Introduction

Internet is a global media e-businesses run on, and users from around the world with different language and cultural convention preferences are able to access the e-business sites. E-business companies may leverage the global nature of the Internet to expand their business to customers around the world. Serving global customers in languages other than their native languages is not good enough to win their businesses. For instance, customers visiting an online store that is not written in their native language are likely to stay away from it because they cannot understand the products the site is selling.

In order to make use of the Internet global media successfully and expand your business to customers worldwide, the Internet applications running the e-businesses should be globalized. They should be globalized to:

deliver content in the desired language of the user, and

format the content using the desired cultural conventions such as currency symbols and date formats, of the user.

Fortunately, Oracle8i enables you to store data from multiple languages in a single database by means of Unicode technology, a universal character set for most written languages of the world. Right now, many e-commerce companies are starting to build their databases to support Unicode. When doing this, the applications accessing the database also need to be built to take full advantage of the Unicode data in the database.

This paper shows you how to build an Internet application with Oracle8i as an Internet platform so it will support multiple languages simultaneously. It describes a simple but efficient multilingual Internet application architecture and how the Oracle Internet platform enables you to build such a multilingual Internet application. Last but not least, the paper shows you some common issues on writing an Internet application to support multiple languages, and how they can be resolved.

The multi-tier Internet application architecture described in this paper depends on the Unicode Standard and its support in the Oracle Internet platform and Internet browsers. When thinking about Unicode, you should keep in mind that there are currently two major encoding forms for Unicode characters.

UTF8 (variable-width encoding requiring 3 bytes)

UTF16 (fixed-width encoding requiring 2 bytes)

Oracle8i supports the UTF8 encoding form in the database. After an Oracle8i database is created in UTF8, character data is stored as UTF8. Oracle8i supports UTF16 when using ODBC, OLEDB, OCI and Pro*C/C++ interfaces on the client tier.

�MULTILIGNUAL INTERNET APPLICATION Architecture

The following diagram depicts the multilingual Internet application architecture based on the Oracle Internet platform.

� EMBED Word.Picture.6 ���

The server tier runs an Oracle8i database, the middle tier runs a Oracle Internet Application Server (iAS), and the client tiers run a web browser. Applications serving the client requests can be deployed in the middle tier as JSPs (Java ServerPage) or Java Servlets, or in the server tier as PSP (PL/SQL Server Page) or PL/SQL stored procedures in the database. Unicode is used in all tiers of the architecture to support multilingual content. UTF8 will be used in the database and the HTML content. UTF16 encoded Java string will be used in the middle tier.

Centralized Database Server

As oppose to the distributed databases approach where each database stores data of its own region, a centralized database stores data of all regions. The centralized database approach has two major advantages over the distributed database approach.

With a centralized database, you have a complete view of your data worldwide. This helps you make sound business decision that may not be possible with distributed databases. For example, when a locale branch office in French is running out of inventory of a product that a customer requests and this product is available in a branch in another region, it may find by query the inventory of the other branches using the same database. As a result, the store may be able to complete the sale translation using the inventory from another branch.

A centralized database is easier to maintain and manage. Instead of having DBAs in different regional offices, you may have a centralized database group professionally manages the centralized database with all types of fault tolerant mechanism. As a result, the cost of maintaining the system comes down.

To make the centralized database approach works for a global e-business company, the database used must be

scalable so that it can grow as the company grows,

reliable so that there should not be single point of failure, and

be able to store data in different languages and cultural conventions.

Oracle8i database has becoming a ideal platform for centralized databases because its meets all these requirements. The scalability and reliability are very much recognized by the industry, and the Unicode support enables storage of data of multiple languages in the Internet friendly UTF-8 encoding.

Single Binary for Multiple Locales

The second important element in the architecture is to adopt the approach to use, for the application, a single binary and a single code base to handle all locales simultaneously as oppose to the approach to use multiple code bases to handle different locales. A locale here refers to the combination of a language and a set of cultural conventions such as date format and currency symbol of a region (or territory).

With the single multilingual application approach, you may require to spend more development work up front, but the benefits of using a single code base are many. The major advantages of this approach are that:

A single code base reduces the cost of maintenance.

Support for multilingual content.

It is relatively easy to add support for additional locales.

As far as the application is concerned, supporting multiple languages simultaneously requires the followings:

The application should be locale sensitive. This means that the application should be able to dynamically determine the desired locale of a user and deliver the content to the user in the language and cultural conventions he or she desired. Oracle8i provides support cultural conventions from many territories, and applications may make use of them to format web pages based on the user preference. All the cultural conventions can be dynamically switched at run time so that an application can support multiple locales in a single binary.

The application should operate on a single universal character set --- Unicode. Unicode enables the application to process character data from multiple languages on a single encoding. Without Unicode, it is very difficult, if not impossible, to write a single application to handle data in multiple languages using their own native encodings simultaneously. Not only should the application access the database in Unicode, but also deliver the content to the clients in Unicode.

If your application is written in JSP and Java Servlet, the application should operate on the Java String data type which is UTF16 encoded. The UTF16 encoded Java strings should eventually converted to UTF8 when the page content is delivered to the client browser.

If your applications is written in PSP and PL/SQL stored procedures running inside the Oracle8I database, the application should operate on VARCHAR data type. For a UTF8 Oracle8i database, the encoding for the VARCHAR data type is UTF8 as well.

Multilingual Capabilities in the Oracle Internet Platform

Among other things, the Oracle Internet platform comprises of the Oracle8i database and the Oracle iAS application server in which the application is developed and deployed, Oracle provides many features in these products to enable developers to write a multilingual application based on the architecture that has been described above.

Unicode Storage

First and foremost is the support of Unicode in the Oracle8i database. Oracle8i has a concept of the database character set which indicates the encoding for all character data types in the database. The character data types are CHAR, VARCHAR, LONG and CLOB. When you define the database schema of your application, the following should be taken into considerations.

Since one character in UTF8 can be up to 3 bytes long, the limit of the CHAR and VARCHAR columns in one language may not be enough for another. For example, Thai encoded in UTF8 required 3 bytes per Thai character, if you define the CHAR or VARCHAR column with a limit of 10, only 3 Thai characters can be stored in the column instead of 10. To make your schema work in all languages, use the worst case sinerio to define the column limit.

Internet applications may want to store documents in the database. These documents are usually too large for the CHAR or VARCHAR columns. In this case, the CLOB or LONG database can be used. When these documents are uploaded to the database, Oracle8i will transparently convert them to Unicode. If you want the documents to be stored as is, you should use the BLOB data type instead. In Oracle8i, CLOB data is stored in UTF16 internally while LONG data is stored in UTF8.

Cultural Convention

Oracle8i provides a set of NLS parameters to specify the cultural conventions to be used in SQL functions. Note that all NLS parameters described are configurable within a database session. For instance, if you like to switch the session default collating sequence from Spanish to German, you may do so by setting the NLS_SORT parameter, which govern the sorting sequence, to German. Once this is set, the next query that makes use of the Oracle’s collation functions will use the German collating rule instead. Switching cultural conventions in a database session is vital for applications to support multiple languages.

The following sections describe some important NLS parameters:

Monetary and Number Formats

Oracle8i support many types of cultural conventions. We first look at the currency symbol and numeric format.

For currency symbols, Oracle8i supports almost all major currency symbols such as Euro and Yen signs. The currency symbols are controlled by three NLS parameters, and they are NLS_CURRENCY, NLS_ISO_CURRENCY and NLS_DUAL_CURRENCY.

NLS_CURRENCY indicate the primary currency symbol of a territory

NLS_ISO_CURRENCY indicates the standard currency symbol defined by ISO.

NLS_DUAL_CURRENCY indicates an alternate currency symbol for a territory. For example, Euro is an alternative currency in most European countries.

For numeric format, Oracle8i support decimal marks and thousand marks for many territories. For example, in France, the thousand mark is a dot instead of a comma. Which numeric format is used in a database session is governed by the NLS_NUMERIC_CHARACTERS parameter. NLS_NUMERICA_CHARACTERS specifies the thousand mark and decimal mark to be used.

Date and Time Formats

Oracle8i supports different date formats based on different cultural conventions. The date format is control by the NLS_DATE_FORMAT session parameter. If you specify the date format to be dd-mon-yyyy, the date is composed of a 2 digits day number and a 3 letter month abbreviation and a 4 digits year.

The NLS_DATE_LANGUAGE session parameter controls the language of the names of months and day of week etc. If the NLS_DATE_LANGUAGE is set to Spanish, the name for Sunday would be Domingo.

Oracle8i also provides several calendar systems which users can choose based on the NLS_CALENDAR session parameter.

Linguistic Sorting

The NLS_SORT parameter governs the linguistic collating sequence to be used in a database session. When the NLS_SORT parameter is set to Spanish, the Spanish collating rule will be used. In the Spanish sequence, Ch is collated after Co because Ch is considered as one character.

When the NLS_SORT parameter is set to German, the German collating rule will be used. In the German sequence, sharp S is collated before the lowercase s while the binary value of sharp S is larger than the lowercase s.

Linguistic Index

Linguistic collation is language-specific and performance-sensitive. When data of multiple languages is stored in the database, you may want your applications to collate a result set returned from a SELECT statement using the ORDERED BY clause with different collating sequences based upon the language being used. And you don’t want to sacrifice performance, either. You can accomplish this by using linguistic indexes, a feature introduced in Oracle8i. While a linguistic index for a column slows down inserts and updates, it greatly improves the performance of linguistic sorting with the ORDERED BY clause.

You may build a linguistic index for a column for each language which the application needs to support. For each index, the rows in the language other than the one on which the index is built are collated together at the end of the sequence. The following example builds a linguistic index for Spanish and German

CREATE INDEX SP_INDX ON CUSTOMER (NLSSORT(NAME,‘NLS_SORT=SPANISH’));

CREATE INDEX GE_INDX ON CUSTOMER (NLSSORT(NAME, ‘NLS_SORT=GERMAN’));

Which index to use is based on the NLS_SORT session parameter. If your NLS_SORT parameter is set to Spanish, the Spanish linguistic index will be used for sorting.

Development Environments

Oracle iAS supports two development environments

JSP and Java Servlet

PSP and PL/SQL stored procedures

JSP and Java Servlets

Oracle iAS implements the standard Java Servlet API that allows the deployment of Java Servlets. It also implements the JSP compiler according to the standard Java ServerPages specification that allows users to compile standard JSPs to Java Servlets. As a result, applications can fully utilize the internationalization support provided in Java (JDK), Java Servlet and JSP technologies.

PSP and PL/SQL Web Toolkit

Oracle iAS provides a Web gateway that allows PL/SQL stored procedures to generate dynamic web content and deliver it to the client browser in the same way as Java Servlets. Oracle8i provides a full set of API called the PL/SQL Web Toolkit for the development of Internet applications in PL/SQL stored procedures. The API helps you to format web pages and send them out to the client browser via the Web gateway. In addition to the Web Toolkit, you may also use the SQL functions, such as SUBSTRING(), TO_DATE() and LENGTH(), provided by Oracle8i to manipulate strings. All string variables, such as VARCHAR and CHAR strings, and the SQL functions used in the PL/SQL stored procedures operate on the database character set, and in this case, it is UTF8.

PSPs are HTML pages with embedded PL/SQL code. PSP relates to PL/SQL stored procedure in the same way as JSP relates to Java Servlet. Oracle8i provide a PSP compiler to compile PSPs into a PL/SQL stored procedures and load them into the database.

Database Access Interface

You should use Oracle’s JDBC drivers for database access when using JSPs and Java Servlets. Oracle provides two client-side JDBC drivers that can be deployed with middle-tier applications:

JDBC OCI driver, which requires Oracle’s client library

JDBC Thin driver, which is a pure Java driver

Oracle JDBC drivers transparently convert the data from the database character set (UTF8 in this case) to UTF16, but only for CHAR, VARCHAR, VARCHAR2, CLOB, and LONG data types. As a result of this transparent conversion, JSPs and Java Servlets calling Oracle JDBC drivers may bind and define database columns with Java strings, and fetch data into Java strings from the result set of a SQL execution. An example of using a Java string to bind the ENAME column is shown below.

String empno = request.getParameter("empno");

String ename = request.getParameter("ename")

PreparedStatement pstmt = conn.prepareStatement("insert into" +

"EMP (ENAME, EMPNO) values (?, ?) ");

pstmt.setString(ename);

pstmt.setInt(empno);

pstmt.execute();

If you are using PSP and PL/SQL stored procedures in your application, you directly access the UTF8 data using SQL or PL/SQL from inside the database. The following is the code sample to use VARCHAR (in UTF8) to bind the ENAME and EMPNO column.

varchar empno;

varchar ename

insert into emp (ename, empno) values (:name, :empno);

commit;

General Issues in Supporting Multiple Languages Simultaneously

When you develop a multilingual Internet application, there are a few general issues that are noteworthy. They are listed below:

Determine user locale preference and synchronize it with the application.

Tag HTML pages generated by the application.

Handle non-ASCII form input and query strings

Enable the application for content translation

Locale Determination and Synchronization

To present the user interface in the user’s desired language, applications need to detect his or her desired locale and construct HTML content in the desired language and use correct cultural conventions. You can determine a user’s desired locale in three ways:

1. Based on the User’s Profile Information

If there is a user profile table in the database with the locale preference information, use it as the desired locale for the user.

2. Based on the Default Locale of the Browser

Get the default ISO locale setting from the browser. The default ISO locale of the browser is sent via the Accept-Language HTTP header. A ISO locale is composed of a ISO language and ISO country code. For example, fr-CA is the locale for French speaking Canadian. If the Accept-Language header is null, the desired locale should default to English (“en”).

3. Based on the User’s Input

Allow users to select a locale from a list box. The default locale should be English (“en”). You need to maintain the user locale across HTTP requests or else the locale information will be lost because HTTP is a stateless protocol.

Once the desired locale is determined, you should need to synchronize it with the application.

JSP and Java Servlet

Both JSPs and Java Servlets can use the following calls to the Servlet API to retrieve the Accept-Language HTTP header and use it as the desired locale.

String lang = request.getHeader("Accept-Language")

StringTokenizer st = new StringTokenizer(lang, ",")

if (st.hasMoreTokens()) userLocale = st.nextToken();

The above code gets the Accept-Language header from the HTTP request, extracts the first ISO locale, and uses it as the desired locale.

The other alternative is to let the user enter his or her desired locale which can be carried around using a cookie or query string. When the desired locale is entered by the user, a cookie can be sent to his browser with the corresponding values.

Once the desired locale has been determined, create a Java Locale object based on the desired locale. This can be done by extracting ISO language and country codes from the desired locale and calling the Java Locale object constructor.

int i = desiredLocale.indexOf("-");

if (i == -1)

	userLocale = new Locale(desiredLocale, "");

else

	userLocale = new Locale(desiredLocale.substring(0,i),

 desiredLocale.substring(i+1));

Set the locale as the default Java locale to direct all locale-sensitive Java objects functions to behave accordingly. The default Java locale is used for all Java threads. To ensure that different locales are used on different threads, specify the desired locale for each Java object.

Locale.setDefault(userLocale);

PSP and PL/SQL Stored Procedures

In PL/SQL stored procedures, there is no function to retrieve the Accept-Language HTTP header. You can either prompt for a locale or retrieve it from the user profile. To determine the locale from user input, once a user enters his or her desired locale, the PL/SQL procedure serving this action should take the desired locale (via form input parameter) and create a cookie for it.

Once the locale has been determined, you may want to synchronize it with the locale of the database session by issue the following ALTER SESSION command.

ALTER SESSION SET NLS_LANGUAGE=<Oracle language name>

ALTER SESSION SET NLS_TERRITORY=<Oracle territory name>

The following table lists the mappings between some common ISO locales and the Oracle’s language and territory names.

Table � SEQ Table * ARABIC �1�: Common ISO Locales Mapping

ISO locale�NLS_LANGUAGE�NLS_TERRITORY��ar�ARABIC�UNITED ARAB EMIRATES (default)��de�GERMANY�GERMAN��en-US�AMERICAN�AMERICA��en-GB�ENGLISH�UNITED KINGDOM��el�GREEK�GREECE (default)��es-ES�SPANISH�SPAIN��fr�FRENCH�FRANCE (default)��fr-CA�CANADIAN FRENCH�CANADA��he�HEBREW�ISRAEL��it�ITALIAN�ITALY��pt�PORTUGUESE�PORTUGUAL��pt-BR�BRAZILIAN PORTUGUESE�BRAZIL��tr�TURKISH�TURKEY (default)��zh�SIMPLIFIED CHINESE�CHINA (default)��zh-tw�TRADITIONAL CHINESE�TAIWAN��zh-cn�SIMPLIFIED CHINESE�CHINA��Encoding Tagging

In a multilingual environment, the encoding of an HTML page is a very important piece of information to the browser and middle-tier applications. The browser needs to know so that it can use correct font and mapping tables for displaying pages, and applications need to know so they can safely assume the encoding of form input data and query strings.

Tagging HTML pages with encoding information not only can tell the browser to switch to the encoding of the pages automatically, but also to return user input in the specified encoding. It is always the best practice to specify the encoding of HTML pages returned to the client browser.

There are two ways to specify the encoding of an HTML page. If both are used together, the first one has precedence over the second one.

1. Specify in the HTTP Header

The HTTP 1.1 specification includes the Content-Type HTTP header to specify the content type and character set information of a document. This header is correctly interpreted by the most commonly used browsers, namely Netscape 4.0 and Internet Explorer 4.0 or later. The Content-Type HTTP header is of the form:

Content-type: text/plain; charset=utf-8

The charset parameter specifies the encoding for the HTML page. The possible values for the charset parameter are the Internet Alias Naming Authority (IANA) character set names for the character encoding supported by the browser, and they are case insensitive.

2. Specify in the HTML Page Header

Sometimes, it is impossible to specify the Content-Type HTTP header. An example of this case would be when static HTML pages are used. In this case, the character encoding should be specified in the header of an HTML page itself as follows:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">

An HTML page’s encoding should be specified in the charset parameter in the same way as in the Content-Type HTTP header. Table 2 shows the IANA names of the commonly used encoding for various language groups.

Based on the architecture, all HTML pages should always be tagged with UTF8. In this case, input is encoded in UTF8 that can contain data from multiple languages.

Encoding Tagging in JSP and Java Servlet

You can tag the encoding of an HTML page in the Content-Type HTTP header in a JSP using the contentType page directive. An example is shown below.

<%@ page contentType="text/html; charset=utf-8" %>

This is the MIME type and character encoding the JSP file uses for the response it sends to the client. You can use any MIME type or character set that is valid for the JSP container. The default MIME type is text/html, and the default character set is ISO-8859-1. In the above example, the character set is set to UTF8. The character set of the contentType page directive describes the encoding of the JSP page as well as the encoding of the HTML page sent to the browser.

For Java Servlets, you can tag the HTTP header by calling the setContentType() method of the Servlet API. The following doGet() function shows how this method should be called.

public void doGet(HttpServletRequest req, HttpServletResponse res)throws ServletException, IOException {

 // generate the MIME type and character set header

 res.setContentType("text/html; charset=utf-8");

 // generate the HTML page

 Printwriter out = res.getWriter();

 out.println("<HTML>");

 out.println("</HTML>");

}

Note that the setContentType() method should first be called before the getWriter() method because the getWriter() method initializes an output stream writer using the character set specified in the setContentType() method.

If you do not want to tag the HTTP header, you can always tag the HTML page header generated by the JSP or Java Servlet using the <meta> tag.

Encoding Tagging in PSP and PL/SQL Stored Procedure

To tag the encoding in the Content-Type HTTP header, you should use the following Web Toolkit API from within PL/SQL stored procedures or PSP:

owa_util.mime_header('text/html; charset=utf-8')

The above API should be called in the context of the HTTP header. It generates the following header in the HTTP response.

Content-type: text/html; charset=utf-8

In PSP, you can include the page directive to specify the character set of the page. The page directive to set the page encoding to UTF8 is shown below.

<%@ page contentType="text/html; charset=utf-8" %>

For PL/SQL stored procedures and PSP, the character set specified in the NLS_LANG environment variable of the Web gateway must match the encoding tag. Otherwise, an HTML page, which will be converted to the NLS_LANG character set, is delivered in a different character set from the one it is tagged with.

Form Input and Query String Handling

Applications generate HTML forms to get input from the user. In both Netscape 4.0 and Internet Explorer 4.0, the encoding of the input follows the encoding of the forms for both POST and GET requests. If the encoding of a form is in UTF8, input text returned to the application server is encoded in UTF8 as well. Based on this fact, applications are able to assume the encoding of the input.

How user input is passed to a middle-tier server in a POST request is different from that in a GET request.

For POST requests, input is passed as part of the request body, and 8-bit data is allowed.

For GET requests, input is passed as part of the URL. As a result, it can only be 7-bit data because URLs can only be encoded in US7ASCII. Any 8-bit bytes in query strings should be encoded in the hexadecimal representation. Assuming that you want to pass the German name “Schloß” via a query string, it should be encoded in the following way.

http://<host.domain>/htmlpage?name= Schlo%c3%9f

where %XX is the hexadecimal representation for the byte values in the encoding of the HTML form. In the example above, seven bytes are sent for this name. The last two bytes are with values 0xC3 and 0x9F respectively, and they represent the binary value of the ß character in the UTF8 encoding.

Most application servers including Oracle iAS decodes the URL

If HTML forms contain URLs with query strings that are constructed based on user input, any 8-bit bytes in the query strings should be encoded in the hexadecimal representation as described above.

HTML standards allow for named and numbered entities. These special codes allow users to specify characters. For example, "æ" and "æ" both reference the same character - æ. Tables of these entities are available at http://www.w3.org/TR/WD-htm140-970708/sgml/entities.html.

Some browsers generate numbered or named entities for any input character that cannot be encoded in the encoding of an HTML form. For example, the Euro character “€” and the character “à” (Unicode values 8364 and 224 respectively) cannot be encoded in Big5 encoding and will be sent as “€” and “à” when the HTML encoding is Big5. However, these cases will not happen if the HTML form is tagged with UTF8 because all characters can be encoded in UTF8. Only monolingual middle-tier applications which support native encoding in the browser should handle these cases.

Decoding Form Input and Query String to Java Strings

I
n most JSP and Servlet
s
engines
(web servers that support them), the Servlet API implementation assumes that incoming form input is in ISO-8859-1 encoding. As a result, when the HttpServletRequest.getParameter() API is called, all embedded %XX data of the input text is decoded and the decoded input is c
onverted from ISO-8859-1 to UTF16
 and returned as a Java string. The Java string returned is incorrect if the encoding of the HTML form is not in ISO-8859P-1. However, you can solve this. When the JSP or Java Servlet receives form input or query strings, it needs to convert them back to the original form, and then convert the original form to a Java string based on the correct encoding.

String orig
 = request.getParameter("name");

String real = new String(
orig
.getBytes("ISO
8859_1"),
"UTF8");

In the above example, the Java string real will be initialized to store correct characters from a UTF8 form input or query string. In addition to Java encoding names, IANA encoding names can be used as aliases in Java functions.

If a query string is constructed in a JSP or Java Servlet, all 8-bit bytes must be encoded using their hexadecimal values prefixed by a percent sign. The following code shows you how to encode a Java string into its hexadecimal representation in UTF8.

byte[] htmlBytes = queryString.getBytes("UTF8");

for (int i= 0; i < htmlBytes.length; i++)

{

 if ((htmlBytes[i] & 0xff) > 0x7f)

 queryString += "%" + Long.toHexString

 ((long)(htmlBytes[i] &0xff));

 else

	 queryString += new String(htmlBytes,i, 1,"ISO8859_1");

}

Handling Form Input and Query Strings

Form input and query strings are passed to PL/SQL cartridges as PL/SQL procedure parameters. Form input is first sent from the browser to
Oracle
iAS in the encoding of the HTML form, and then converted to the database character set from the NLS_LANG character set. All %XX formatted sub-strings are also decoded to their actual binary representations. This mechanism ensures that form input is passed to PL/SQL procedures in the database character set.

For
 PSP, you need to add a
 page
 directive to define the parameter
s passed
to the PSP page.
 These parameters
cor
resp
ond to the parameters
 in the HTML form
, and
can be defined using
the VARCHAR data type as follows:

<%@ plsql parameter="name
"
type=
"
VARCHAR
”
 default="
"

%>

If you need to construct URLs with query strings containing 8-bit data, you can use the following PL/SQL code.

select dump(param, 16) into ostr from dual;

ostr := substrb(ostr, instr(ostr, ': ')+2);

ostr := '%' || replace(ostr, ',','%');

Content in Different Languages

The content has to be translated into different languages. Before the content can be translated, they should be made translatable. In
an Internet application, the content is basically compos
ed
 from the following 3 sources.

The first type of content are static HTML pages, template files such as ASPs and JSPs and image files. They are readily translatable.

The second type of content are strings hard-coded in the programs. All hard-coded strings should be externalized to resource files such as Java resource bundle and Windows resource DLL. These resource files can then be sent for translation.

The third type of content are data from the database. In order to differentiate various translations, the database schema holding these data may have to change. One suggestion is to add a new column to existing table definition to indicate the language of the data.

The following should be built into the application logic to ensure HTML pages are delivered in the correct language and cultural conventions.

For static HTML, image, ASP and JSP files, you should use the translated version corresponding to the desired language. This can be done by redirecting HTTP requests to the ASPs and JSPs corresponding to the desired language.

For templates and UI components stored as Java resource bundles for Java Servlets and Windows resource DLLs for ISAPI extensions, you should load the translated resource file corresponding to the desired language.

For dynamic content and PL/SQL cartridges in the database, you should select the rows corresponding to the desired language. To avoid changing the SQL statements in the applications, you may make use of the Oracle’s fine-grain access control. See the section “

In addition, a fallback mechanism should be built in the application in case the content of the desired language does not exist. The fallback mechanism can be as simple as using English information instead or as complex as using the closest language available possible. For example, the “fr-CA” locale stands for Canadian French. The fallback for this language can be “fr” which is French or “en” which is English. A simple way to find the closest language possible is to remove the territory part of the ISO locale. It is up to the application how the fallback mechanism behaves

Conclusion

In order to reach out more customers from different regions around the world, there is a need for Internet applications to be globalized to support different languages.

With the multilingual capabilities, Oracle8i and Oracle iAS provides the ideal Internet platform to build and deploy multilingual Internet applications.

For data storage, Oracle8i allows you to store data in the Internet friendly UTF8 encoding.

Oracle8i provides a full set of cultural conventions and collating sequences that are controlled by various NLS parameters.

Oracle iAS allows you to write your web application using standard Java Servlets where all strings are operated in UTF16, and Oracle’s stored procedures where all string data are operated in UTF8.

Oracle also provides a comprehensive set of client access products, such as JDBC, that allows you to retrieve and insert Unicode data from and into the database.

