Unicode 88

Joseph D. Becker, Ph.D.
August 29, 1988

Reprinted September 10, 1998

Commemorating
Ten Years of the Unicode Standard
1988 to 1998

© 1988 Joseph D. Becker, Xerox Corporation, Palo Alto, CA
Reprinted, with permission of the author, by the Unicode Consortium, September 1998

Unic ode 88 Joseph D. Becker August 29, 1988

A INTRODUCTION
1 Overview

1.1 Abstract

This document is a draft proposal for the design of an international/maltilingual text
character encoding system, tentatively called Unicode.

Unicode is intended to address the need for a workable, reliable world text encoding.
Unicode could be roughly described as “wide-body ASCII” that has been stretched to
16 bits to encompass the characters of all the world’s living languages. In a properly
engineered design, 16 bits per character are more than sufficient for this purpose.

In the Unicode system, a simple unambiguous fixed-length character encoding is inte-
grated into a coherent overall architecture of text processing. The design aims to be

exible enough to support many disparate (vendor-specific) implementations of text
processing software.

A general scheme for character code allocations is proposed (and materials for making
specific individual character code assignments are well at hand), but specific code
assignments are not proposed here. Rather, it is hoped that this document may evoke
interest from many organizations, which could cooperate in perfecting the design and
in determining the final character code assignments.

1.2 Need for a new, world-wide ASCII

Electronic transmission and storage of the written word are based on standard nume:-
ical encoding of text characters. Currently much of the computing world relies on the
character encoding for English text called 7-bit ASCII. ASCII (American Standarc
Code for Information Interchange) is defined by the standards ANSI X3 4-1977 and
ISO 646-1973 (E). ANSI is the American National Standards Institute, Inc., and ISO
is the worldwide International Organization for Standardization.

ASCII provides a common coinage for representing text content, permitting reliable
exchange of English text among disparate software applications. Less obviously,
sequences of ASCII characters form structural elements that interlink diverse
‘computer systems. ASCII text files provide a widely-accepted file format among text-
oriented szosrams (e.g. text editors, electronic mail), ASCFI character streams provide
one standard basis for file communication protocols, and ASCII text “filters” are
capable of supporting an interesting class of text-processing applications.

The problem with ASCII is simply that the people of the world need to be able to
communicate and compute in their own native languages, not just in English. Text
processing systems designed for the 1990’s and the 21st century must accommodate
Latin-based alphabets for European languages such as French, German, and Spanish;
and also major non-Latin alphabetssuch as Arabic, Greek, Hebrew, and Russian; and
also “exotic” scripts of growing importance such as Hindi and Thai; not to mention the
thousands of ideographic characters used in writing Chinese, Japanese, and Korean

What is needed is a new international/multilingual text encoding standard that is as
workable and reliable as ASCII, but that covers all the scripts of the world.

For reference, the table below ranks the world's writing systems roughly in order of
commercial importance, as measured by the total GNP of countries using each system:

Rank | Writing System Languages ' ’iﬁ:g{d
GNP
1 |Latin English, German, French, Spanish, Italian, | 68
Portuguese, Indonesian/Malay, ...
2 CJK ideographs Chinese, Japanese, (Korean) 14
3 | Cyrillic Russian, Ukrainian, ... 14
4 |Arabic Arabic, Persian, ... 3
5 |Devanagarifamily Hindi, Bengali, Punjabi, Marathi, ... 1
6 |Korean (Hangul) Korean 1
7 Dravidian family Telugu, Tamil, ... €
8 |Greek Greek £
9 |Khmer Thai, Lao, Khmer E
10 |Hebrew Hebrew E

1.3 Technical summary of Unicode

The power of ASCII comes from two simple properties:

e Its workability in processing arises from a fixed length of character code (7 bits
within an 8-bit byte) '

e Its reliability in conveying text content arises from a fixed one-to-one
correspondence with the characters of the English alphabet

Unicodes are the most straightforward multilingual generalization of ASCII codes:
¢ Fixed length of character code (16 bits)

¢ Fixed one-to-one correspondence with characters of the world's writing
systems

That is, each individual Unicode code is an absolute and unambiguous assignment of a
16-bit number to a distinct character.

Since there are vastly more than 28 = 256 characters in the world, the 8-bit byte has
become a useless commodity in the context of modern international/multilingual

2

EHE<E SEOHO oI

LOW ORDER BYTE

00 20 40 60 80 A0 Co EO0 FF
00
Not Used
64x68
= Alphabets & Symbols
= 4,352 64x188 = 12,032
40 Korean Hangul Syllables
10x256 = 2,560
60 Modern-Use Ideographs

54x256 = 13,824

E‘ﬂ _% 441 ﬂ.:,_ a,w:'ﬂ s . e i : I e
i i - G i st : i
: S s . s =
o | Added Ideographs}] =
AOR 4 B -
. 1 64x256=16,384 | - : *
e n - .
fP - e
e _ : S =
e e e % =
co . e o
& User
0
64x256 = 16,384
FF
assigned Unicodes not to be standardized

avatlable to be assigned % not used

Unicode Codespace Allocation Overview

character encoding. Stated otherwise, the evolution from ASCII to Unicode means
precisely the expansion of character codes from an 8-bit to a 16-bit basis. In Unicode,

the 8-bit byte plays no role of any kind.

The name “Unicode” is intended to suggest a unique, unified, universal encoding. A
sequence of Unicodes (e.g. text file, string, or character stream) is called “Unitext”.

ASCII text Unitext

01110100 t 0000000001110100 t
01101000 h 0000000001101000 h
01101001 i 0000000001101001 1
01110011] 0000000001110011 5
00100000 0000000000100000

01101001 i 0010011101110001 f
01110011 8 0010011101011011 H
00100000 0010011101101000 I
01110100 t 0000000000100000

01100101 o 0100101000011011 i
01111000 X 0100101000001010 E3)
01110100 t 0100101010010101 1

The Unicode design includes major principles that support the pure 16-bit encoding:

e characters vs. glyphs: A clear and all-important distinction is made between
characters, which are abstract text content-bearing entities, and glyphs, which
are visible graphic forms. This model permits the resolution of many problems
regarding variant forms, ligatures, and so on.

e CJK ideograph unification: The clear model of characters and glyphs permits
unification of tens of thousands of equivalent ideographs that are currently giv-:n
separate codes in China, Japan, and Korea.

e public vs. private: The design provides for the distinction between common-use
encodings which are public, and other encodings which are kept private so as to
enable vendor-specific implementations, vertical-market applications, and so on.

e plain vs. fancy text: A simla}e but crucial distinction is made between plain text,
which is a pure sequence of Unicodes, and fancy text, which is any text structure
that bears additional information beyond pure character content.

® process-based design: The design is founded on the fact a text encoding exists
solely to suP]imrt the various processes that act upon text. Thus processes such as
rendering, filtering, and so on participate in the design.

Unicode may find its initial utility as a standard international/multilingual
interchange encoding, but it is also designed to serve as the basis for efficient internal
text representation (a.k.a. process encoding) in any text environment where more than
256 different characters are required.

1.4 Structure of this document

The many aspects of text character encoding are bi%hl}r interrelated, and indeed each
topic is best conceived in terms of a conception of all the others. Laci:mg hypertext or
the ability to discuss all topics at once, the document is arranged as follows:

e Part A is an overview of the major concepts of Unicode.
e Part B is a detailed presentation of Unicode’s architectural underpinnings.

@ Part C applies the Unicode approach to major specific problems of character
encoding.

e Part D contains reference lists of particular details, including suggested
Unicode allocations and assignments.

Although the document is laid out from the general to the particular, solutions to the
problems of character encoding actually evolve from the particular to the general. For
exam]ple, the definitions in Part B are made only because they were found necessary to
handle the particular problems described in Part C. Thus, the document may make an
equal amount of sense if read backward.

2 The 16-bit Approach

The idea of expanding the basis for character encoding from 8 to 16 bits is so sensible,
indeed so obvious, that the mind initially recoils from it. There must be a catch to it,
otherwise why didn’t we think of this long ago?

The major catch is sim?ly that the 16-bit approach requires nepecrpoiika (perestroika),
i.e. restructuring our old ways of thinking. ﬁather than struggling to salvage obsolete
8-bit encodings via horrendous “extension” contrivances, we need to recognize that the
current absence of a standard international/multilingual encoding is a unique
opportunity to rethink and revitalize the design concepts behind text encoding.

However, there do exist specific concerns that initially appear to be the “catch” to a 16-
bit encoding. To some extent these concerns are overmtec{}, and to some extent they are
legitimate but inevitable. This section outlines how the Unicode 16-bit appro.ich
either Trﬂvides for these concerns or trades them off against the greater good. A much
longer list of detailed design issues is addressed in Section D.

2.1 Sufficiency of 16 bits

Are 16 bits, providing at most 65,536 distinct codes, sufficient to encode all characters
of all the world’s scripts? Since the definition of a “character” is itself part of the
design of a text encoding scheme, the question is meaningless unless it is restated as:
Is it possible to engineer a reasonable definition of “character” such that all the world’s
scripts contain fewer than 65,536 of them?

The answer to this is Yes. (Of course, the converse need not be true, i.e. it is cert,ainly
possible, albeit uninteresting, to come up with unreasonable definitions of “character”
such that there are more than 65,536 of them.) There are two main concepts in
Unicode’s approach to this fundamental question:

® The proper definition of character
¢ The distinction of “modern-use” characters from “obsolete/rare” ones

Proper definition of “character”™ Unicode does not confuse the notion of character with
that of glyph. There are far more glyphs than characters because of the existence of
variant forms, rendering forms, and fragment glg!'ghs that can be used to compose
graphic forms dynamically. Also, Unicode avoids tens of thousands of character
replications by consolidating together the ideographic characters used in writing
Chinese, Japanese, and Korean.

Distinction of “modern-use” characters: Unicode gives higher priority to ensuring
utility for the future than to preserving past antiquities. Unicode aims in the first
instance at the characters published in modern text (e.g. in the union of all news-
E&rers and magazines printed in the world in 1988), whose number is undoubtedly far

elow 21* = 16,384. Beyond those modern-use characters, all others may be defined to
be obsolete or rare; these are better candidates for private-use registration than for
congesting the public list of generally-useful Unicodes.

In other words, given that the limitation to 65,536 character codes genuinely does
satisfy all the world’s modern communication needs with a safety factor of about four,
then one can decide up-front that preserving a pure 16-bit architecture has a higher
design priority than publicly encotfing every extinct or obscure character form. Then
the sufficiency of 16 gits for the writing technology of the future becomes a matter of
our active intention, rather than passive victimization by writing systems of the past.

2.2 Relation of Unicode to ASCIl and other existing codings

Given two sequences of bits (“bit patterns”) that supposedly represent the same series
of text characters in two different encoding systems, either: '

e the sequences are bit-for-bit identical, or
e they are not identical, in which case they require explicit software conversion.

Clearly, almost every possible pair of text encoding schemes require explicit software
interconversion; that is, rarely is one encoding truly a pure “extension” of another.
Once the inevitability of explicit conversion processes is recognized, the proper design
goals for “compatibility” of a new encoding scheme with existing encodings become:

¢ to minimize the complexity of conversion processes
¢ to minimize the number of conversion processes

ASCII text Unitext

01110100 t 0000000001110100 t
01100101 | e 0000000001100101 e
01111000 X 0000000001111000 X
01110100 t 0000000001110100 t

As an example of minimizing conversion complexity, interchange between ASCII text
and Unitext is performed by a simple loop of the following operations:

¢ To converta 7-bit ASCII character to a Unicode:
» Preface it with the 9 bits 000000000.
e Toconvert a Unicode to a 7-bit ASCII character:
p If the first 9 bits are 000000000, remove them.
» Otherwise, assign it to a junk code, e.g. SUB (hex 1A).

Insofar as the above algorithms are quite trivial, ASCII text and Unitext may be said
to be conversion-compatible. One of the design priorities in making the particular
Unicode assignment of character codes is to preserve “conversion-compatibility”, i.e.
the simplicity of these conversion algorithms. This approach is consistent with the
Unicode philosophy that processes should be explicitly taken into account as part of
the encoding system, rather than being implicitly taken for granted.

Trivial interconversion with existing standards is easily attained for most alphabetic
scripts. Unfortunately, straightforward conversion mappings are not possible when it
comes to the CJK ideographic characters. Interconversion of these scripts is mainly a
matter of indexing through a large table ... which after all is a trivial algorithm once
the table is provided.

The goal of minimizing the number of conversion processes is attained simply by usin
Unitext as an interchange code among disparate encoding systems. Each system coul
be taught to speak Unitext as an interfing‘ua, while optionally retaining its own
“native language” for internal use and local communications. Such a world might be
visualized as in the figure below (the rectangles represent systems, the ovals represent
the text encodings they support). Evidently having each system implement only 1
conversion process to/from Unicode is vastly more efficient than implementing a
number N of conversions that grows as new local encoding schemes are invented.

@) [@mendle
@‘v

Since any new international/multilingual text encoding will inevitably require
explicit conversion to/from existing encodings, this fact might as well be viewed as an
opportunity. Within the bounds of “conversion-compatibility”, it releases new designs
from the need for strict conformity with designs of the past. With luck, the future of
computing and electronic communications will be longer than the past. A text
encoding design with hopes of serving the 1990’s, and perhaps the 21st century, should
be engineered primarily to best serve the future, not the past.

0
(X0

g

d

CaU U

0

2.3 Twofold expansion of ASCII English text

Nothing comes for free, and the price of Unicode’s fixed-length 16-bit character code
design is the twofold expansion ofl? ASCII (or other 8-bit-based) text storage, as seen in
the figure on the previous page. This initially repugnant consequence becomes a great
deal more attractive once the alternative is considered.

The only alternative to fixed-length encoding is a variable-length scheme using some
sort of flags to signal the length and interpretation of subsequent information units.
Such schemes require flag-parsing overhead effort to be expended for every basic text
operation, such as get next character, get previous character, truncate text, etc. Any
number of variable-length encoding schemes are possible (this fact itself being a major
drawback); several that have been implemented are described in a later section.

By contrast, a fixed-length encoding is flat-out simple, with all of the blessings
attendant upon that virtue. The format is unambiguous, unique, and not susceptible
to debate or revision. It is a logical consequence of the fundamental notion of character
stream. Since it requires no flag parsing overhead, it makes all text operations easier
to program, more reliable, and (mainly) faster. It also greatly facilitates the process of
unambiguously interpreting text received from other systems, and the deciphering of
text that is found embedded within some unknown or extinct data structure.

Unquestionably the twofold expansion of ASCII text will engender increased storage
space expense as Unitext is adopted. However, it may be argued that this expense will
not prove intolerable. With regard to English text storage, systems may be divided
into three categories:

¢ Software: Most system or application level software should contain little or no
inherent English text. Indeed, the prevailing requirement is for program-
internal text to be internationalized into message files that can Ee made
multilingual precisely the purpose for which Unicode is designed.

o Compressor clients: A few text-system clients create and store vast quantities

of English text, and therefore make use of explicit compression/expansion
rocessés. For these systems, Unicode will have no impact at all, since Unicode
nglish text compresses to precisely the same size as ASCII English text.

e Acceptor clients: Nearly all text-system clients create and store quantities of
English text small Enﬂugl‘; that it is not worth their while to use the currently
available techniques for compressing ASCII English text by a factor of 2 or more.
These clients unquestic—ningﬁr accept the “wasteful” storage of ASCII in order to
receive the benefits of its simplicity in processing. There is no reason to alter this
behavior when it comes to Unicode, given that the cost of storage media is still
rapidly declining. It turns out that in designing a text encoding to serve for the
1990’s and beyond, the expense of storage space may be the least important
factor that could be brought into consideration.

Historically, computer and communication systems originally implemented 5-bit
Baudot character encodings, but it was later discovered that these did not encompass
lower-case letters. Then 7-bit ASCIIISO encodings were implemented, but it was
later discovered that these did not encompass European languages beyond English.
Then 8-bit extended ISO encodings were implemented, but it was later discovered that
these did not encompass Japanese. Then 14-bit JIS and derivative encodings were
implemented, but it was later discovered that these did not encompass Chinese.

The bottom line is that the world of computing has now become a fully international.
and multilingual one, in which 5-bit, 7-bit, 8-bit, and 14-bit text architectures are all
extinct. The modern length of a computer word is 32 bits, and the ultimate length of a
character code is 16 bits. All we have to do is recognize what is already true.

3 The Unicode Proposal
3.1 Background of the Unicode proposal

Unicode has evolved from a dozen years of practical experience in implementing
multilingual computer systems, beginning at Xerox Palo Alto Research Center. This
effort has included product or prototype implementation of the most important Latin-
script languages (including ausa,y%ungarian, Polish, Turkish, Vietnamese, and
many others), plus non—Latm—scrE?t languaﬁes including Amharic, Arabic, Armenian,
Bulgarian, Chinese, Georgian, Greek, Hebrew, Hindi, Japanese, Korean, Persian,
Russian, Ukrainian. This work involved the creation of over 100,000 ideographic
character imaﬁes in various sizes and styles for Chinese, Japanese, and Korean, plus
tables cross-referencing the many “standard” encodings of these characters.

In 1978, the initial proposal for a set of “Universal Signs” was made by Bob Belleville
at Xerox PARC. Many persons contributed ideas to the development of a new encoding
design. Beginning in 1980, these efforts evolved into the Xerox Character Code
Standard (XCCS) by the present author, a multilingual encoding which has been
maintained by Xerox as an internal corporate standard since 1982, through the efforts
of Ed Smura, Ron Pellar, and others.

Unicode arose as the result of eight years of working experience with XCCS. Its
fundamental differences from XCCS were proposed by Peter Fenwick and Dave
Opstad (pure 16-bit codes), and by Lee Collins (ideographic character unification).
Unicode retains the many features of XCCS whose utility have been proved over the
years in an international line of communicating multilingual system products.

3.2 Status of the Unicode proposal

This document is currently a conceptual exploratory draft only. It in no way
represents the policy of Xerox Corporation, which currently uses the Xerox Character
Code Standard in all of its systems products.

Many aspects of Unicode remain to be perfected, and the design itself calls for an
ongoing organization devoted to its maintenance, particularly in determining the
public registration of new characters.

If the idea of Unicode as a potential new ASCII does have validity, it should be of
interest to many companies, standards bodies, and other organizations. The hope is
that this document may form the nucleus of a cooperative effort to finish the
development of Unicode in a form satisfactory to all who have an interest in it. If this
effort were to be successful, it might naturall);r lead to the formation of an appraopriate
Unicode maintenance organization.

Meanwhile, readers’ comments for improving Unicode design or its presentation in
this draft are avidly solicited.

