  ARCHITECTURE 
4  Text Processes 

4.1  Basic text processes 
A text character encoding is not an end in itself; the encoding exists solely to support 
various processes operating on text, ultimately serving the goals of a system’s users. 

Most computer systems provide low-level support for a relatively small number of 
basic text processes, out of which higher text-processing functionality is built.  The 
following is a suggestive list of basic text processes; it may not be exhaustive, but the 
interesting point is that it is not far from exhaustive: 

• Render visible 
• render characters visible (incl. ligatures, contextual forms, etc.) 
• break lines while rendering (incl. taboo & other such) 
• justify lines 
• compute directionality 
• modify appearance, e.g. kern, underline, slant, bolden 
• Determine units 
• locate “character”, “word”, “sentence” unit 
• deal with punctuation, esp. word-internal (e.g. don’t) 
• Interact with user 
• resolve mouse selection 
• highlight selected text 
• Modify 
• insert keyboard input 
• transform keyboard input input (e.g. romaji-kana input) 
• edit stored text (insert, delete) 
• Compare 
• determine sort-order of two strings 
• filter strings by some criterion (e.g. force lower case, or [ü] => [ue]) 
• match by some criterion (e.g.content, appearance) 
• Analyze text content 
• spell check 
• hyphenate 
• parse morphology 
• Treat text as bulk data 
• compress/decompress 
• truncate (e.g. to fit a string length limit) 



• transmit/receive 

In the case of an English encoding like ASCII, the relationships between the encoding 
and the basic text processes built on it are so straightforward that they can be presumed 
implicitly without discussion.  For example, it is presumed that characters are rendered 
visible one-by-one in little rectangles from left to right, that there is a linear 
alphabetical ordering, and so on. 

When it comes to designing an international/multilingual text encoding like Unicode, 
the relationship between the encoding and the implementation of basic text processes 
often needs to be considered explicitly, for some fundamental reasons: 

 
 



 
• Nearly all of the implicit assumptions that hold for English turn out to fail for 
many writing systems:  in general characters are not rendered visible one-by-one  
in little rectangles from left to right, there is not a linear alphabetical order, and 
so on.  The basic text processes for some scripts are far from straightforward. 

• The set of text characters appropriate for encoding a language is often 
debatable.  For languages as familiar as French and German, there is disagree-
ment over the identity of the text characters (e.g. ISO 8859 defines accented 
letters like “â” and “ü” to be individual characters, whereas ISO 6937 represents 
them by composition instead).  The only way to resolve such cases is to explicitly 
understand how the basic text processes operate on the encoding. 

• No encoding can support all basic text processes equally well, so tradeoffs are 
inevitable.  For example, ASCII define separate codes for upper- and lower-case 
letters, makes some processes easier (e.g. rendering) and some processes harder 
(e.g. comparison).  A different encoding design for English (e.g. case-shift 
control codes) would have reversed this tradeoff.  In designing a new encoding 
for complex scripts, such tradeoffs must be evaluated explicitly rather than being 
made unwittingly. 

The Unicode design does not specify particular basic text processing algorithms; rather, 
in most cases it is sufficient that the existence of appropriate processes can be 
presupposed.  For example, the assignment of Unicode character code numbers cannot 
be assumed to provide an alphabetical character ordering for lexicographic string 
comparison, since in general no linear ordering exists and string comparison may be 
implemented by arbitrarily complex algorithms.  Thus Unicode does not supply any 
particular string comparison process, but its design does presuppose the capability to 
implement sufficiently powerful algorithms. 

There is no reason to expect text processes in general to be so simple as they are for 
English.  Nevertheless, a computer system that can offer its users highly sophisticated 
operating and graphical windowing environments should also be sophisticated enough 
to support text in the user’s native language. 

 

4.2  Flexibility through modular process implementation 
For many important writing systems (e.g. Arabic, Hindi), the optimal text processing 
implementations have yet to be discovered.  Indeed, even for professional-quality 
English typography, the optimal implementation is still being pursued.  A text encoding 
design like Unicode must afford organizations (from companies to countries) the 
flexibility to explore different implementation approaches, and even to retain 
proprietary private approaches for so long as they constitute a competitive advantage. 

This goal of flexibility can be reconciled with the goal of standardization in two ways: 

• distinguish character codes that are common, public, and standardized from 
those that are separate, private, and special-purpose 

• presuppose modularity in the implementation of basic text processes 



The latter point may perhaps be clarified by the generic process model illustrated in the 
figure on the following page, whose most noteworthy feature is the notion of a process 
server and its associated script expert modules.  A responsible text process (e.g. 
rendering or string comparison) is not expected to know how to handle every script in 
the world.  Instead, such detailed knowledge is concentrated in specialist expert 
modules, which make themselves available to a server that can supply their expertise 
(perhaps over a network) at the request of any responsible process that calls for help. 

 



 
 

Apart from providing the flexibility to support disparate implementations of the 
same script, the modularity of the server/expert design has a major beneficial side-
effect:  it provides the flexibility to add new script capabilities incrementally to a 
given system.  Even with a text encoding that supports all the world’s languages, 
particular systems will actually implement only a few scripts at a time.  A flexible, 
modular structuring of text processes is necessary to support the varying needs of 
user configurations. 

 

4.3  The rendering process 
The most important text process is the one for rendering a sequence of text character 
codes visible, mapping them to graphic forms seen on a display screen or paper.  Other 
terms for rendering are presentation or imaging.  From the Unicode point of view, 
rendering is indeed an explicit process like any other, capable of arbitrarily disparate, 
arbitrarily complex implementations.  Provisions for the rendering process occupy a 
major part of the Unicode architectural design. 

 

5  Characters and Glyphs 
5.1  Characters 
Unicode is fundamentally a one-to-one correspondence between 16-bit numbers and the 
characters of the world’s writing systems.  But what, precisely, is a character? 

A (text) character is a unit which is traditionally enumerated as an element of some 
human writing system (e.g. alphabet).  Two such elements are the same character if 
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there is no conventional enumeration that distinguishes them; otherwise they are 
different characters. 

A “conventional enumeration” means primarily a schoolbook alphabet that is widely 
shared by members of a culture; for example, the schoolbook convention is that the 
English alphabet has 26 letters, A through Z.  A secondary kind of enumeration is a 
computer encoding standard; for example, ASCII gives the English alphabet 26 more 
letters, a through z (however, the contents of computer encoding standards are subject 
to reconsideration in the design of Unicode). 

This definition of character is not at all precise; on the contrary, it is intentionally 
founded on the terms “tradition” and “convention”.  The whole point is that there is no 
intrinsic property that defines a character as such.  A character is a “unit of text 
content”, but this notion is equally incapable of formal definition.  The vital question of 
how this imprecise definition can be implemented is deferred to Section xxx. 

A character is a totally abstract entity that has no intrinsic visible form.  The fixed 16-
bit length of Unicodes limits the number of characters to 216 = 65,536.  Of these 
numbers, some are to be publicly standardized Unicode assignments, and others are 
reserved so as to be available for private assignments. 

 

5.2  Glyphs 
In order to be seen, a character must be rendered visible as a graphic shape.  In the 
electronic case, this shape is supplied by an explicit rendering process. 

A glyph is a 2-Dimensional graphic shape that can be used in rendering a text character 
visible (not necessarily one glyph per one character).  Two shapes are the same glyph if 
they can be made to coincide via translation and scaling; otherwise they are different 
glyphs. 

As an example, the following may (arguably) be said to constitute three different 
characters: 

char:  first letter of the Latin alphabet 

char:  first letter of the Cyrillic alphabet 

char:  first letter of the Greek alphabet 

Here the characters are denoted via abstract descriptions.  Meanwhile, the following 
two slightly different shapes are distinct glyphs: 

glyph:  A 

glyph:  A 

In this example, either of the above two glyphs (and many others such as A) may be 
used to render any of the above three characters. 

There are more than 216 = 65,536 distinct glyphs in use, so to give a unique standard 
numeric code to each glyph would require more than 16 bits.  {xxx ISO 9541 and 
AFII}  As with character code numbers, some glyph codes are to be publicly 



standardized assignments, and others are reserved so as to be available for private 
assignments. 

 
 



 

5.3  How the rendering process relates characters and glyphs 
Basic English typography is so simple that English text can be rendered satisfactorily 
on the basis of quite primitive implicit assumptions: 

• glyphs are rectangular, 

• corresponding one-to-one with the coded text characters, 

• arranged linearly along a baseline or path, 

• from left to right, 

• sometimes even constrained by a fixed lattice of positions. 

All of these assumptions fail when it comes to rendering some of the world’s major 
languages, for example Hindi.  This is illustrated in the rendering of the Hindi word 
______ (p_rti, meaning “fulfillment”), shown in the figure on the following page.  The 
1-Dimensional sequence of character codes on the left is rendered into the 2-
Dimensional pattern of glyphs on the right.  For convenience, a character is denoted 
here by a glyph in brackets, thus [_], while a glyph itself is enclosed in braces, thus 
{_}: 

The example shows clearly enough that the rendering process mapping character codes 
into glyphs may in general be an arbitrary algorithm; it need not be one-to-one nor 
linear in any sense.  In the long run, a preferred standard algorithm for each script may 
eventually emerge, but in the meantime Unicode assumes that competing private 
rendering implementations will exist, even for high-quality English typography. 

 

5.4  Stroke style of glyphs 
Many different glyphs may be used to render any given character; for example, the 
glyphs {A, A, A, A} may all render the character “first letter of the Latin alphabet”.  
The differences among these glyphs xxx ISO 9541; for the purposes of Unicode design, 
it is sufficient to combine all such differences into the property stroke style: 

A stroke style is a category of traditional typography which defines a set of glyphs as 
harmonizing with each other for use in setting continuous text.  That is, in rendering 
connected expository text other than ransom notes, most glyphs are selected to have the 
same stroke style. 

Stroke style refers to the typographic design of the component curves and lines that 
make up the glyph form, not to the selection or arrangement of strokes.  For example, 
the two glyphs {_} and {_} differ by a single dot, but all of their component strokes are 
drawn in the same style. 

From the point of view of defining Unicodes, the only interest in the concept of stroke 
style is to be able to eliminate it as a variable.  All of the relationships between 
characters and glyphs hold independently for each stroke style, so for the purposes of 
further discussion it may be assumed that all glyphs are in one given stroke style. 
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_ The character pa [_] is rendered by a glyph on the left, since the script generally runs from left to right_ The 
character _ [_] is rendered below and a bit to the right of the preceding 

_ The character ra [_] is rendered by a contextual form glyph, namely a small hook {___ } that appears high and to 
the right according to certain rules 

_ The character [_], which is a traditional mark (called “halant” in Hindi) that subtracts an implicit vowel from the 
preceding letter, is not rendered at all 

_ The character ta [_] is rendered relatively “normally, i.e. to the right 

_ The character i [_] is rendered to the left of the character that it follows, and optionally (in good typography), it is 
rendered by a ligature glyph {_} combining it with the character three or more codes before it 



 

5.5  Particular relationships between 
characters and glyphs 



It is worth having terms for certain important relationships between characters and glyphs 
that commonly recur: 

An independent form glyph for a given character is a glyph that may normally be used to 
render that character in complete isolation.  For example, the glyphs {A, A, A, A} are 
various independent forms for the character “first letter of the Latin alphabet”.  An 
independent form glyph is not to be confused with the abstract character itself. 

A contextual form is a glyph that may be used to render a given character in some 
circumstances, but not normally in complete isolation.  For example, the glyph {_} is an 
independent form for the character “letter kaf of the Arabic alphabet”, while the glyph 
{___} is a contextual form for the same character that occurs only within words. 

A ligature is a glyph that may be serve to render two or more characters at the same time.  
For example, the {ffi} ligature for English renders the three characters [f][f][i] 
simultaneously. 

A fragment is a glyph that must be used in composition with other glyphs in order to render 
one or more characters.  For example, the umlaut mark {_} is a fragment glyph, since the 
umlaut cannot render any character except in composition with other glyphs. 

A rendering form is any glyph that is not an independent form of some character; this term 
thus includes contextual forms, ligatures, fragments, and perhaps other oddities. 

A set of variant forms is a set of different glyphs in the same stroke style that can play the 
same roles in rendering the same character(s).  For example, the glyphs {__, _} are variant 
forms for the character “letter kaf of the Arabic alphabet” (an Arabic-script font from a 
professional type house will contain both glyphs, confirming that they have the same stroke 
style).  Significantly, the glyphs {_, _} are variant forms for the character “path”.  Note 
that the glyphs {A, A, A, A} are not variant forms, since they do not belong to the same 
stroke style. 

 

5.6  Private fonts and glyphIDs 
Any particular private computer implementation of a rendering process makes use of a 
particular private collection of glyphs.  A font is an implemented collection of glyphs, all in 
the same stroke style, containing at most one glyph from each set of variants.  The word 
font suffers from a considerable amount of abuse; what is important in the usage here is the 
restriction to at most one glyph from each set of variants. 

A font implementation needs to index the glyphs within the font by some code number.  A 
glyphID is a private code number used to index the glyphs within a font.  There is no 
restriction on the length of glyphID codes, but for international/multilingual fonts the 
length 16 bits suggests itself, since there are far more characters than 28 = 256, and far 
fewer glyphs in any one font than 216 = 65,536. 

In general, a font and its associated rendering process define an arbitrary mapping between 
glyphIDs and Unicodes.  Some of the glyphs in a font may be independent forms for 
individual characters, while others may be rendering forms that do not directly correspond 
to any one character.  For those glyphs that are independent forms, it may be convenient 
for the glyphID to have the same numerical value as the Unicode, but this is not required.  



In general, a font also defines an even more arbitrary mapping between glyph codes and 
glyphIDs. 

The figures on the following pages attempt to illustrate the relationships among characters, 
glyphs, and fonts as they have been defined.  The first two figures are set in a “3-D pseudo 
glyph space”, whose dimensions are: 

• The text character that the glyph is used to render (i.e. Unicode) 

• The stroke style of the glyph 

• The glyph form variant (if any) 

Actually, glyphs cannot in general be cleanly factored in this manner, since the relationship 
between text characters and glyphs is not generally one-to-one.  However, it is worth 
briefly setting aside the fine points in order to gain a useful visualization. 

The first figure shows several glyphs for the English letters [a][b][c] floating in pseudo 
glyph space.  The stroke style planes are drawn in, roughly parallel to the plane of the page.  
The variant dimension is shown as vertical.  The glyphs project down onto a horizontal 
dimension of text characters: this is the linear space of Unicode numbers. 

In each stroke style there are two variant form glyphs for the letter [a] (they even have 
names: “humanitarian” and “grotesque”).  It would be a typographic error to use both of 
these forms in the same running text, so one form or the other must be selected for 
inclusion in a particular font. 
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The figure below illustrates the selection of a particular subset of the glyphs to form a font.  
The font is the white horizontal band; the rejected variant forms are grayed out. 

 



 
 

The English alphabet does not offer enough complexities to illustrate the interesting 
features of this model.  The figure below shows a more complicated case, that of Hindi.  In 
this visualization, only a portion of a single stroke-style plane is shown, and the glyph 
space, character space, and private font are broken out as separate bands. 
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• The top band is a portion of (pseudo) glyph space, which is the total reper-
toire of graphic forms.  Each glyph has a standard identifying code according 
to some system independent of Unicode.  Glyphs that are vertically aligned 
are variant forms, i.e. free-choice alternative ways of writing the same 
character.  The three glyphs {___ }, {_}, and {_} are rendering glyphs: they are 
not the independent form of any letter, and hence they do not correspond directly to 
any Unicode. 

• The bottom band is a portion of 16-bit text character space, which is the total 
repertoire of content-bearing entities.  To clarify this figure, characters are denoted 
by a content description such as“Hindi A”, rather than via a graphic.  Each text 
character has a 16-bit Unicode, independent from the glyph codes. 

• The middle band is a portion of an instance of a private font, which is one of many 
possible private selections of glyphs.  A font includes at most one choice from each 
variant form set.  Each glyph has a private identifying code called a glyphID, which 
has no necessary relationship with either the standard glyph codes or the standard 
character codes. 
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The previous figure should make it clear that, even with regard to static encodings, the 
Unicode character code assignments are merely one aspect of a larger architecture.  The 
Unicode design retains flexibility for disparate private implementations by providing for, but 
not specifying, several key elements: 



• available glyphs:  Especially the rendering glyphs may be privately designed, 
tailored to a specific and perhaps proprietary implementation. 

• glyphID encoding:  This and the mappings to it are implementation-private. 

• selection of glyphs:  The model does not specify who makes the selection of 
variants that go into a font.  This may be done by the type designer, by the type 
vendor, by the system vendor, or perhaps (in the case of a desktop publishing 
system) even by the individual user building a personalized font. 

 

6  Sequences of Characters 
6.1  Plain text and fancy text 
Plain text is a pure sequence of character codes.  Plain Unicode text, i.e. a sequence of 
Unicodes, is called Unitext. 

Fancy text is any text representation consisting of plain text plus added information.  For 
example, multifont text as formatted by a desktop publishing system is fancy text. 

The kinds of data structures that can be built into fancy text are limited only by the 
imagination.  To give but one example, in fancy text containing ideographs it would be 
possible (and beneficial) to store the phonetic reading of each ideograph somewhere in the 
text structure.  Other applications abound. 

On the other hand, the simplicity of plain text gives it a natural role as a major structural 
element: 

• Plain text arises inevitably from the notion of a character stream 

• Plain text is the intersection or least common denominator of all fancy text: 

 



 
 

Both plain and fancy text are already familiar constructs in ASCII-based systems.  From 
experience with systems using both types of text, their relative functional roles are well 
known: 

• Plain text, being inevitable, is public, standardized, universally readable 

• Fancy text, being consciously designed for a particular purpose, is often intended 
to be private, implementation-specific, even proprietary 

 

6.2  Content vs. appearance in plain vs. fancy text 
The details of any particular fancy text design can be made public or standardized, but the 
fact remains that most fancy text designs are vehicles for particular implementations, not 
readable by other implementations.  Since fancy text equals plain text plus added 
information, the extra information in fancy text can always be stripped away to reveal the 
“pure” text underneath.  This operation is familiar, for example, in word processing 
systems that deal with both their own private fancy format and with the universal plain 
ASCII text file format.  Thus by default: 

• Plain text represents the basic interchangeable “content” of text 

This is a suitable guideline, despite the fact that the term “content” appears to have no 
precise intrinsic definition. 

Given that plain text represents content, then the interesting question becomes its 
relationship to appearance information.  Since text characters are abstract entities that have 
no visible form, plain text per se has no appearance at all.  It requires a rendering process 
to make it visible. 

If the same plain text sequence is given to disparate rendering processes, there is no 
expectation that they should produce the identical text appearance; all that is required is 
that they should preserve the text content, i.e. that disparate rendering processes should 
make the text legible with the intended reading.  Therefore, the relationship between 
appearance and the content of plain text may be stated as follows: 

• Plain text must contain enough information to permit the text to be rendered 
legibly, nothing more 
This conclusion is of the utmost importance in a text encoding design.  It tells a great deal 
in general about what problems an encoding must be designed to solve, and it also answers 
a great many vital specific encoding issues.  To give but a few examples: 
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• Q: Does the optional ligature glyph {ffi} have a corresponding Unicode? 
 A: No.  Use of the ligature {ffi} is never necessary to the legibility of English text, 
therefore the basic content of the word “office” would never need to be represented 
by the sequence * [o][ffi][c][e].  It follows that any mechanism added to the text to 
call selectively for this ligature would be a fancy text feature: a nice touch, but one 
beyond the basics of plain English rendering. 

• Q: Does the obligatory ligature {__} in Arabic have a corresponding 
Unicode? 
 A: No.  Since this ligature is obligatory, the plain character sequence [_]_[_] 
contains enough information to permit usage of the ligature to be inferred, thus 
permitting the text to be rendered legibly. 

• Q: Does the sequence of Hindi letters [_][_] require indicators, control 
characters, or other contrivances to specify that the {_} glyph is treated as a mark 
that is attached below the {_} glyph? 
 A: No.  The rendering behavior of Hindi letters follows regular rules, so a plain 
character sequence contains enough information to permit the placement of the 
vowel marks to be inferred, thus permitting the text to be rendered legibly. 

• Q: Does plain text containing characters of the Arabic or Hebrew alphabets 
require indicators, alternate forms of characters, or other contrivances to specify text 
directionality? 
 A: No, outside of rare exceptional cases.  In nearly all cases, a plain character 
sequence contains enough information to permit the directional layout of text 
containing Arabic or Hebrew to be inferred, thus permitting the text to be rendered 
legibly. 

 

6.3  Implicit spelling conventions and rendering conventions 
A spelling convention is traditional rule for selecting and sequencing text characters to 
representing some particular text content. 

A rendering convention is traditional rule for mapping from a conventionally-spelled text 
character sequence to a rendered text configuration. 

Spelling conventions come primarily from the same widely shared schoolbook traditions 
that define the characters themselves.  For example, the English word “dog” (canine) is 
traditionally spelled _[d], _[o], _[g].  (Spelling may in some cases have some correlation 
with pronunciation, but in general spelling rules are arbitrary, even in the case of the word 
“dog” which has many pronunciation variants in English.) 

The plain character sequence _[d], _[o], _[g] per se does not contain within it enough 
information to specify how it is to be rendered, even if glyphs {d}, {o}, {g} are at hand.  
The plain text does not specify the relative positions of the glyphs, which might be: 

dog  god  d 
    g 
  o 

It would certainly be possible to create a fancy-text data structure that could specify the 
glyph positions precisely, but that is beside the point.  According to the criterion given in 



the previous section, it must also be possible for the plain character sequence alone, with 
no added information, to be rendered legibly (i.e. in this case as “dog”). 

The only way that plain text rendering can be possible is via rendering conventions shared 
between the character encoding and the rendering process.  There is nowhere else for 
specific rendering information to come from.  For example, every basic English rendering 
process implicitly assumes that a sequence of English letters will be mapped one-by-one to 
glyphs arranged linearly from left to right along a baseline or path. 

The Unicode model makes explicit the fact that rendering conventions like this are 
indispensable: 

• Plain text rendering can be accomplished only through coordination of spelling 
conventions with rendering conventions 

To give a contrasting example, the spelling conventions of Hindi are that the vowels (e.g. 
[_]) should come after their consonants (e.g. [_]) in phonetic sequence, but the rendering 
conventions specify that certain vowel glyphs are attached as marks below the preceding 
consonant glyphs.  By the same token, it is a rendering convention that Arabic and Hebrew 
letters are arranged linearly from right to left (not to mention the complex contextual 
mutations of the Arabic letterforms). 

The overall point here is that: 

• Spelling conventions and rendering conventions are not explicitly encoded by any 
bit patterns at all in a plain text sequence 

A major particular corollary is that: 

• Basic rendering directionality is one of the rendering conventions, it is not 
explicitly encoded by any bit patterns at all in a plain text sequence 

In other words, it is a widely-known convention that English letters are rendered from left 
to right, while Arabic and Hebrew letters are rendered from right to left.  This information 
need not, and indeed cannot, be included explicitly in plain text. 

The figure below illustrates an example of rendering mixed English/Arabic plain text, 
involving the word majlis (council).  If disparate systems render the text, its final 
appearance may be quite different, but in each case its content is legibly the same.  The 
rendering conventions include not only left/right directionality, but also the placement of a 
vowel mark below a letter, the use of contextual letterforms, and optional use of a ligature.  
None of this information is explicitly specified in the text sequence. 

 



 
 

 

6.4  Explicit conventions and character properties 
Spelling and rendering conventions cannot be encoded explicitly in plain text  --  simply 
because plain text has no place to put them.  They are therefore implicit in the sense that 
they must be shared by agreement between the creator of the text and the implementor of 
the rendering process.  However, these conventions can be made explicit in the sense that 
they can be published and even standardized. 

One useful format for making spelling and rendering conventions explicit is via lists of 
characters that share certain rendering properties.  For example: 

• Characters rendered from left to right:  Latin alphabet, Cyrillic alphabet, etc. 

• Characters rendered from right to left:  Arabic alphabet, Hebrew alphabet 

• Subscripted Hindi vowels:  u, _, r, r, l, l 

Some conventions may not be susceptible to such a simple format.  For example, it is a 
spelling rule of the Indian national standard ISCII for Hindi that all vowel characters are to 
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be spelled in phonetic sequence after the consonants that they follow.  (This rule is not 
vacuous, since in Hindi the glyph {_} for the vowel i is written and typewritten before the 
consonant that it follows.)  It is not clear how algorithmic rules of this sort can be 
represented in a standardized fashion.  Perhaps a simple statement such as the above is 
sufficient. 

An awkward problem with publishing these conventions is that for some scripts (e.g. 
Arabic), the details of how to render plain text correctly are difficult to discover, and may 
currently constitute a proprietary advantage.  Soon enough, however, all such techniques 
will become public knowledge susceptible to standardization. 

The fact that spelling and rendering conventions are inevitable, and their eventual 
publication and standardization desirable, permits natural Unitext solutions for the two 
most difficult problems concerning the relation between spelling and rendering, namely: 
applied diacritical marks and Korean Hangul.  These will be discussed in detail in their 
appropriate sections, but may be summarized as follows: 

• Applied diacritical marks:  A list of diacritical mark characters are defined (e.g. 
umlaut [_]), having the conventional rendering property that their glyphs are 
“applied” to the glyph of the character that precedes them in the text.  The correlate 
spelling convention is that a diacritical mark character is sequenced after the 
character that it “applies” to. 

• Korean Hangul:  The spelling convention is that Korean Hangul text is spelled out 
in individual Hangul characters.  The rendering convention is that such text is 
rendered by first parsing it into umcels (syllable groups), which are then realized via 
privately-defined rendering glyphs. 

The publication of standardized spelling and rendering conventions is not an intrinsic part 
of the Unicode standard, but it is very closely affiliated.  A map of the text elements 
associated with the Unicode architecture is provided at the end of this section. 

 
 

6.5  Plain text filters 
A filter is a process that takes some plain text as input, performs a simple transformation 
on it, and yields some plain text as output.  Often the transformation consists of 
transliterating one set of characters (or character n-tuples) into another. 

Filters are familiar from contexts like the UNIX® operating system, and adequately 
documented as such.  Their power arises from the fact that they can be arbitrarily 
concatenated to build up useful complex transformations.  Filters provide a natural 
compensation for some of the variability that inevitably arises in Unitext sequences: 

• Filters can compensate for ambiguities caused by spelling conventions.  For 
example, some “marked” characters like u-umlaut “ü” can be spelled two ways: 
either as the base character followed by the mark [u][_], or as a single Unicode [ü].  
A system that wishes to normalize the text it receives to enforce one spelling 
convention or the other can easily do so via a filter. 

• Filters can compensate for tradeoffs unavoidably made in the design of a text 
encoding standard.  For example, ASCII makes the debatable tradeoff of building 



“case” into the character encoding, thereby forcing many processes to normalize the 
text they receive into all upper-case or all lower-case.  Such a transformation can be 
achieved naturally via a filter. 

A general architecture for text processes might well assume that a library of useful filters is 
provided, available to be attached whenever a basic text process is applied to a stream of 
text character codes. 

 

6.7  Control characters 
Existing character encoding standards include a concept called “control character”.  The 
definition of ASCII control characters in the ANSI X3.4-1977 standard is: 

“Control Character.  A character whose occurrence in a particular context initiates, 
modifies, or stops an action that affects the recording, processing, transmission, or 
interpretation of data.” 

From the Unicode point of view, in which the role of text processes is dealt with explicitly, 
it is quite meaningless to say that “A character ... initiates ... an action ...”  All characters 
are passively acted upon by processes.  Recent standards, such as that for Office Document 
Architecture (ISO 8613/1: 1988), attempt to work around this problem by changing the 
wording of the definition: 

“control function:  An element of a character set that affects the recording, 
processing, transmission or interpretation of data.” 

But now this definition applies equally well to all text characters.  It seems worthwhile to 
rethink the concept of “control character” from the beginning. 

In terms of the Unicode model, the traditional ISO-standard control characters fall into four 
categories: 

• Punctuation:  The character “CR: Carriage Return” (hex 0D) may be regarded as a 
punctuation mark bearing text content, indicating the end of a paragraph in the same 
way that a punctuation mark like period indicates the end of a sentence or a comma 
the end of a phrase.  The character “SP: space” (hex 20) is likewise indispensable 
punctuation.  These two characters are members of Unicode. 

• Substitute:  The character “SUB: Substitute” (hex 1A) has transitory value in the 
history of Unicode.  If multilingual Unitext is converted to a more restrictive 
encoding such as ASCII, the best that can be done with a non-ASCII character is to 
map it to SUB.  If the resulting ASCII text is converted back to Unitext, the best that 
can be done with a SUB is to retain it as such.  Therefore SUB may be said to bear 
the content “there was a character here, but its identity got lost”.  This function is 
unneeded in a pure Unitext world. 

• Meta-encoding mechanisms:  Characters such as  “SO: Shift Out” (hex 0E) and 
“SI: Shift In” (hex 0F) are intended for meta-mechanisms that vary the interpretation 
of the text encoding format itself.  Since Unitext is specifically designed to eliminate 
variable encoding, these mechanisms have no place in Unitext. 

• Device control, etc.:  The remaining control characters are sub-categorized by ISO 
as device control, transmission control, information separator, and format effector 



characters.  Some of these refer to obsolete functionality, and some might be useful 
in a fancy text extension; but none of them belong in plain text. 

The Unicode model does not preclude control codes in general, except from plain text.  
There is nothing to prevent private implementations from agreeing to interpret a privately-
assigned code value (presumably from the User section of the Unicode space) in any 
manner at all including so-called “control functions”.  The only restriction is that such 
representations are not to be considered standard, public, plain Unitext. 

Once it is realized that so-called “control functions” generally consist of adding extra 
information to plain text, the door is open to consider the best structures for such data.  In 
general there may be alternative data structures for implementing “fancy” text functionality 
that may be preferable to embedding control codes in-line in the text ... at any rate, this is a 
matter beyond the concern of the plain Unitext level of encoding. 

 

6.6  Layers of text representation 
A great number of properties, structures, and operations are built on a text encoding model.  
These can be roughly organized into a layered structure, as suggested in the figure below. 

 



 
 

The primary division of layers is between plain text and fancy text.  Within each of these 
levels, it is possible to distinguish a finer layered structure. 

Within fancy text, the layers are rather general, since fancy text can take on arbitrary 
capabilities.  However, the most important layers of fancy text operations are undoubtedly 
those that deal with providing high-quality text appearance, and then the applications built 
on that. 

Within plain text, the layers correspond basically to the topics discussed in this document, 
although language-specific properties are not discussed here.  The two most important 
layers of plain text operations are those focused on individual characters and those 
involving sequences of characters. 

To be complete, a text encoding standard ideally would cover all of the layers shown in the 
figure.  The present document is primarily addressed to only the bottom layer which 
defines Unicodes, but the Unicode design cannot be understood without an awareness of its 
relationship with the other layers of a complete text architecture. 
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[Figure Unicode Codespace Allocation goes here] 
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