The Hitchhiker’s Guide to Chinese Encodings

Tom Emerson (湯姆·愛摩森)
Sinostringologist

18th International Unicode Conference, Hong Kong

Software Internationalization Services & Technology
Dedication

Rebecca M. Peckham
1944 - 2001
Overview

- Who am I and why am I here?
- What do we mean by “Chinese?”
 - Simplified vs. Traditional
- Chinese Character Sets
- Introduce Chinese Encodings
- Driving Forces
- Reality vs. Idealism
- Transcoding Issues
Who Am I?

- “Sinostringologst” at Basis Technology
- Lead developer for our Chinese Morphological Analyzer and our Chinese Script Converter
- Background in both Computer Science and Linguistics
Who Are You?
Don’t Panic!
The Blowfish Book is *the* reference for anyone working with CJK character sets. Get it.
What is “Chinese?”

- For our purposes we are interested in the written language.
- In general this means Mandarin.
- Topolects (方言) sometimes define their own hanzi for local words, usually for names.
- Hence “Written Cantonese” doesn’t make a lot of sense.
Simplified vs. Traditional

- “Simple” and “Full” Form
- Mainland China and Singapore use “Simplified Chinese”
- Hong Kong, Taiwan, and Macao use “Traditional Chinese”
Simplification

- Fewer strokes
 - Easier to learn
 - Easier to remember
 - Easier to write
- Compare: 台 vs. 臺
- Simplification is not recent
 - Some simplified characters in current use date to the pre-Qin period (pre 246 B.C.E.)
Simplification

1956: *Scheme for Simplifying Chinese Characters*
1964: *The Complete List of Simplified Characters* (2236 characters)
1986: *The Complete List of Simplified Characters, 2nd*
Simplification

International mega mergers will generate international economic trends that will dominate future economic development for at least the next ten years. The merger wave of last year saw the industry leaders as the key players.
Character Sets vs. Encodings

- **Non-Coded Character Sets**
 - A non-coded character set represents a list of characters that are defined by an organization as the standard set that one is expected to know.
 - Tōngyòng (7000), Chángyòng (2500), and Cíchángyòng (1000)

- **Coded Character Sets**
 - A coded character set assigns a unique number ("code point") to each abstract character in the repertoire.
 - A coded character set does not make any statements about how its code-points are represented on a computer.
Character Sets vs. Encodings

- An encoding specifies how the code points in a coded character set are to be represented and transmitted with a computer.
- A single character set can have multiple encodings.
- Sometimes the distinction is blurred: Big Five and GB18030-2000 both define a character set and an character encoding.
- Generally laid out in one or more 94x94 grids. Each character is indexed by its row-cell address (qūwèi) within the grid.
Character Sets

- Simplified
 - GB 2312-80

- Traditional
 - GB 12345-90
 - CNS 11643
 - Big Five, Big Five Plus, ETen
 - GCCS and HKSCS

- "Generic"
 - Unicode/ISO 10646/GB 13000-1992 (Unicode 1.1)
 - GB 18030-2000
Encodings

- **Simplified**
 - HZ
 - CN-GB
 - EUC-CN
 - CP936
- **Traditional**
 - EUC-TW
 - Big Five et al.
 - Big 5+
 - CP950
- **Unified**
 - UTF-8, UTF-16, UTF-32
 - ISO 2022-CN and ISO 2022-CN-EXT
 - In a sense more complete than Unicode since it encodes multiple legacy character sets.
Modal 7-bit, multi-byte encoding Developed by Lee Fung Fung at Stanford University, and defined by RFC 1843 and RFC 1842

- Encodes US-ASCII and GB 2312-80
- Default mode is ASCII with an escape sequence used to switch to GB mode.
 - “~{” switches into GB
 - “~}” switches out of GB encoding
 - “~\n” is the continuation character that can be used at the end of a line.
• This is 汉字.
 This is ~{::WS~}.

• 汉 is at 26.26 (0x1A.0x1A) and 子 at 55.51 (0x37, 0x33) in GB 2312:80

• Need to add 0x20 to each row-cell value to bring all row-cell points into printable range.
• Described in RFC 1922.
• 8-bit multi-byte encoding of GB 2312:80.
• Each code-point in GB 2312:80 has its 8-bit set: no mode switch is necessary.
• Instead of adding 0x20 to each row-cell value, just add 0xA0 (0x20 + 0x80) to generate the 8-bit value of GB 2312:80.
• This is 汉字.
 This is °×Ó.
ISO 2022 Overview

• ISO 2022 is a complex 7- and 8-bit encoding standard.
 - ECMA 35 and GB 2311-1990

• It allows characters from multiple character sets to be used within a single document.

• Achieved through the use of “designators” and “shifts”.

ISO 2022 Overview

- A “designator” specifies the character set associated with a particular “shift”
- ISO 2022 is a “modal” encoding: at any point in the input stream you are in a particular mode which indicates how to interpret the current character.
- ISO 2022 is line-based, resetting to 7-bit ASCII at the end of each line. You must include the designators for the character sets used on each line before the first use.
- Character sets are registered with ISO.
ISO 2022-CN

- Defined in RFC 1922.
- Supports three character sets:
 - GB 2312-80 [ISO IR 57]
 Esc $) A
 - CNS 11643-1986, plane 1 [ISO IR 171]
 Esc $) G
 - CNS 11643-1986, plane 2 [ISO IR 172]
 Esc $ * H
ISO 2022-CN-EXT

- Defined in RFC 1922
- Supports nine character sets:
 - GB 2312-80 [ISO IR 57]
 Esc $) A
 - ISO-IR-165 (aka CCITT) [ISO IR 165]
 Esc $) E
 - CNS 11643-1986, planes 1-2 [ISO IR 171-172]
 Esc $) G, Esc $ * H
 - CNS 11643-1992, plane3 3-7 [ISO IR 183-187]
 Esc $ + I,J,K,L,M
EUC-CN

- Encodes GB 2312:80
- Essentially the same as CN-GB
• Encodes eight character sets, ASCII and CNS 11643-1992 Planes 1-7
• ASCII is represented with 1 byte, CNS 11643-1992 plane 1 in 2 bytes, and CNS 11643-1992 1-7 (sic.) in 4-bytes.
 - 0x8E 0xAn row cell
 • Where n == the plane number being encoded
Big Five

- Corresponds to CNS 11643 planes 1 and 2
Transcoding Issues