
Unicode 88

Joseph D. Becker

August 29, 1988

rick@unicode.org
This file suffers from some oddities of formatting because it is a converted version of the original document. The original was written on a Xerox ViewPoint workstation system, and here the file has been converted to Microsoft Word (both ViewPoint and Word descend directly from the Bravo document editor created at Xerox PARC in the mid-1970's).

A INTRODUCTION
1 Overview

1.1 Abstract
This document is a draft proposal for the design of an international/multilingual text
character encoding system, tentatively called Unicode.

Unicode is intended to address the need for a workable, reliable world text encoding.
Unicode could be roughly described as “wide-body ASCII” that has been stretched to 16
bits to encompass the characters of all the world’s living languages. In a properly
engineered design, 16 bits per character are more than sufficient for this purpose.

In the Unicode system, a simple unambiguous fixed-length character encoding is integrated
into a coherent overall architecture of text processing. The design aims to be flexible
enough to support many disparate (vendor-specific) implementations of text processing
software.

A general scheme for character code allocations is proposed (and materials for making
specific individual character code assignments are well at hand), but specific code
assignments are not proposed here. Rather, it is hoped that this document may evoke
interest from many organizations, which could cooperate in perfecting the design and in
determining the final character code assignments.

1.2 Need for a new, world-wide ASCII
Electronic transmission and storage of the written word are based on standard numerical
encoding of text characters. Currently much of the computing world relies on the character
encoding for English text called 7-bit ASCII. ASCII (American Standard Code for
Information Interchange) is defined by the standards ANSI X3.4-1977 and ISO 646-1973
(E). ANSI is the American National Standards Institute, Inc., and ISO is the worldwide
International Organization for Standardization.

ASCII provides a common coinage for representing text content, permitting reliable
exchange of English text among disparate software applications. Less obviously,
sequences of ASCII characters form structural elements that interlink diverse computer
systems. ASCII text files provide a widely-accepted file format among text-oriented
programs (e.g. text editors, electronic mail), ASCII character streams provide one standard
basis for file communication protocols, and ASCII text “filters” are capable of supporting
an interesting class of text-processing applications.

The problem with ASCII is simply that the people of the world need to be able to
communicate and compute in their own native languages, not just in English. Text
processing systems designed for the 1990’s and the 21st century must accommodate Latin-
based alphabets for European languages such as French, German, and Spanish; and also
major non-Latin alphabets such as Arabic, Greek, Hebrew, and Russian; and also “exotic”
scripts of growing importance such as Hindi and Thai; not to mention the thousands of
ideographic characters used in writing Chinese, Japanese, and Korean.

What is needed is a new international/multilingual text encoding standard that is as
workable and reliable as ASCII, but that covers all the scripts of the world.

For reference, the table below ranks the world’s writing systems roughly in order of
commercial importance, as measured by the total GNP of countries using each system:

1.3 Technical summary of Unicode
The power of ASCII comes from two simple properties:

• Its workability in processing arises from a fixed length of character code (7 bits
within an 8-bit byte)

• Its reliability in conveying text content arises from a fixed one-to-one
correspondence with the characters of the English alphabet

Unicodes are the most straightforward multilingual generalization of ASCII codes:

• Fixed length of character code (16 bits)

• Fixed one-to-one correspondence with characters of the world’s writing systems

That is, each individual Unicode code is an absolute and unambiguous assignment of a 16-
bit number to a distinct character.

Since there are vastly more than 28 = 256 characters in the world, the 8-bit byte has become
a useless commodity in the context of modern international/multilingual character
encoding. Stated otherwise, the evolution from ASCII to Unicode means precisely the

Rank Writing System Languages % of
World
GNP

1 Latin English, German, French, Spanish, Italian,
Portuguese, Indonesian/Malay, ...

68

2 CJK ideographs Chinese, Japanese, (Korean) 14
3 Cyrillic Russian, Ukrainian, ... 14
4 Arabic Arabic, Persian, ... 3
5 Devan_gar1 family Hindi, Bengali, Punjabi, Marathi, ... 1
6 Korean (Hangul) Korean 1
7 Dravidian family Telugu, Tamil, ...
8 Greek Greek
9 Khmer Thai, Lao, Khmer
10 Hebrew Hebrew

expansion of character codes from an 8-bit to a 16-bit basis. In Unicode, the 8-bit byte
plays no role of any kind.

The name “Unicode” is intended to suggest a unique, unified, universal encoding. A
sequence of Unicodes (e.g. text file, string, or character stream) is called “Unitext”.

The Unicode design includes major principles that support the pure 16-bit encoding:

• characters vs. glyphs: A clear and all-important distinction is made between
characters, which are abstract text content-bearing entities, and glyphs, which are
visible graphic forms. This model permits the resolution of many problems
regarding variant forms, ligatures, and so on.

• CJK ideograph unification: The clear model of characters and glyphs permits
unification of tens of thousands of equivalent ideographs that are currently given
separate codes in China, Japan, and Korea.

• public vs. private: The design provides for the distinction between common-use
encodings which are public, and other encodings which are kept private so as to
enable vendor-specific implementations, vertical-market applications, and so on.

• plain vs. fancy text: A simple but crucial distinction is made between plain text,
which is a pure sequence of Unicodes, and fancy text, which is any text structure that
bears additional information beyond pure character content.

• process-based design: The design is founded on the fact a text encoding exists
solely to support the various processes that act upon text. Thus processes such as
rendering, filtering, and so on participate in the design.

Unicode may find its initial utility as a standard international/multilingual interchange
encoding, but it is also designed to serve as the basis for efficient internal text
representation (a.k.a. process encoding) in any text environment where more than 256
different characters are required.

01101000
01110100

01101001
01110011
00100000

01110011
00100000
01110100
01100101
01111000
01110100

t
h

s

i
s

t
e
x
t

i

01101001

ASCII text

0000000001110100 t
0000000001101000
0000000001101001
0000000001110011

h
i
s

Unitext

0000000000100000
0010011101110001 _
0010011101011011 _
0010011101101000 _
0000000000100000
0100101000011011 _
0100101000001010 _
0100101010010101 _

1.4 Structure of this document
The many aspects of text character encoding are highly interrelated, and indeed each topic
is best conceived in terms of a conception of all the others. Lacking hypertext or the ability
to discuss all topics at once, the document is arranged as follows:

• Part A is an overview of the major concepts of Unicode.

• Part B is a detailed presentation of Unicode’s architectural underpinnings.

• Part C applies the Unicode approach to major specific problems of character
encoding.

• Part D contains reference lists of particular details, including suggested
Unicode allocations and assignments.

Although the document is laid out from the general to the particular, solutions to the
problems of character encoding actually evolve from the particular to the general. For
example, the definitions in Part B are made only because they were found necessary to
handle the particular problems described in Part C. Thus, the document may make an
equal amount of sense if read backward.

2 The 16-bit Approach
The idea of expanding the basis for character encoding from 8 to 16 bits is so sensible,
indeed so obvious, that the mind initially recoils from it. There must be a catch to it,
otherwise why didn’t we think of this long ago?

The major catch is simply that the 16-bit approach requires ___________ (perestroika), i.e.
restructuring our old ways of thinking. Rather than struggling to salvage obsolete 8-bit
encodings via horrendous “extension” contrivances, we need to recognize that the current
absence of a standard international/multilingual encoding is a unique opportunity to rethink
and revitalize the design concepts behind text encoding.

However, there do exist specific concerns that initially appear to be the “catch” to a 16-bit
encoding. To some extent these concerns are overrated, and to some extent they are
legitimate but inevitable. This section outlines how the Unicode 16-bit approach either
provides for these concerns or trades them off against the greater good. A much longer list
of detailed design issues is addressed in Section D.

2.1 Sufficiency of 16 bits
Are 16 bits, providing at most 65,536 distinct codes, sufficient to encode all characters of
all the world’s scripts? Since the definition of a “character” is itself part of the design of a
text encoding scheme, the question is meaningless unless it is restated as: Is it possible to
engineer a reasonable definition of “character” such that all the world’s scripts contain
fewer than 65,536 of them?

The answer to this is Yes. (Of course, the converse need not be true, i.e. it is certainly
possible, albeit uninteresting, to come up with unreasonable definitions of “character” such

that there are more than 65,536 of them.) There are two main concepts in Unicode’s
approach to this fundamental question:

• The proper definition of character

• The distinction of “modern-use” characters from “obsolete/rare” ones

Proper definition of “character”: Unicode does not confuse the notion of character with
that of glyph. There are far more glyphs than characters because of the existence of variant
forms, rendering forms, and fragment glyphs that can be used to compose graphic forms
dynamically. Also, Unicode avoids tens of thousands of character replications by
consolidating together the ideographic characters used in writing Chinese, Japanese, and
Korean.

Distinction of “modern-use” characters: Unicode gives higher priority to ensuring utility
for the future than to preserving past antiquities. Unicode aims in the first instance at the
characters published in modern text (e.g. in the union of all newspapers and magazines
printed in the world in 1988), whose number is undoubtedly far below 214 = 16,384.
Beyond those modern-use characters, all others may be defined to be obsolete or rare; these
are better candidates for private-use registration than for congesting the public list of
generally-useful Unicodes.

In other words, given that the limitation to 65,536 character codes genuinely does satisfy
all the world’s modern communication needs with a safety factor of about four, then one
can decide up-front that preserving a pure 16-bit architecture has a higher design priority
than publicly encoding every extinct or obscure character form. Then the sufficiency of 16
bits for the writing technology of the future becomes a matter of our active intention, rather
than passive victimization by writing systems of the past.

2.2 Relation of Unicode to ASCII and other existing codings
Given two sequences of bits (“bit patterns”) that supposedly represent the same series of
text characters in two different encoding systems, either:

• the sequences are bit-for-bit identical, or

• they are not identical, in which case they require explicit software conversion.

Clearly, almost every possible pair of text encoding schemes require explicit software
interconversion; that is, rarely is one encoding truly a pure “extension” of another. Once
the inevitability of explicit conversion processes is recognized, the proper design goals for
“compatibility” of a new encoding scheme with existing encodings become:

• to minimize the complexity of conversion processes

• to minimize the number of conversion processes

As an example of minimizing conversion complexity, interchange between ASCII text and
Unitext is performed by a simple loop of the following operations:

• To convert a 7-bit ASCII character to a Unicode:
 • Preface it with the 9 bits 000000000.

• To convert a Unicode to a 7-bit ASCII character:
 • If the first 9 bits are 000000000, remove them.
 • Otherwise, assign it to a junk code, e.g. SUB (hex 1A).

Insofar as the above algorithms are quite trivial, ASCII text and Unitext may be said to be
conversion-compatible. One of the design priorities in making the particular Unicode
assignment of character codes is to preserve “conversion-compatibility”, i.e. the simplicity
of these conversion algorithms. This approach is consistent with the Unicode philosophy
that processes should be explicitly taken into account as part of the encoding system, rather
than being implicitly taken for granted.

Trivial interconversion with existing standards is easily attained for most alphabetic
scripts. Unfortunately, straightforward conversion mappings are not possible when it
comes to the CJK ideographic characters. Interconversion of these scripts is mainly a
matter of indexing through a large table ... which after all is a trivial algorithm once the
table is provided.

The goal of minimizing the number of conversion processes is attained simply by using
Unitext as an interchange code among disparate encoding systems. Each system could be
taught to speak Unitext as an interlingua, while optionally retaining its own “native
language” for internal use and local communications. Such a world might be visualized as
in the figure below (the rectangles represent systems, the ovals represent the text encodings
they support). Evidently having each system implement only 1 conversion process to/from
Unicode is vastly more efficient than implementing a number N of conversions that grows
as new local encoding schemes are invented.

01100101
01110100

01111000
01110100

t
e

t
x

ASCII text

0000000001110100 t
0000000001100101
0000000001111000
0000000001110100

e
x
t

Unitext

Since any new international/multilingual text encoding will inevitably require explicit
conversion to/from existing encodings, this fact might as well be viewed as an opportunity.
Within the bounds of “conversion-compatibility”, it releases new designs from the need for
strict conformity with designs of the past. With luck, the future of computing and
electronic communications will be longer than the past. A text encoding design with hopes
of serving the 1990’s, and perhaps the 21st century, should be engineered primarily to best
serve the future, not the past.

JIS JIS XYZ XYZ

8-bit 8-bit

Unitext Unitext Unitext Unitext

Unitext

ASCII

Unitext

ASCII

Unitext Unitext

2.3 Twofold expansion of ASCII English text
Nothing comes for free, and the price of Unicode’s fixed-length 16-bit character code
design is the twofold expansion of ASCII (or other 8-bit-based) text storage, as seen in the
figure on the previous page. This initially repugnant consequence becomes a great deal
more attractive once the alternative is considered.

The only alternative to fixed-length encoding is a variable-length scheme using some sort
of flags to signal the length and interpretation of subsequent information units. Such
schemes require flag-parsing overhead effort to be expended for every basic text operation,
such as get next character, get previous character, truncate text, etc. Any number of
variable-length encoding schemes are possible (this fact itself being a major drawback);
several that have been implemented are described in a later section.

By contrast, a fixed-length encoding is flat-out simple, with all of the blessings attendant
upon that virtue. The format is unambiguous, unique, and not susceptible to debate or
revision. It is a logical consequence of the fundamental notion of character stream. Since
it requires no flag parsing overhead, it makes all text operations easier to program, more
reliable, and (mainly) faster. It also greatly facilitates the process of unambiguously
interpreting text received from other systems, and the deciphering of text that is found
embedded within some unknown or extinct data structure.

Unquestionably the twofold expansion of ASCII text will engender increased storage space
expense as Unitext is adopted. However, it may be argued that this expense will not prove
intolerable. With regard to English text storage, systems may be divided into three
categories:

• Software: Most system or application level software should contain little or no
inherent English text. Indeed, the prevailing requirement is for program-internal text
to be internationalized into message files that can be made multilingual precisely
the purpose for which Unicode is designed.

• Compressor clients: A few text-system clients create and store vast quantities of
English text, and therefore make use of explicit compression/expansion processes.
For these systems, Unicode will have no impact at all, since Unicode English text
compresses to precisely the same size as ASCII English text.

• Acceptor clients: Nearly all text-system clients create and store quantities of
English text small enough that it is not worth their while to use the currently
available techniques for compressing ASCII English text by a factor of 2 or more.
These clients unquestioningly accept the “wasteful” storage of ASCII in order to
receive the benefits of its simplicity in processing. There is no reason to alter this
behavior when it comes to Unicode, given that the cost of storage media is still
rapidly declining. It turns out that in designing a text encoding to serve for the
1990’s and beyond, the expense of storage space may be the least important factor
that could be brought into consideration.

Historically, computer and communication systems originally implemented 5-bit Baudot
character encodings, but it was later discovered that these did not encompass lower-case
letters. Then 7-bit ASCII/ISO encodings were implemented, but it was later discovered
that these did not encompass European languages beyond English. Then 8-bit extended

ISO encodings were implemented, but it was later discovered that these did not encompass
Japanese. Then 14-bit JIS and derivative encodings were implemented, but it was later
discovered that these did not encompass Chinese.

The bottom line is that the world of computing has now become a fully international and
multilingual one, in which 5-bit, 7-bit, 8-bit, and 14-bit text architectures are all extinct.
The modern length of a computer word is 32 bits, and the ultimate length of a character
code is 16 bits. All we have to do is recognize what is already true.

3 The Unicode Proposal
3.1 Background of the Unicode proposal
Unicode has evolved from a dozen years of practical experience in implementing
multilingual computer systems, beginning at Xerox Palo Alto Research Center. This effort
has included product or prototype implementation of the most important Latin-script
languages (including Hausa, Hungarian, Polish, Turkish, Vietnamese, and many others),
plus non-Latin-script languages including Amharic, Arabic, Armenian, Bulgarian, Chinese,
Georgian, Greek, Hebrew, Hindi, Japanese, Korean, Persian, Russian, Ukrainian. This
work involved the creation of over 100,000 ideographic character images in various sizes
and styles for Chinese, Japanese, and Korean, plus tables cross-referencing the many
“standard” encodings of these characters.

In 1978, the initial proposal for a set of “Universal Signs” was made by Bob Belleville at
Xerox PARC. Many persons contributed ideas to the development of a new encoding
design. Beginning in 1980, these efforts evolved into the Xerox Character Code Standard
(XCCS) by the present author, a multilingual encoding which has been maintained by
Xerox as an internal corporate standard since 1982, through the efforts of Ed Smura, Ron
Pellar, and others.

Unicode arose as the result of eight years of working experience with XCCS. Its
fundamental differences from XCCS were proposed by Peter Fenwick and Dave Opstad
(pure 16-bit codes), and by Lee Collins (ideographic character unification). Unicode
retains the many features of XCCS whose utility have been proved over the years in an
international line of communicating multilingual system products.

3.2 Status of the Unicode proposal
This document is currently a conceptual exploratory draft only. It in no way represents the
policy of Xerox Corporation, which currently uses the Xerox Character Code Standard in
all of its systems products.

Many aspects of Unicode remain to be perfected, and the design itself calls for an ongoing
organization devoted to its maintenance, particularly in determining the public registration
of new characters.

If the idea of Unicode as a potential new ASCII does have validity, it should be of interest
to many companies, standards bodies, and other organizations. The hope is that this
document may form the nucleus of a cooperative effort to finish the development of

Unicode in a form satisfactory to all who have an interest in it. If this effort were to be
successful, it might naturally lead to the formation of an appropriate Unicode maintenance
organization.

Meanwhile, readers’ comments for improving Unicode design or its presentation in this
draft are avidly solicited.

B ARCHITECTURE
4 Text Processes

4.1 Basic text processes
A text character encoding is not an end in itself; the encoding exists solely to support
various processes operating on text, ultimately serving the goals of a system’s users.

Most computer systems provide low-level support for a relatively small number of
basic text processes, out of which higher text-processing functionality is built. The
following is a suggestive list of basic text processes; it may not be exhaustive, but the
interesting point is that it is not far from exhaustive:

• Render visible
• render characters visible (incl. ligatures, contextual forms, etc.)
• break lines while rendering (incl. taboo & other such)
• justify lines
• compute directionality
• modify appearance, e.g. kern, underline, slant, bolden
• Determine units
• locate “character”, “word”, “sentence” unit
• deal with punctuation, esp. word-internal (e.g. don’t)
• Interact with user
• resolve mouse selection
• highlight selected text
• Modify
• insert keyboard input
• transform keyboard input input (e.g. romaji-kana input)
• edit stored text (insert, delete)
• Compare
• determine sort-order of two strings
• filter strings by some criterion (e.g. force lower case, or [ü] => [ue])
• match by some criterion (e.g.content, appearance)
• Analyze text content
• spell check
• hyphenate
• parse morphology
• Treat text as bulk data
• compress/decompress
• truncate (e.g. to fit a string length limit)

• transmit/receive

In the case of an English encoding like ASCII, the relationships between the encoding
and the basic text processes built on it are so straightforward that they can be presumed
implicitly without discussion. For example, it is presumed that characters are rendered
visible one-by-one in little rectangles from left to right, that there is a linear
alphabetical ordering, and so on.

When it comes to designing an international/multilingual text encoding like Unicode,
the relationship between the encoding and the implementation of basic text processes
often needs to be considered explicitly, for some fundamental reasons:

• Nearly all of the implicit assumptions that hold for English turn out to fail for
many writing systems: in general characters are not rendered visible one-by-one
in little rectangles from left to right, there is not a linear alphabetical order, and
so on. The basic text processes for some scripts are far from straightforward.

• The set of text characters appropriate for encoding a language is often
debatable. For languages as familiar as French and German, there is disagree-
ment over the identity of the text characters (e.g. ISO 8859 defines accented
letters like “â” and “ü” to be individual characters, whereas ISO 6937 represents
them by composition instead). The only way to resolve such cases is to explicitly
understand how the basic text processes operate on the encoding.

• No encoding can support all basic text processes equally well, so tradeoffs are
inevitable. For example, ASCII define separate codes for upper- and lower-case
letters, makes some processes easier (e.g. rendering) and some processes harder
(e.g. comparison). A different encoding design for English (e.g. case-shift
control codes) would have reversed this tradeoff. In designing a new encoding
for complex scripts, such tradeoffs must be evaluated explicitly rather than being
made unwittingly.

The Unicode design does not specify particular basic text processing algorithms; rather,
in most cases it is sufficient that the existence of appropriate processes can be
presupposed. For example, the assignment of Unicode character code numbers cannot
be assumed to provide an alphabetical character ordering for lexicographic string
comparison, since in general no linear ordering exists and string comparison may be
implemented by arbitrarily complex algorithms. Thus Unicode does not supply any
particular string comparison process, but its design does presuppose the capability to
implement sufficiently powerful algorithms.

There is no reason to expect text processes in general to be so simple as they are for
English. Nevertheless, a computer system that can offer its users highly sophisticated
operating and graphical windowing environments should also be sophisticated enough
to support text in the user’s native language.

4.2 Flexibility through modular process implementation
For many important writing systems (e.g. Arabic, Hindi), the optimal text processing
implementations have yet to be discovered. Indeed, even for professional-quality
English typography, the optimal implementation is still being pursued. A text encoding
design like Unicode must afford organizations (from companies to countries) the
flexibility to explore different implementation approaches, and even to retain
proprietary private approaches for so long as they constitute a competitive advantage.

This goal of flexibility can be reconciled with the goal of standardization in two ways:

• distinguish character codes that are common, public, and standardized from
those that are separate, private, and special-purpose

• presuppose modularity in the implementation of basic text processes

The latter point may perhaps be clarified by the generic process model illustrated in the
figure on the following page, whose most noteworthy feature is the notion of a process
server and its associated script expert modules. A responsible text process (e.g.
rendering or string comparison) is not expected to know how to handle every script in
the world. Instead, such detailed knowledge is concentrated in specialist expert
modules, which make themselves available to a server that can supply their expertise
(perhaps over a network) at the request of any responsible process that calls for help.

Apart from providing the flexibility to support disparate implementations of the
same script, the modularity of the server/expert design has a major beneficial side-
effect: it provides the flexibility to add new script capabilities incrementally to a
given system. Even with a text encoding that supports all the world’s languages,
particular systems will actually implement only a few scripts at a time. A flexible,
modular structuring of text processes is necessary to support the varying needs of
user configurations.

4.3 The rendering process
The most important text process is the one for rendering a sequence of text character
codes visible, mapping them to graphic forms seen on a display screen or paper. Other
terms for rendering are presentation or imaging. From the Unicode point of view,
rendering is indeed an explicit process like any other, capable of arbitrarily disparate,
arbitrarily complex implementations. Provisions for the rendering process occupy a
major part of the Unicode architectural design.

5 Characters and Glyphs
5.1 Characters
Unicode is fundamentally a one-to-one correspondence between 16-bit numbers and the
characters of the world’s writing systems. But what, precisely, is a character?

A (text) character is a unit which is traditionally enumerated as an element of some
human writing system (e.g. alphabet). Two such elements are the same character if

ScriptExpe
rt

Modules

Filters

Request

Source
Text

Client DataModul
es

ProcessSe
rver

(Result)

Response Response

Text

ResponsiblePro
cess

Request

there is no conventional enumeration that distinguishes them; otherwise they are
different characters.

A “conventional enumeration” means primarily a schoolbook alphabet that is widely
shared by members of a culture; for example, the schoolbook convention is that the
English alphabet has 26 letters, A through Z. A secondary kind of enumeration is a
computer encoding standard; for example, ASCII gives the English alphabet 26 more
letters, a through z (however, the contents of computer encoding standards are subject
to reconsideration in the design of Unicode).

This definition of character is not at all precise; on the contrary, it is intentionally
founded on the terms “tradition” and “convention”. The whole point is that there is no
intrinsic property that defines a character as such. A character is a “unit of text
content”, but this notion is equally incapable of formal definition. The vital question of
how this imprecise definition can be implemented is deferred to Section xxx.

A character is a totally abstract entity that has no intrinsic visible form. The fixed 16-
bit length of Unicodes limits the number of characters to 216 = 65,536. Of these
numbers, some are to be publicly standardized Unicode assignments, and others are
reserved so as to be available for private assignments.

5.2 Glyphs
In order to be seen, a character must be rendered visible as a graphic shape. In the
electronic case, this shape is supplied by an explicit rendering process.

A glyph is a 2-Dimensional graphic shape that can be used in rendering a text character
visible (not necessarily one glyph per one character). Two shapes are the same glyph if
they can be made to coincide via translation and scaling; otherwise they are different
glyphs.

As an example, the following may (arguably) be said to constitute three different
characters:

char: first letter of the Latin alphabet

char: first letter of the Cyrillic alphabet

char: first letter of the Greek alphabet

Here the characters are denoted via abstract descriptions. Meanwhile, the following
two slightly different shapes are distinct glyphs:

glyph: A

glyph: A

In this example, either of the above two glyphs (and many others such as A) may be
used to render any of the above three characters.

There are more than 216 = 65,536 distinct glyphs in use, so to give a unique standard
numeric code to each glyph would require more than 16 bits. {xxx ISO 9541 and
AFII} As with character code numbers, some glyph codes are to be publicly

standardized assignments, and others are reserved so as to be available for private
assignments.

5.3 How the rendering process relates characters and glyphs
Basic English typography is so simple that English text can be rendered satisfactorily
on the basis of quite primitive implicit assumptions:

• glyphs are rectangular,

• corresponding one-to-one with the coded text characters,

• arranged linearly along a baseline or path,

• from left to right,

• sometimes even constrained by a fixed lattice of positions.

All of these assumptions fail when it comes to rendering some of the world’s major
languages, for example Hindi. This is illustrated in the rendering of the Hindi word
______ (p_rti, meaning “fulfillment”), shown in the figure on the following page. The
1-Dimensional sequence of character codes on the left is rendered into the 2-
Dimensional pattern of glyphs on the right. For convenience, a character is denoted
here by a glyph in brackets, thus [_], while a glyph itself is enclosed in braces, thus
{_}:

The example shows clearly enough that the rendering process mapping character codes
into glyphs may in general be an arbitrary algorithm; it need not be one-to-one nor
linear in any sense. In the long run, a preferred standard algorithm for each script may
eventually emerge, but in the meantime Unicode assumes that competing private
rendering implementations will exist, even for high-quality English typography.

5.4 Stroke style of glyphs
Many different glyphs may be used to render any given character; for example, the
glyphs {A, A, A, A} may all render the character “first letter of the Latin alphabet”.
The differences among these glyphs xxx ISO 9541; for the purposes of Unicode design,
it is sufficient to combine all such differences into the property stroke style:

A stroke style is a category of traditional typography which defines a set of glyphs as
harmonizing with each other for use in setting continuous text. That is, in rendering
connected expository text other than ransom notes, most glyphs are selected to have the
same stroke style.

Stroke style refers to the typographic design of the component curves and lines that
make up the glyph form, not to the selection or arrangement of strokes. For example,
the two glyphs {_} and {_} differ by a single dot, but all of their component strokes are
drawn in the same style.

From the point of view of defining Unicodes, the only interest in the concept of stroke
style is to be able to eliminate it as a variable. All of the relationships between
characters and glyphs hold independently for each stroke style, so for the purposes of
further discussion it may be assumed that all glyphs are in one given stroke style.

[_]

[_] _

_
_ _

_

_

_

_

_

_

Text Character
Sequence

Rendered Text (Glyphs)

_

0010010111010010

0010010111101010

0010010111011010

0010010111001100

0010010111100111

TextRenderin
g

Process

[_]

[_]

[_]

[_]

Font(Glyph
Source)

0010010111110111

_ The character pa [_] is rendered by a glyph on the left, since the script generally runs from left to right_ The
character _ [_] is rendered below and a bit to the right of the preceding

_ The character ra [_] is rendered by a contextual form glyph, namely a small hook {___ } that appears high and to
the right according to certain rules

_ The character [_], which is a traditional mark (called “halant” in Hindi) that subtracts an implicit vowel from the
preceding letter, is not rendered at all

_ The character ta [_] is rendered relatively “normally, i.e. to the right

_ The character i [_] is rendered to the left of the character that it follows, and optionally (in good typography), it is
rendered by a ligature glyph {_} combining it with the character three or more codes before it

5.5 Particular relationships between
characters and glyphs

It is worth having terms for certain important relationships between characters and glyphs
that commonly recur:

An independent form glyph for a given character is a glyph that may normally be used to
render that character in complete isolation. For example, the glyphs {A, A, A, A} are
various independent forms for the character “first letter of the Latin alphabet”. An
independent form glyph is not to be confused with the abstract character itself.

A contextual form is a glyph that may be used to render a given character in some
circumstances, but not normally in complete isolation. For example, the glyph {_} is an
independent form for the character “letter kaf of the Arabic alphabet”, while the glyph
{___} is a contextual form for the same character that occurs only within words.

A ligature is a glyph that may be serve to render two or more characters at the same time.
For example, the {ffi} ligature for English renders the three characters [f][f][i]
simultaneously.

A fragment is a glyph that must be used in composition with other glyphs in order to render
one or more characters. For example, the umlaut mark {_} is a fragment glyph, since the
umlaut cannot render any character except in composition with other glyphs.

A rendering form is any glyph that is not an independent form of some character; this term
thus includes contextual forms, ligatures, fragments, and perhaps other oddities.

A set of variant forms is a set of different glyphs in the same stroke style that can play the
same roles in rendering the same character(s). For example, the glyphs {__, _} are variant
forms for the character “letter kaf of the Arabic alphabet” (an Arabic-script font from a
professional type house will contain both glyphs, confirming that they have the same stroke
style). Significantly, the glyphs {_, _} are variant forms for the character “path”. Note
that the glyphs {A, A, A, A} are not variant forms, since they do not belong to the same
stroke style.

5.6 Private fonts and glyphIDs
Any particular private computer implementation of a rendering process makes use of a
particular private collection of glyphs. A font is an implemented collection of glyphs, all in
the same stroke style, containing at most one glyph from each set of variants. The word
font suffers from a considerable amount of abuse; what is important in the usage here is the
restriction to at most one glyph from each set of variants.

A font implementation needs to index the glyphs within the font by some code number. A
glyphID is a private code number used to index the glyphs within a font. There is no
restriction on the length of glyphID codes, but for international/multilingual fonts the
length 16 bits suggests itself, since there are far more characters than 28 = 256, and far
fewer glyphs in any one font than 216 = 65,536.

In general, a font and its associated rendering process define an arbitrary mapping between
glyphIDs and Unicodes. Some of the glyphs in a font may be independent forms for
individual characters, while others may be rendering forms that do not directly correspond
to any one character. For those glyphs that are independent forms, it may be convenient
for the glyphID to have the same numerical value as the Unicode, but this is not required.

In general, a font also defines an even more arbitrary mapping between glyph codes and
glyphIDs.

The figures on the following pages attempt to illustrate the relationships among characters,
glyphs, and fonts as they have been defined. The first two figures are set in a “3-D pseudo
glyph space”, whose dimensions are:

• The text character that the glyph is used to render (i.e. Unicode)

• The stroke style of the glyph

• The glyph form variant (if any)

Actually, glyphs cannot in general be cleanly factored in this manner, since the relationship
between text characters and glyphs is not generally one-to-one. However, it is worth
briefly setting aside the fine points in order to gain a useful visualization.

The first figure shows several glyphs for the English letters [a][b][c] floating in pseudo
glyph space. The stroke style planes are drawn in, roughly parallel to the plane of the page.
The variant dimension is shown as vertical. The glyphs project down onto a horizontal
dimension of text characters: this is the linear space of Unicode numbers.

In each stroke style there are two variant form glyphs for the letter [a] (they even have
names: “humanitarian” and “grotesque”). It would be a typographic error to use both of
these forms in the same running text, so one form or the other must be selected for
inclusion in a particular font.

Character (Unicode)

Variant

Stroke Style

The figure below illustrates the selection of a particular subset of the glyphs to form a font.
The font is the white horizontal band; the rejected variant forms are grayed out.

The English alphabet does not offer enough complexities to illustrate the interesting
features of this model. The figure below shows a more complicated case, that of Hindi. In
this visualization, only a portion of a single stroke-style plane is shown, and the glyph
space, character space, and private font are broken out as separate bands.

Variant

Character (Unicode)

Stroke Style

• The top band is a portion of (pseudo) glyph space, which is the total reper-
toire of graphic forms. Each glyph has a standard identifying code according
to some system independent of Unicode. Glyphs that are vertically aligned
are variant forms, i.e. free-choice alternative ways of writing the same
character. The three glyphs {___ }, {_}, and {_} are rendering glyphs: they are
not the independent form of any letter, and hence they do not correspond directly to
any Unicode.

• The bottom band is a portion of 16-bit text character space, which is the total
repertoire of content-bearing entities. To clarify this figure, characters are denoted
by a content description such as“Hindi A”, rather than via a graphic. Each text
character has a 16-bit Unicode, independent from the glyph codes.

• The middle band is a portion of an instance of a private font, which is one of many
possible private selections of glyphs. A font includes at most one choice from each
variant form set. Each glyph has a private identifying code called a glyphID, which
has no necessary relationship with either the standard glyph codes or the standard
character codes.

Text Character
Space(Unicode
Codespace)

standard

Glyph Space

A (Private) Font

standard glyph codes

(private) glyphID’s

The previous figure should make it clear that, even with regard to static encodings, the
Unicode character code assignments are merely one aspect of a larger architecture. The
Unicode design retains flexibility for disparate private implementations by providing for, but
not specifying, several key elements:

• available glyphs: Especially the rendering glyphs may be privately designed,
tailored to a specific and perhaps proprietary implementation.

• glyphID encoding: This and the mappings to it are implementation-private.

• selection of glyphs: The model does not specify who makes the selection of
variants that go into a font. This may be done by the type designer, by the type
vendor, by the system vendor, or perhaps (in the case of a desktop publishing
system) even by the individual user building a personalized font.

6 Sequences of Characters
6.1 Plain text and fancy text
Plain text is a pure sequence of character codes. Plain Unicode text, i.e. a sequence of
Unicodes, is called Unitext.

Fancy text is any text representation consisting of plain text plus added information. For
example, multifont text as formatted by a desktop publishing system is fancy text.

The kinds of data structures that can be built into fancy text are limited only by the
imagination. To give but one example, in fancy text containing ideographs it would be
possible (and beneficial) to store the phonetic reading of each ideograph somewhere in the
text structure. Other applications abound.

On the other hand, the simplicity of plain text gives it a natural role as a major structural
element:

• Plain text arises inevitably from the notion of a character stream

• Plain text is the intersection or least common denominator of all fancy text:

Both plain and fancy text are already familiar constructs in ASCII-based systems. From
experience with systems using both types of text, their relative functional roles are well
known:

• Plain text, being inevitable, is public, standardized, universally readable

• Fancy text, being consciously designed for a particular purpose, is often intended
to be private, implementation-specific, even proprietary

6.2 Content vs. appearance in plain vs. fancy text
The details of any particular fancy text design can be made public or standardized, but the
fact remains that most fancy text designs are vehicles for particular implementations, not
readable by other implementations. Since fancy text equals plain text plus added
information, the extra information in fancy text can always be stripped away to reveal the
“pure” text underneath. This operation is familiar, for example, in word processing
systems that deal with both their own private fancy format and with the universal plain
ASCII text file format. Thus by default:

• Plain text represents the basic interchangeable “content” of text

This is a suitable guideline, despite the fact that the term “content” appears to have no
precise intrinsic definition.

Given that plain text represents content, then the interesting question becomes its
relationship to appearance information. Since text characters are abstract entities that have
no visible form, plain text per se has no appearance at all. It requires a rendering process
to make it visible.

If the same plain text sequence is given to disparate rendering processes, there is no
expectation that they should produce the identical text appearance; all that is required is
that they should preserve the text content, i.e. that disparate rendering processes should
make the text legible with the intended reading. Therefore, the relationship between
appearance and the content of plain text may be stated as follows:

• Plain text must contain enough information to permit the text to be rendered
legibly, nothing more
This conclusion is of the utmost importance in a text encoding design. It tells a great deal
in general about what problems an encoding must be designed to solve, and it also answers
a great many vital specific encoding issues. To give but a few examples:

Fancy
TextType A

Fancy
TextType C

Fancy
TextType B

Plain Text

• Q: Does the optional ligature glyph {ffi} have a corresponding Unicode?
 A: No. Use of the ligature {ffi} is never necessary to the legibility of English text,
therefore the basic content of the word “office” would never need to be represented
by the sequence * [o][ffi][c][e]. It follows that any mechanism added to the text to
call selectively for this ligature would be a fancy text feature: a nice touch, but one
beyond the basics of plain English rendering.

• Q: Does the obligatory ligature {__} in Arabic have a corresponding
Unicode?
 A: No. Since this ligature is obligatory, the plain character sequence [_]_[_]
contains enough information to permit usage of the ligature to be inferred, thus
permitting the text to be rendered legibly.

• Q: Does the sequence of Hindi letters [_][_] require indicators, control
characters, or other contrivances to specify that the {_} glyph is treated as a mark
that is attached below the {_} glyph?
 A: No. The rendering behavior of Hindi letters follows regular rules, so a plain
character sequence contains enough information to permit the placement of the
vowel marks to be inferred, thus permitting the text to be rendered legibly.

• Q: Does plain text containing characters of the Arabic or Hebrew alphabets
require indicators, alternate forms of characters, or other contrivances to specify text
directionality?
 A: No, outside of rare exceptional cases. In nearly all cases, a plain character
sequence contains enough information to permit the directional layout of text
containing Arabic or Hebrew to be inferred, thus permitting the text to be rendered
legibly.

6.3 Implicit spelling conventions and rendering conventions
A spelling convention is traditional rule for selecting and sequencing text characters to
representing some particular text content.

A rendering convention is traditional rule for mapping from a conventionally-spelled text
character sequence to a rendered text configuration.

Spelling conventions come primarily from the same widely shared schoolbook traditions
that define the characters themselves. For example, the English word “dog” (canine) is
traditionally spelled _[d], _[o], _[g]. (Spelling may in some cases have some correlation
with pronunciation, but in general spelling rules are arbitrary, even in the case of the word
“dog” which has many pronunciation variants in English.)

The plain character sequence _[d], _[o], _[g] per se does not contain within it enough
information to specify how it is to be rendered, even if glyphs {d}, {o}, {g} are at hand.
The plain text does not specify the relative positions of the glyphs, which might be:

dog god d
 g
 o

It would certainly be possible to create a fancy-text data structure that could specify the
glyph positions precisely, but that is beside the point. According to the criterion given in

the previous section, it must also be possible for the plain character sequence alone, with
no added information, to be rendered legibly (i.e. in this case as “dog”).

The only way that plain text rendering can be possible is via rendering conventions shared
between the character encoding and the rendering process. There is nowhere else for
specific rendering information to come from. For example, every basic English rendering
process implicitly assumes that a sequence of English letters will be mapped one-by-one to
glyphs arranged linearly from left to right along a baseline or path.

The Unicode model makes explicit the fact that rendering conventions like this are
indispensable:

• Plain text rendering can be accomplished only through coordination of spelling
conventions with rendering conventions

To give a contrasting example, the spelling conventions of Hindi are that the vowels (e.g.
[_]) should come after their consonants (e.g. [_]) in phonetic sequence, but the rendering
conventions specify that certain vowel glyphs are attached as marks below the preceding
consonant glyphs. By the same token, it is a rendering convention that Arabic and Hebrew
letters are arranged linearly from right to left (not to mention the complex contextual
mutations of the Arabic letterforms).

The overall point here is that:

• Spelling conventions and rendering conventions are not explicitly encoded by any
bit patterns at all in a plain text sequence

A major particular corollary is that:

• Basic rendering directionality is one of the rendering conventions, it is not
explicitly encoded by any bit patterns at all in a plain text sequence

In other words, it is a widely-known convention that English letters are rendered from left
to right, while Arabic and Hebrew letters are rendered from right to left. This information
need not, and indeed cannot, be included explicitly in plain text.

The figure below illustrates an example of rendering mixed English/Arabic plain text,
involving the word majlis (council). If disparate systems render the text, its final
appearance may be quite different, but in each case its content is legibly the same. The
rendering conventions include not only left/right directionality, but also the placement of a
vowel mark below a letter, the use of contextual letterforms, and optional use of a ligature.
None of this information is explicitly specified in the text sequence.

6.4 Explicit conventions and character properties
Spelling and rendering conventions cannot be encoded explicitly in plain text -- simply
because plain text has no place to put them. They are therefore implicit in the sense that
they must be shared by agreement between the creator of the text and the implementor of
the rendering process. However, these conventions can be made explicit in the sense that
they can be published and even standardized.

One useful format for making spelling and rendering conventions explicit is via lists of
characters that share certain rendering properties. For example:

• Characters rendered from left to right: Latin alphabet, Cyrillic alphabet, etc.

• Characters rendered from right to left: Arabic alphabet, Hebrew alphabet

• Subscripted Hindi vowels: u, _, r, r, l, l

Some conventions may not be susceptible to such a simple format. For example, it is a
spelling rule of the Indian national standard ISCII for Hindi that all vowel characters are to

0000000001100011
0000000001101111 [o]
0000000001110101 [u]

[c]

0000000001101110
0000000001100011 [c]
0000000001101001 [i]

[n]

0000000001101100
0000000000100000
0000000000101000 [(]

[l]

0000000000101001 [)]

0010000001000111 [_]
0010000001100100 [_]
0010000001100101
0010000001001100
0010000001100100 [_]
0010000001110000 [_]
0010000001010011 [_]

Plain Text
(Unitext)Character
Sequence

Appearance as Renderedby
Three Different Systems

[_]
[_]

be spelled in phonetic sequence after the consonants that they follow. (This rule is not
vacuous, since in Hindi the glyph {_} for the vowel i is written and typewritten before the
consonant that it follows.) It is not clear how algorithmic rules of this sort can be
represented in a standardized fashion. Perhaps a simple statement such as the above is
sufficient.

An awkward problem with publishing these conventions is that for some scripts (e.g.
Arabic), the details of how to render plain text correctly are difficult to discover, and may
currently constitute a proprietary advantage. Soon enough, however, all such techniques
will become public knowledge susceptible to standardization.

The fact that spelling and rendering conventions are inevitable, and their eventual
publication and standardization desirable, permits natural Unitext solutions for the two
most difficult problems concerning the relation between spelling and rendering, namely:
applied diacritical marks and Korean Hangul. These will be discussed in detail in their
appropriate sections, but may be summarized as follows:

• Applied diacritical marks: A list of diacritical mark characters are defined (e.g.
umlaut [_]), having the conventional rendering property that their glyphs are
“applied” to the glyph of the character that precedes them in the text. The correlate
spelling convention is that a diacritical mark character is sequenced after the
character that it “applies” to.

• Korean Hangul: The spelling convention is that Korean Hangul text is spelled out
in individual Hangul characters. The rendering convention is that such text is
rendered by first parsing it into umcels (syllable groups), which are then realized via
privately-defined rendering glyphs.

The publication of standardized spelling and rendering conventions is not an intrinsic part
of the Unicode standard, but it is very closely affiliated. A map of the text elements
associated with the Unicode architecture is provided at the end of this section.

6.5 Plain text filters
A filter is a process that takes some plain text as input, performs a simple transformation
on it, and yields some plain text as output. Often the transformation consists of
transliterating one set of characters (or character n-tuples) into another.

Filters are familiar from contexts like the UNIX® operating system, and adequately
documented as such. Their power arises from the fact that they can be arbitrarily
concatenated to build up useful complex transformations. Filters provide a natural
compensation for some of the variability that inevitably arises in Unitext sequences:

• Filters can compensate for ambiguities caused by spelling conventions. For
example, some “marked” characters like u-umlaut “ü” can be spelled two ways:
either as the base character followed by the mark [u][_], or as a single Unicode [ü].
A system that wishes to normalize the text it receives to enforce one spelling
convention or the other can easily do so via a filter.

• Filters can compensate for tradeoffs unavoidably made in the design of a text
encoding standard. For example, ASCII makes the debatable tradeoff of building

“case” into the character encoding, thereby forcing many processes to normalize the
text they receive into all upper-case or all lower-case. Such a transformation can be
achieved naturally via a filter.

A general architecture for text processes might well assume that a library of useful filters is
provided, available to be attached whenever a basic text process is applied to a stream of
text character codes.

6.7 Control characters
Existing character encoding standards include a concept called “control character”. The
definition of ASCII control characters in the ANSI X3.4-1977 standard is:

“Control Character. A character whose occurrence in a particular context initiates,
modifies, or stops an action that affects the recording, processing, transmission, or
interpretation of data.”

From the Unicode point of view, in which the role of text processes is dealt with explicitly,
it is quite meaningless to say that “A character ... initiates ... an action ...” All characters
are passively acted upon by processes. Recent standards, such as that for Office Document
Architecture (ISO 8613/1: 1988), attempt to work around this problem by changing the
wording of the definition:

“control function: An element of a character set that affects the recording,
processing, transmission or interpretation of data.”

But now this definition applies equally well to all text characters. It seems worthwhile to
rethink the concept of “control character” from the beginning.

In terms of the Unicode model, the traditional ISO-standard control characters fall into four
categories:

• Punctuation: The character “CR: Carriage Return” (hex 0D) may be regarded as a
punctuation mark bearing text content, indicating the end of a paragraph in the same
way that a punctuation mark like period indicates the end of a sentence or a comma
the end of a phrase. The character “SP: space” (hex 20) is likewise indispensable
punctuation. These two characters are members of Unicode.

• Substitute: The character “SUB: Substitute” (hex 1A) has transitory value in the
history of Unicode. If multilingual Unitext is converted to a more restrictive
encoding such as ASCII, the best that can be done with a non-ASCII character is to
map it to SUB. If the resulting ASCII text is converted back to Unitext, the best that
can be done with a SUB is to retain it as such. Therefore SUB may be said to bear
the content “there was a character here, but its identity got lost”. This function is
unneeded in a pure Unitext world.

• Meta-encoding mechanisms: Characters such as “SO: Shift Out” (hex 0E) and
“SI: Shift In” (hex 0F) are intended for meta-mechanisms that vary the interpretation
of the text encoding format itself. Since Unitext is specifically designed to eliminate
variable encoding, these mechanisms have no place in Unitext.

• Device control, etc.: The remaining control characters are sub-categorized by ISO
as device control, transmission control, information separator, and format effector

characters. Some of these refer to obsolete functionality, and some might be useful
in a fancy text extension; but none of them belong in plain text.

The Unicode model does not preclude control codes in general, except from plain text.
There is nothing to prevent private implementations from agreeing to interpret a privately-
assigned code value (presumably from the User section of the Unicode space) in any
manner at all including so-called “control functions”. The only restriction is that such
representations are not to be considered standard, public, plain Unitext.

Once it is realized that so-called “control functions” generally consist of adding extra
information to plain text, the door is open to consider the best structures for such data. In
general there may be alternative data structures for implementing “fancy” text functionality
that may be preferable to embedding control codes in-line in the text ... at any rate, this is a
matter beyond the concern of the plain Unitext level of encoding.

6.6 Layers of text representation
A great number of properties, structures, and operations are built on a text encoding model.
These can be roughly organized into a layered structure, as suggested in the figure below.

The primary division of layers is between plain text and fancy text. Within each of these
levels, it is possible to distinguish a finer layered structure.

Within fancy text, the layers are rather general, since fancy text can take on arbitrary
capabilities. However, the most important layers of fancy text operations are undoubtedly
those that deal with providing high-quality text appearance, and then the applications built
on that.

Within plain text, the layers correspond basically to the topics discussed in this document,
although language-specific properties are not discussed here. The two most important
layers of plain text operations are those focused on individual characters and those
involving sequences of characters.

To be complete, a text encoding standard ideally would cover all of the layers shown in the
figure. The present document is primarily addressed to only the bottom layer which
defines Unicodes, but the Unicode design cannot be understood without an awareness of its
relationship with the other layers of a complete text architecture.

Unicode

user code assignments &
escapes

inherent char props & classes

character-based operations

text appearance properties

user non-text item rendering

higher data structures

higher applications

text appearance operations

Level Name

Char codes

User codes

Char props

Character ops

Appear props

User items

Appearance ops

Structures

Applications

Examples

input, deletion, transmission

line break, rendering, selection

Level

lang-specific char props &
classes

Lang props

plain Unitext content operations Sequence ops filtering, sorting, matching

sort order, hyphenation

string, e-mail msg, document

e-mail system, document editor

spelling conventions Text rep

directionality, word-break, case

font style, size

diacritical marks, digraphs

fields, user-drawn graphics

rare or private-use characters

Fa
n
c
y

T
e

Pl
a
i
n

T
e
x

t

[Figure Unicode Codespace Allocation goes here]

HI
G
H

O
R
D
E
R

B
Y
T

LOW ORDER BYTE

available to be assigned

not to be standardized

not used

Unicode Codespace Allocation Overview

assigned Unicodes

20 80 60 FF 00

00

FF

80

40

C0

40 C0 A0 E0

20

60

A0

E0

Alphabets &
Symbols64x188 =
12,032

Added
Ideographs64x256 =
16,384

Modern-Use
Ideographs54x256 = 13,824

Not
Used64x6

8
=

4,352

User64x256 =
16,384

Korean Hangul
Syllables10x256 = 2,560

