A New Algorithm for Contextual Analysis of

Farsi Characters and Its Implementation in Java(

A New Algorithm for Contextual Analysis of Farsi Characters and Its Implementation in

Java(
Kourosh Fallah Moshfeghi (Shadsari)

fallah@itrc.ac.ir
Iran Telecommunication Research Center

P.O. Box 13155-3961

Tehran, Iran

Abstract: By “contextual analysis” we mean the determination of a character’s proper presentation form according to its context. In this paper, after a short introduction to contextual analysis and Unicode, we present a new algorithm in the form of a state machine for contextual analysis of Farsi characters.

We also present criteria for evaluating contextual analysis algorithms and their implementations. Existing algorithms and their implementations are described briefly and the performances of them are evaluated according to the suggested criteria.

Following the new algorithm description, we present an Implementation of it in Java(for the Bilingual ITRC editor (BIT) (ITRC stands for Iran Telecommunication Research Center) and suggest new points on implementation of contextual analysis algorithms in word processing applications. Finally, we sum up with a brief conclusion.

Keywords: contextual analysis, Unicode, presentation form, state machine, sliding window, decision length.

(Introduction
Using Internet as an infrastructure for worldwide communication has grown explosively in recent years. Using diverse services offered by Internet has changed, or is changing, the various aspects of people’s lives in different countries all over the world. Due to Internet, services like E-commerce, distance learning, distance health and … which at a time seemed unreachable or at least far away, have become everyday trivial matters. Both for the users of the Internet and for its programmers, English language has become the dominant language of “the net”. Most programmers are more or less acquainted with this language, but a solution should be found for those users who are rather unfamiliar with English.

The most obvious solution is that every user interacts with Internet in his own language. This idea has resulted in attempts to “internationalize” Internet. Only the entrance and display of the information should be comprehensible for local user. A solution, provided by the Worldwide Web Consortium (W3C), uses a character set that includes all characters of the various languages of the world. This character set is called “Unicode”([1], [2]).

The official language of Iran (Islamic Republic of) is Farsi. Unfortunately, there is no distinct character set for Farsi in Unicode and, in this standard; it is considered an extension of Arabic language. Most probably, the reason is the strong similarity between Farsi and Arabic writing systems. Both languages are written from right to left and both have similar presentation forms for the same characters. But there are differences. We have four more characters in Farsi (‘پ’, ‘چ’, ‘ژ’ and ‘گ’). Also, There are indications that some other linguistic differences between Farsi and Arabic writing systems exist [4]. A comprehensive discussion on Farsi characters and Unicode can be found in [5].

(Contextual analysis
In Farsi (and Arabic) each character may have several presentation forms. The proper presentation form of a character in a text is determined according to the available presentation forms of the character itself and those of characters surrounding it. It also depends on the current presentation forms of the surrounding characters. Determining the proper presentation form of a character according to its context is called “contextual analysis”.

In Farsi (and Arabic) a character can have up to four distinct presentation forms. These are separate form (e.g. ‘ب’), last-joining (e.g. ‘ﺐ’), first-joining (e.g. ‘ﺑ’) and middle-joining (e.g. ‘ﺒ’). In Unicode standard version 2.0 [2] lingo these forms are called nominal, right-joining, left-joining and middle-joining respectively.

In Unicode, the basic Arabic characters are in the range of U+0600 to U+0652 and extended Arabic characters are in the range of U+0653 to U+06FF. Presentation forms of basic and extended Arabic characters are in the ranges of U+FE70 to U+FEFE and U+FB50 to U+FDEF, respectively.

(The Unicode algorithm

In Unicode version 2.0 algorithm, Arabic characters have an extra classification [3]. In this classification, the characters are divided into six groups: right-joining, left-joining, dual-joining, join-causing (e.g. zero-width joiner), non-joining (e.g. non zero-width space characters) and transparent (e.g. “harakats”). Besides, two supergroups are defined: right join-causing characters (including dual-joining, right-joining and join-causing characters) and left join-causing characters (including dual-joining, left-joining and join-causing characters). Here “left” and “right” refer to visual order of characters.

In Unicode algorithm, seven joining rules are defined based on these classifications [3]. From these seven rules, one rule concerns each of transparent, right-joining and left-joining groups and three other rules concern dual-joining characters. The last rule is applied when none of the above rules are applicable.

Also considered in this standard are three rules for “ligatures”. By ligature we mean “combined” forms like ‘ﻻ’, which are considered a distinct character. According to Unicode 2.0 standard, using ‘ﻻ’ and ‘ﻼ’ ligatures are mandatory. Using other ligatures is optional.

(Existing implementations

Basically, we should use some kind of contextual analysis in every application that uses Farsi or Arabic characters for displaying information. These applications include Microsoft(Word(6.0 (Arabic edition), Microsoft(Word(97 (Arabic edition), “Zarnegar” and “Kelk” softwares from Sinasoft company (based in Iran) and other application that use a Farsi or Arabic editor within themselves.

Since Unicode is only recently used in operating systems (Windows(NT(4.0 and Windows(2000), older softwares use eight-bit characters. Of course the Unicode algorithm (and the new algorithm presented in this paper) can be used for eight bit characters too. But most probably these softwares use other (may be ad hoc) algorithms. Unfortunately these algorithms are professionally confidential and are not available to the public.

New editors use Unicode characters for displaying information and so most probably they use the Unicode algorithm for contextual analysis. From these editors, we can name Mathema corporation editor [6] and BIT editor [7] (designed in ITRC). We have no idea of the contextual analysis algorithm in Mathema editor but BIT editor uses the new algorithm introduced in this paper. Other algorithms and their implementations in C and C++, respectively, are presented in a file format conversion application in ITRC [8] and Shorai Alii Anformatike Iran (Iranian High Council of Informatics) “Report on Storing Farsi Information” [9]. Another implementation of Unicode Algorithm in Perl is given in arabjoin program [10].

(Evaluation Criteria

Until now, no specific criterion is given for evaluating contextual analysis algorithms and their implementations; But in general, we can suggest the following criteria:

 1- Number and size of the tables: i.e., how many tables are needed to implement the algorithm and how “lengthy” these tables are. Clearly, the less the number and size of these tables, the better the performance of the algorithm will be.

[image: image1.wmf]FIRST_CHAR_STATE

FORM(b[0])

?

b[1] has FORM

B?

A,C

FORM(b[0])=A

FORM(b[1])=A

slide window +1

b[0] has FORM C?

Y

N

N

FORM(b[0])=C

FORM(b[1])=B

Y

slide window +1

b[1] has FORM

B?

B

FORM(b[1])=A

N

slide window +1

b[0] has

FORM D?

N

D

FORM(b[0])=D

FORM(b[1])=B

Y

slide window

+1

b

Y

SECOND_CHAR_STATE

FIRST_CHAR_STATE

FIRST_CHAR_STATE

SECOND_CHAR_STATE

Legend

:

 A = separate

 B = last-joining

 C = first-joining

 D = middle-joining

 2- Window length: i.e., how many surrounding characters should be considered to determine the proper presentation form of the desired character.

 3- Decision length: i.e., how many operations results should be

known to determine the proper presentation form of the desired

character. Clearly, the shorter the decision length, the better the performance of the algorithm will be.
(The new algorithm

In this algorithm the separate, last-joining, first-joining and middle-joining presentation forms are designated by A, B, C and D symbols respectively. In contrast to Unicode algorithm, there is no need to categorize the characters in this algorithm.

The window length in this algorithm can be two or three. For a window of length three, we need one more “slide” of the window. In some applications (e.g. in an editor) this extra slide may be a considerable overhead [6]. In such cases, we recommend a window length of three.

The algorithm is designed in the form of a finite state machine [11]. This finite state machine has two states for both cases of two and three window length. The algorithm’s function is shown in figures 1 and 2.

In these figures b[0] and b[1] are the first and second character of the sliding window. The state machine has two states: FIRST_CHAR_STATE
[image: image2.wmf]b

b[1] has

FORM B?

FORM(b[0])=B

FORM(b[1])=A

N

slide window

+1

FORM(b[1])=B

Y

slide window

+1

SECOND_CHAR_STATE

FIRST_CHAR_STATE

SECOND_CHAR_STATE

b[1] has

FORM B?

Y

b[0] has

FORM D?

FORM(b[0])=D

FORM(b[1])=B

Y

slide window +1

FORM(b[1])=

A

N

N

slide window +1

SECOND_CHAR_STATE

FIRST_CHAR_STATE

 Legend:

 A = separate

 B = last-joining

 C = first-joining

 D = middle-joinig

 and SECOND_CHAR_STATE. In each state a character is entered and is placed in b[1] buffer. In the first state, we first determine the presentation form of b[0] and then, based on the available presentation forms of b[1], we decide on the presentation forms of b[0] and b[1]. Finally we slide the window forward one character (i.e. the old b[1] becomes the new b[0]). In the second state, we decide on the presentation forms of b[0] and b[1] according to the available (and present) presentation forms of these characters and again slide the window forward one character. As we can see, in some states only one character’s presentation form is changed. It is another advantage of this algorithm.

There is no provision for ligatures in this algorithm. These cases can be handled using simple Unicode algorithm rules.

(Comparing algorithms

The new algorithm is in the form of a state machine. No other known algorithm has state. Splitting the process between states significantly reduces the processing load for each character.

In this algorithm, we need only two “fundamental” tables to determine the proper presentation form of a character. These two basic tables are present in all other algorithms. But in Unicode algorithm, we need one (or two) other table (tables) to determine the presentation class and super class of the characters (if we omit the super class table - or super class entries- the decision length will be increased by three). In file conversion algorithm, which is inherently “tabular”, we need as many tables as the number of groups (7 tables in word processing applications). In “Shorai Alii” algorithm four tables are needed.

Listing 1-A branch of SECOND_CHAR_STATE state
The sliding window length in our algorithm can be two. In all other algorithms this length is three or more.

The decision length in the new algorithm is three. In Unicode algorithm, this length is 6 for nominal characters (in arabjoin implementation this length is claimed to be reduced to 4). In file conversion algorithm the decision length is zero. This is a rather significant advantage of this algorithm but the great number of tables and

not being “portable” to all character sets somehow fades this advantage. In Shorai Alii algorithm the decision length is 12.

(Implementation

The new contextual algorithm introduced in this paper is implemented in Java(and successfully tested in BIT editor. Listing 1 shows a branch of the SECOND_CHAR_STATE state.

In this implementation, iBuf is the sliding window of the algorithm. BasicForm and formTable tables are of type Hashtable [12]. BasicForm table returns the basic form of the character for each character and formTable returns a character array containing the presentation forms of the character. These presentation forms are saved in iBufArray two-dimensional array for later use. The “iPointer” pointer (an integer) points to the beginning of the sliding window and “justifyPointer” changes the location of this pointer. The “iState” variable represents the state of the machine.

There are two simple, yet important, points in this implementation that are absent in other implementations ([8], [9], [10]). First, in this implementation, there is only one table reference for each character. During the “slide” of the window the presentation forms of b[0] are automatically determined by replacing iBufArray[0] with iBufArray[1] and throughout the code snippet iBufArray members are used instead of directly referencing the tables. The reduction in table reference drastically improves processing speed. The required tables are very straightforward and can be filled easily using Unicode standard (or “charmap” or similar programs in operating systems that provide for these programs).

The second point is that in other implementations the slide of the window is continued until the end of the paragraph or the end of the text. In this implementation the slide of the window and altering of the characters’ presentation forms is continued until the presentation form of the last character processed (iLastCh) is altered. So the number of characters affected by contextual analysis algorithm in a lengthy text does not exceed a few ones. This in turn improves the effectiveness of the implementation.

(Conclusion

In this paper we introduced a new algorithm for the contextual analysis of Farsi characters. With a little change, this algorithm can be used for Arabic characters too. In spite of the other algorithms, this one is presented in the form of a state machine. Preserving the state resulted in less processing for each character.

We also introduced criteria for evaluation of contextual analysis algorithms and their implementations. Using these criteria, we can compare the algorithms’ performances. The performances of the new and older algorithms were compared and we found that the new algorithm has attractive advantages. Finally we gave an implementation of the new algorithm in Java(language and pointed out new points not considered in previous implementations.

To sum up, this new algorithm can help in improving the “presentational” processing speed of Farsi texts, especially in word processing applications. The points in this algorithm and its implementations may pave the way for better and more powerful algorithms and implementations.

(Acknowledgments

 This work has been done as a part of contract 7832310 with Iran Telecommunication Research Center, Tehran, Iran. The author wishes to thank Dr. Mohammad Hakkak – ITRC CEO, Dr. Mohammad Beik-Zadeh –ITRC Research Deputy and Mr. Mohammad Azadnia- Project Manager for their kind support of project.(
(References
 [1] The Unicode Consortium, “The Unicode Standard, Version 1.0”, Addison-Wesley, first printing, 1991.

[2] The Unicode Consortium, “The Unicode Standard, Version 2.0”, Addison-Wesley, fourth printing, 1994.

[3] Ibid, pp. 6-24,6-25.

[4] Farsi Unicode Standard workgroup, “A Report on Farsi Unicode Standard”, Khabar-Nameh Anformatike, Mar. 1996, Vol. 10, No. 61, pp. 62-94 (in Farsi).

For further information contact Dr. Assi at s_m_assi@ihcs.ac.ir .

[5] Aftabjahani, S. Abdullah et al., “Farsi Language Difficulties in Application Programs and Existing Solutions”, technical report, Iran Telecommunication Research Center, winter 1999 (in Farsi).

[6] Rener, Mirko, “Design and Implementation of a Unicode Word Processing System in Java”, 1998, (http://www.mathema.de/en/unicode/java-editor.html)

[7] Fallah Moshfeghi (Shadsari), Kourosh, “Design and Implementation of a Bilingual Information Entrance and Edit Environment”, technical report, Iran Telecommunication Research Center, winter 1999 (in Farsi).

[8] Vilataj, Ehsaneh, “Converting Farsi Systems Formats to Each Other”, technical report, Iran Telecommunication Research Center, summer 1998 (in Farsi).

[9] Shorai Alii Anformatik Iran (Iranian High Council of Informatics), “Farsi Information Storage Standard Preview with Implementations and Conversions Algorithms”, first version, first edition, March 1999 (in Farsi).

[10] roman@czyborra.com, “arabjoin- A Simple Filter to Render Arabic Text”, 1998, (http://www.czyborra.com/unicode)

[11] Manno, M. Morris, “Digital Design”, Prentice Hall, 1984.

[12] K. Arnold, J. Gosling, “ The Java(Programming Language”, second edition, Addison-Wesley, 1997.

(About the author
Kourosh Fallah Moshfeghi (Shadsari) was born in GaemShahr, Iran (I.R.) in 1969. He received his B. Sc. in Electronics engineering from AmirKabir University of Technology (Tehran PolyTechnique) in 1992 and his M. Sc. in Computer Architecture from Tehran University in 1999.
In 1992 he began his career in Iran Telecommunication Research Center (ITRC) as a researcher and still works there. He has been involved in various projects on PABX and public switch hardware and software design and implementation. He is now a member of Information Technology (IT) Section of ITRC working on providing information technology services through Internet.

His fields of interest include computer architecture, hardware-software co-design, object-oriented design and methodology, operating systems and Unicode.

Figure 1 – ASM chart of the new algorithm

(Continued on Fig. 2)

Figure 2 – ASM chart of the new algorithm

(continued from Fig. 1)

case SECOND_CHAR_STATE:

 iBufArray[1]=((char [])formTable.get((Character)(basicForm.get(

 		 (new Character(ch)))));	

	if(iBufArray[1][FORMB]==NULL){ //iBuf[1] has no form B

					iBuf[1]=iBufArray[1][FORMA];

					iPointer=justifyPointer(iPointer,+1);

					text.setCharAt(iPointer,iBuf[1]);

					iLastCh=iBuf[1];

					iBuf[0]=iBuf[1]; //slide the window +1

					iBufArray[0]=iBufArray[1];

					iState=SECOND_CHAR_STATE;

					break;

					}

PAGE
8
17th International Unicode Conference
 San Jose, California, September 2000

_1026275301.vsd

_1026273030.vsd

