
Dublin, Ireland, May 200221st International Unicode Conference 1

121st International Unicode Conference Dublin, Ireland, May 2002

Migrating Software to
Supplementary Characters

Mark Davis
Vladimir Weinstein

mark.davis@us.ibm.com
vweinste@us.ibm.com

Globalization Center of Competency, San Jose, CA

Until recently, it was not necessary for software to deal with supplementary code
points, those from U+10000 to U+10FFFF. With the assignment of over 40,000
supplementary characters in Unicode 3.1 and the definition of new national
codepage standards that map to these new characters, it is important to modify
BMP-only software to handle the full range of Unicode code points.
Typically, only a small percentage of code needs to be changed. This affects mostly
low-level handling of 16-bit code units and data structures containing per-character
data.
This presentation discusses the changes required to handle all of Unicode vs. just
the BMP subset, concentrating on 16-bit Unicode -- the most common processing
form. It describes techniques for finding the small percentage of code that typically
needs to be changed, and shows how to modify such code. Detailed examples for
Java and C/C++ use the many helper functions from ICU to illustrate practical
solutions.

Dublin, Ireland, May 200221st International Unicode Conference 2

221st International Unicode Conference Dublin, Ireland, May 2002

Presentation Goals

How do you migrate UCS-2 code to UTF-16?

1. Motivation: why change?
• Required for interworking with: GB 18030, JIS X 0213

and Big5-HKSCS

2. Diagnosis: when are code changes required?
• and when not!

3. Treatment: how to change the code?

The main goal of this paper is to discuss how to migrate UCS-2 code: e.g. code that
uses 16-bit Unicode but that does not handle the surrogate code points that represent
supplementary characters.

The early versions of the Unicode standard defined up to 65536 code points.
Unicode 2.0 extended the this to a million code points, but no important characters
were assigned. The first important supplementary code points were assigned with
Unicode version 3.1. These new code points are required for interworking with GB
18030, JIS X 0213 and Big5-HKSCS.

The first problem is identifying the places that need to be changed in order to
support supplementary code points. Not all the places require changes. Once the
problematic spots are found, the code modification should take place.

Luckily, there are many techniques that allow transformation of existing code base
to handle supplementary code points.

Dublin, Ireland, May 200221st International Unicode Conference 3

321st International Unicode Conference Dublin, Ireland, May 2002

Encoding Forms of Unicode

S
L1 T
L2 T T
L3 T T T

S
L T

S

See Forms of Unicode at www.macchiato.com

•For a single code point:

– UTF-16 uses one to two 16-bit code units.
– Singleton, lead surrogate and trail surrogate

code units never overlap in values

– UTF-8 uses one to four 8-bit code units

– UTF-32 uses one 32-bit code unit

UTF-16 uses two surrogate code points. A key feature is that the lead surrogate, trail
surrogate and singleton code units never overlap in values. This means that a lot of
code doesn’t care about surrogates, as we will see in the examples.

Note that some of the applications assume that UTF-8 encodes code points with up
to 3 bytes. This automatically prevents correct handling of supplementary code
points.

Dublin, Ireland, May 200221st International Unicode Conference 4

421st International Unicode Conference Dublin, Ireland, May 2002

Supplementary vs Surrogate

• Supplementary code point
• Values in 10000..10FFFF
• Corresponds to character
• Rare in frequency

• Surrogate code unit
• Value in D800..DFFF
• Does not correspond to character by itself
• Used in pairs to represent supplementaries in UTF-16

Dublin, Ireland, May 200221st International Unicode Conference 5

521st International Unicode Conference Dublin, Ireland, May 2002

Identifying Candidates for Changes

• Look for characteristic data types in programs
– char in Java,
– wchar_t in POSIX,
– WCHAR & TCHAR in Win32,
– UChar in ICU4C

• These types may need to be changed to handle
supplementary code points

Used by itself, types for characters may need to be changed to handle
supplementary code points, which means either making them 32-bit wide (like int in
Java) or handling the surrogate pairs (if staying with 16-bits wide units).

However, pointer types, such as UChar* should be given more consideration, as
they could be treated as strings (as it is done in ICU).

Some types can be compiler/OS dependant, like wchar_t. In these cases, they need
to be changed only if it is not possible to store a 32-bit value in them.

Dublin, Ireland, May 200221st International Unicode Conference 6

621st International Unicode Conference Dublin, Ireland, May 2002

Deciding When to Change

• Varies by situation
• Operations with strings alone are rarely affected
• Code using characters might have to be changed

– Depends on the types of characters
– Depends on the type of code
– Key Feature: Surrogates don’t overlap!

• Use libraries with support for supplementaries

• Detailed examples below

Supplementary character can be ignored if the application is not processing text.

Explicit search for BMP and ASCII characters not affected

Most modern scripts (Latin, Cyrillic, Greek, Arabic, Hindi, Thai) not affected

Chinese, Japanese, historic scripts and certain Math symbols encoded in the
supplementary space. If these are used, the code has to be changed.

Dublin, Ireland, May 200221st International Unicode Conference 7

721st International Unicode Conference Dublin, Ireland, May 2002

Indexes & Random Access

• Goal is to keep the performance of UCS-2
– Offsets/indices point to 16-bit code units

• Modify where necessary for supplementaries
• Random access

– not done often
– utilities facilitate detecting code point boundaries

Always index by code unit for performance, so that doesn’t change.

Supplementaries are handled in certain cases, as we will see below.

Dublin, Ireland, May 200221st International Unicode Conference 8

821st International Unicode Conference Dublin, Ireland, May 2002

ICU: Int’l Components for Unicode

• Robust, full-featured Unicode library
• Wide variety of supported platforms
• Open source (X license – non-viral)
• C/C++ and Java versions
• http://oss.software.ibm.com/icu/

The International Components for Unicode(ICU) is a C and C++ library that
provides robust and full-featured Unicode support on a wide variety of
platforms.

ICU is a collaborative, open-source development project jointly managed by
a group of companies and individual volunteers throughout the world, using
the Internet and the Web to communicate, plan, and develop the software
and documentation.

The ICU project is licensed under the X License (see also the x.org original),
which is compatible with GPL but non-viral.

Dublin, Ireland, May 200221st International Unicode Conference 9

921st International Unicode Conference Dublin, Ireland, May 2002

Using ICU for Supplementaries

• Wide variety of utilities for UTF-16
• All internationalization services handle

supplementaries
– Character Conversion, Compression
– Collation, String search, Normalization, Transliteration
– Date, time, number, message format & parse
– Locales, Resource Bundles
– Properties, Char/Word/Line Breaks, Strings (C)
– Supplementary Character Utilities

Dublin, Ireland, May 200221st International Unicode Conference 10

1021st International Unicode Conference Dublin, Ireland, May 2002

JAVA

• Sun licenses ICU code for all the JVMs
• ICU4J adds delta features

– Normalization, String Search, Text Compression,
Transliteration

– Enhancements to: Calendar, Number Format, Boundaries

• Supplementary character utilities:
– UTF-16 class
– UCharacter class

Details on following slides

Sun licenses ICU code for all the JVMs starting from Java 1.0

Dublin, Ireland, May 200221st International Unicode Conference 11

1121st International Unicode Conference Dublin, Ireland, May 2002

JAVA: Safe Code

• No overlap with supplementaries

1) for (int i = 0; i < s.length(); ++i)
{

2) char c = s.charAt(i);

3) if (c == '[' || c == ']') {

4) doSomething(c);

5) }

6) }

Most of the code in a program does not need to be changed because of
supplementaries. In this case, for example, no supplementary characters need to be
detected, so the code does not need to be changed.

Dublin, Ireland, May 200221st International Unicode Conference 12

1221st International Unicode Conference Dublin, Ireland, May 2002

JAVA: Safe Code 2

• Most String functions are safe
• Assuming that strings are well formed

1) static void func(String s, String t) {

2) doSomething(s + t);

3) }

Most string operations are safe, and String parameters can always handle
supplementaries.

If two strings are both well formed, then their concatenation is.

Dublin, Ireland, May 200221st International Unicode Conference 13

1321st International Unicode Conference Dublin, Ireland, May 2002

JAVA: Safe Code 3

• Even substringing is safe if indices are on
code point boundaries

1) static void func(String s, int k, int e) {

2) doSomething(s.substring(k,e);

3) }

Even substringing is ok, if the indices passed in are code point boundaries.

Dublin, Ireland, May 200221st International Unicode Conference 14

1421st International Unicode Conference Dublin, Ireland, May 2002

JAVA: API Problems

• You can’t pass a supplementary character
in function (1)

• You can’t retrieve a supplementary from
function (2)

1) void func1(char foo) {}

2) char func2() {}

Dublin, Ireland, May 200221st International Unicode Conference 15

1521st International Unicode Conference Dublin, Ireland, May 2002

JAVA: Parameter Fixes

Two possibilities:
a) int

– The simplest fix
b) String

– More general; often the use of char was a mistake in the
first place.

– If you don’t overload, it requires a call-site change.

1) void func1(char foo) {}

a) void func1(int foo) {}

b) void func1(String foo) {}

Ints are simpler for conversion, and can carry supplementaries. Changing to an int
doesn’t require call-site changes: if we call func(‘a’), it still works because Java
widens.

However, often chars were originally a mistake, too narrow an interface. For
example: having a currency symbol be a char is incorrect: you can’t represent ‘sFr’
for Swiss Franc. Changing to a String is often a better approach, although String is
much heavier weight than int, so it should be avoided in high-performance code.
There are also pluses and minuses as far as your conversion goes.

Changing the API to have the parameter type be String will help reveal if any of the
call-site code was not paying attention to surrogates when it should have. However,
often this isn’t needed. You may not have the freedom to change the API, either.

The alternative if you want String is to have an overload.

Dublin, Ireland, May 200221st International Unicode Conference 16

1621st International Unicode Conference Dublin, Ireland, May 2002

JAVA: Return Value Fixes

• Return values are trickier.
a) If you can change the API, then you can return a different

value (String/int).
b) Otherwise, you have to have a variant name.

• Either way, you usually must change call sites.
• Before:

2. char func2() {}

• After:
a) int func2() {}

b) int func2b() {}

c) String func2c() {}

Dublin, Ireland, May 200221st International Unicode Conference 17

1721st International Unicode Conference Dublin, Ireland, May 2002

JAVA: Call Site Fixes

• Changes to Return values require
call-site changes.

• Before
2. char x = myObject.func();

• After
a) int x = myObject.func();

Dublin, Ireland, May 200221st International Unicode Conference 18

1821st International Unicode Conference Dublin, Ireland, May 2002

JAVA: Looping Over Strings

Changes required when:
• Supplementaries are being checked for
• Called functions take supplementaries
• This loop does not account for

supplementaries
1. for (int i = 0; i < s.length(); ++i) {

2. char c = s.charAt(i);

3. if (Character.isLetter(c)) {

4. doSomething(c);

5. }

6. }

A very common situation is where all the characters in a string are iterated. As a
matter of fact, a majority of the code in ICU that required changes were in these
situations, so it is worth taking a special look at them.

Dublin, Ireland, May 200221st International Unicode Conference 19

1921st International Unicode Conference Dublin, Ireland, May 2002

ICU4J: Looping Changes

• Uses ICU4J utilities

1. int c;

2. for (int i = 0; i < s.length(); i +=
UTF16.getCharCount(c)) {

3. c = UTF16.charAt(s, i);

4. if (UCharacter.isLetter(c)) {

5. doSomething(c);

6. }

7. }

Here is one style of change, that generally has the least impact on the body of the
loop.

This change presumes that the function doSomething() has been changed (or
overloaded) to accept supplementaries.

Dublin, Ireland, May 200221st International Unicode Conference 20

2021st International Unicode Conference Dublin, Ireland, May 2002

ICU4J: Tight Loops

• Faster Alternative, also with utilities

1. for (int i = 0; i < s.length(); ++i) {

2. int c = s.charAt(i);

3. if (0xD800 <= c && c <= 0xDBFF) {

4. c = UTF16.charAt(s, i);

5. i += UTF16.getCharCount(c) - 1;

6. }

7. if (UCharacter.isLetter(c)) {

8. doSomething(c);

9. }

10. }

For tight loops, sometimes other code is required.

Note: in this case the counter i is different in the body of the loop; it is in the middle
of a supplementary character. Generally this is not important, but where it is,
alternative styles need to be used.

Dublin, Ireland, May 200221st International Unicode Conference 21

2121st International Unicode Conference Dublin, Ireland, May 2002

ICU4J: Utilities

• Basic String Utilities, Code Unit Point
– String, StringBuffer, char[]

• Modification
– StringBuffer, char[]

• Character Properties
• Note:

– cp means a code point (32-bit int)
– s is a Java String
– char is a code unit
– offsets always address 16-bit code units (except as noted)

We will go into more detail on these in the next slide.

Dublin, Ireland, May 200221st International Unicode Conference 22

2221st International Unicode Conference Dublin, Ireland, May 2002

ICU4J: Basic String Utilities

• These utilities offer easy transfer between
UTF-32 code points and strings, which are
UTF-16 based

1. cp = UTF16.charAt(s, offset);

2. count = UTF16.getCharCount(cp);

3. s = UTF16.valueOf(cp);

4. cpLen = UTF16.countCodePoint(s);

1. Gets a 32-bit code point from an offset in string

2. Counts number of code units in a code point (could be 1 or 2)

3. Produces a string from a code point

4. Counts the number of code points in a string

Dublin, Ireland, May 200221st International Unicode Conference 23

2321st International Unicode Conference Dublin, Ireland, May 2002

ICU4J: Code Unit Point
• Converting code unit offsets to and from

code point offsets
1. cpOffset = UTF16.findCodePointOffset(s, offset);

S S L T S S L T S

Code unit offsets

Code point offsets

0

0 1

1 2

2

3

3

4

4

5

5

6

6

7 8

2. offset = UTF16.findOffsetFromCodePoint(s,
cpOffset);

S S L T S S L T S

Code unit offsets

Code point offsets

0

0 1

1 2

2

3

3

4

4

5

5

6

6

7 8

Here is an example of converting indices.

Dublin, Ireland, May 200221st International Unicode Conference 24

2421st International Unicode Conference Dublin, Ireland, May 2002

ICU4J: StringBuffer

• String Buffer functions
– also on char[]

1. UTF16.append(sb, cp);

2. UTF16.delete(sb, offset);

3. UTF16.insert(sb, offset, cp);

4. UTF16.setCharAt(sb, offset, cp);

The main functions for modifying a buffer of chars are here. There are parallel
versions for plain char arrays.

Note: although it is not obvious, UTF16.setCharAt can change the length of the
string. If a supplementary code point is replaced by a BMP code point the string will
shrink. In opposite situation, it will grow.

Dublin, Ireland, May 200221st International Unicode Conference 25

2521st International Unicode Conference Dublin, Ireland, May 2002

ICU4J: Character Properties

• UCharacter.isLetter(cp);

• UCharacter.getName(cp);

• …

The standard character properties are supplied. For ease of porting, these retain the
same method names as in Java; the class name just has a U on the front.

Dublin, Ireland, May 200221st International Unicode Conference 26

2621st International Unicode Conference Dublin, Ireland, May 2002

What about Sun?

• Nothing in JDK 1.4
– Except rendering; TextLayout does handle surrogates

• Expected support in next release
– 2004?…
– API?…

• In the meantime, ICU4J gives you the tools
you need

• Code should co-exist even after Sun adds
support

Dublin, Ireland, May 200221st International Unicode Conference 27

2721st International Unicode Conference Dublin, Ireland, May 2002

ICU: C/C++

• Macros for UTF-16 encoding
• UnicodeString handles supplementaries
• UChar32 instead of UChar
• APIs enabled for supplementaries
• Very easy transition if the program is already

using ICU4C

Dublin, Ireland, May 200221st International Unicode Conference 28

2821st International Unicode Conference Dublin, Ireland, May 2002

Basic Data Types

• In C many types can hold a UTF-16 code unit
• Essentially 16-bit wide and unsigned
• ICU4C uses:

– UTF-16 in UChar data type
– UTF-32 in UChar32 data type

Dublin, Ireland, May 200221st International Unicode Conference 29

2921st International Unicode Conference Dublin, Ireland, May 2002

16-bit Unicode in C

• Different platforms use different typedefs for
UTF-16 strings
– Windows: WCHAR, LPWSTR
– Some Unixes: wchar_t (but varies widely)
– ICU4C: UChar

• Types for single characters:
– Rarely defined separately from string type because

types not prepared for Unicode
– ICU4C: UChar32 (may be signed or unsigned!)

Dublin, Ireland, May 200221st International Unicode Conference 30

3021st International Unicode Conference Dublin, Ireland, May 2002

C: Safe Code

• No overlap with supplementaries

1. for(int i = 0; i < uCharArrayLen; ++i) {

2. UChar c = uCharArray[i];

3. if (c == '[' || c == ']') {

4. doSomething(c);

5. }

6. }

Most of the code in a program does not need to be changed because of
supplementaries. In this case, for example, no supplementary characters need to be
detected, so the code does not need to be changed.

Dublin, Ireland, May 200221st International Unicode Conference 31

3121st International Unicode Conference Dublin, Ireland, May 2002

C++: Safe Code

• No overlap with supplementaries

1) for (int32_t i = 0; i < s.length();
++i) {

2) UChar c = s.charAt(i);

3) if (c == '[' || c == ']') {

4) doSomething(c);

5) }

6) }

Dublin, Ireland, May 200221st International Unicode Conference 32

3221st International Unicode Conference Dublin, Ireland, May 2002

C: Safe Code 2

• Most String functions are safe

1) static void func(UChar *s,

2) const UChar *t) {

3) doSomething(u_strcat(s, t));

4) }

Most string operations are safe, and String parameters can always handle
supplementaries.

If two strings are both well formed, then their concatenation is.

The above example assumes that both s and t are NULL terminated that there is
enough space in s to hold the concatenation result.

Dublin, Ireland, May 200221st International Unicode Conference 33

3321st International Unicode Conference Dublin, Ireland, May 2002

C++: Safe Code 2

• Most String functions are safe

1) static void func(UnicodeString &s,

2) const UnicodeString &t) {

3) doSomething(s.append(t));

4) }

Most string operations are safe, and String parameters can always handle
supplementaries.

If two strings are both well formed, then their concatenation is.

Dublin, Ireland, May 200221st International Unicode Conference 34

3421st International Unicode Conference Dublin, Ireland, May 2002

C/C++: API Bottlenecks

• You can’t pass a supplementary character
in function (1)

• You can’t retrieve a supplementary from
function (2)

1) void func1(UChar foo) {}

2) UChar func2() {}

Supplementary characters cannot be passed as arguments to functions, nor can they
be returned.

Dublin, Ireland, May 200221st International Unicode Conference 35

3521st International Unicode Conference Dublin, Ireland, May 2002

C/C++: Parameter Fixes

Two possibilities:
a) UChar32:

– The simplest fix

b) UnicodeString
– More general; often the use of UChar was a mistake in

the first place.
– If you don’t overload, it requires a call-site change.

UChar32s are simpler for conversion, and can carry supplementaries. Changing to
an UChar32 doesn’t require call-site changes: if we call func1(‘a’), it still works
because C/C++ widens.

However, often UChars were originally a mistake, too narrow an interface. For
example: having a currency symbol be a char is incorrect: you can’t represent ‘sFr’
for Swiss Franc. Changing to a UnicodeString is often a better approach, although
UnicodeString is much heavier weight than UChar32, so it should be avoided in
high-performance code. There are also pluses and minuses as far as your conversion
goes.

Changing the API to have the parameter type be UnicodeString will help reveal if
any of the call-site code was not paying attention to surrogates when it should have.
However, often this isn’t needed. You may not have the freedom to change the API,
either.

The alternative if you want UnicodeString is to have an overload.

Dublin, Ireland, May 200221st International Unicode Conference 36

3621st International Unicode Conference Dublin, Ireland, May 2002

C/C++: Parameter Fixes (Contd.)

• Before
1) void func1(UChar foo) {}

• After
a) void func1(UChar32 foo) {}

b) void func1(UnicodeString &foo) {}

c) void func1(UChar* foo) {}

UChar32s are simpler for conversion, and can carry supplementaries. Changing to
an UChar32 doesn’t require call-site changes: if we call func1(‘a’), it still works
because C/C++ widens.

However, often UChars were originally a mistake, too narrow an interface. For
example: having a currency symbol be a char is incorrect: you can’t represent ‘sFr’
for Swiss Franc. Changing to a UnicodeString is often a better approach, although
UnicodeString is much heavier weight than UChar32, so it should be avoided in
high-performance code. There are also pluses and minuses as far as your conversion
goes.

Changing the API to have the parameter type be UnicodeString will help reveal if
any of the call-site code was not paying attention to surrogates when it should have.
However, often this isn’t needed. You may not have the freedom to change the API,
either.

The alternative if you want UnicodeString is to have an overload.

Dublin, Ireland, May 200221st International Unicode Conference 37

3721st International Unicode Conference Dublin, Ireland, May 2002

C/C++: Return Value Fixes

• Return values are trickier.
a) If you can change the API, then you can return a

different value (String/int).
b) Otherwise, you have to have a variant name.

• Either way, you have to change the call
sites.

Dublin, Ireland, May 200221st International Unicode Conference 38

3821st International Unicode Conference Dublin, Ireland, May 2002

C/C++: Return Value Fixes (Contd.)

• Before
2. UChar func2() {}

• After
a) UChar32 func2() {}

b) UChar func2() {}
UChar32 func2b() {}

c) UChar func2() {}

UnicodeString func2c {}

d) UChar func2() {}

void func2d(UnicodeString &fillIn) {}

Dublin, Ireland, May 200221st International Unicode Conference 39

3921st International Unicode Conference Dublin, Ireland, May 2002

C/C++: Call Site Fixes

• Changes to Return values require call-site
changes.

• Before
2. UChar x = func2();

• After
a) UChar32 x = func2();

b) UChar32 x = func2b();

c) UnicodeString result(func2c());

d) UnicodeString result;

func2d(result);

Dublin, Ireland, May 200221st International Unicode Conference 40

4021st International Unicode Conference Dublin, Ireland, May 2002

C/C++: Use Compiler

• Changes needed to address argument
and return value problems easy to
make, but error prone

• Compiler should be used to verify
that all the changes are correct

• Investigate all the warnings!

Dublin, Ireland, May 200221st International Unicode Conference 41

4121st International Unicode Conference Dublin, Ireland, May 2002

C/C++: Looping Over Strings

Changes required when:
• Supplementaries are being checked for
• Called functions take supplementaries
• This loop does not account for

supplementaries
1. for (int32_t i = 0; i < s.length(); ++i) {

2. UChar c = s.charAt(i);

3. if (u_isalpha(c)) {

4. doSomething(c);

5. }

6. }

Function u_isalpha() expects a UChar32. UnicodeString::charAt function returns
char. If a supplementary code point is in the string, it won’t be picked up correctly.

Dublin, Ireland, May 200221st International Unicode Conference 42

4221st International Unicode Conference Dublin, Ireland, May 2002

C++: Looping Changes

• Uses ICU4C utilities

1. UChar32 c;

2. for (int32_t i = 0; i < s.length(); i +=
UTF16_CHAR_LENGTH(c)) {

3. c = s.char32At(i);

4. if (u_isalpha(c)) {

5. doSomething(c);

6. }

7. }

This change presumes that the function doSomething() has been changed (or
overloaded) to accept supplementaries.

In this loop i holds the offset of the code unit to be processed.

Dublin, Ireland, May 200221st International Unicode Conference 43

4321st International Unicode Conference Dublin, Ireland, May 2002

C: Looping Changes

• Uses ICU4C utilities

1. UChar32 c;

2. int32_t i = 0;

3. while(i < uCharArrayLen) {

4. UTF_NEXT_CHAR(uCharArray, i,
uCharArrayLen, c);

5. if (u_isalpha(c)) {

6. doSomething(c);

7. }

8. }

This change presumes that the function doSomething() has been changed (or
overloaded) to accept supplementaries.

After UTF_NEXT_CHAR, i holds the offset to the next code unit to be processed,
unlike the C++ version.

Dublin, Ireland, May 200221st International Unicode Conference 44

4421st International Unicode Conference Dublin, Ireland, May 2002

ICU4C: Utilities

• Basic String Utilities, Code Unit Point,
Iteration

– UnicodeString, UChar[], CharacterIterator
• Modification

– UnicodeString, UChar[], CharacterIterator
• Character Properties
• Note:

– cp means a code point (32-bit int)
– uchar is a code unit
– s is an UnicodeString, while p is a UChar pointer
– offsets are always addressing 16-bit code units

Dublin, Ireland, May 200221st International Unicode Conference 45

4521st International Unicode Conference Dublin, Ireland, May 2002

ICU4C : Basic String Utilities

• Methods of UnicodeString class and
macros defined in utf*.h.

1. cp = s.char32At(offset);

2. UTF_GET_CHAR(p, start, offset, length, cp)

3. cpLen = s.countChar32();

4. count = UTF_CHAR_LENGTH(cp);

5. s = cp;

6. UTF_APPEND_CHAR(p, offset, length, cp)

7. offset = s.indexOf(cp);

8. offset = s.indexOf(uchar);

Dublin, Ireland, May 200221st International Unicode Conference 46

4621st International Unicode Conference Dublin, Ireland, May 2002

ICU4C : Code Unit Point

• Converting code unit offsets to
and from code point offsets

• C++ methods for Unicode strings

1. cpoffset = s.countChar32(offset,
length);

2. cpoffset = u_countChar32(p, length);

3. offset = s.moveIndex32(cpoffset);

All the C++ methods have a C counterpart that works on an
array of Unicode characters.

Dublin, Ireland, May 200221st International Unicode Conference 47

4721st International Unicode Conference Dublin, Ireland, May 2002

ICU4C : Iterating macros

• C macros, operating on arrays
• Get a code point without moving
1. UTF_GET_CHAR(p, start, offset, length,

cp)

• Get a code point and move
2. UTF_NEXT_CHAR(p, offset, length, cp)

3. UTF_PREV_CHAR(p, start, offset, cp)

C macros are defined in utf.h, utf8.h, utf16.h, utf32.h. They allow for easy iterating
over arrays containing one of these forms, as well as for converting between
representation forms

Dublin, Ireland, May 200221st International Unicode Conference 48

4821st International Unicode Conference Dublin, Ireland, May 2002

ICU4C: Iterating macros (Contd.)

• Moving over arrays, preserving the
boundaries of code points, without
fetching the code point

1. UTF_FWD_1(p, offset, length)

2. UTF_FWD_N(p, offset, length, n)

3. UTF_BACK_1(p, start, offset)

4. UTF_BACK_N(p, start, offset, n)

Dublin, Ireland, May 200221st International Unicode Conference 49

4921st International Unicode Conference Dublin, Ireland, May 2002

ICU4C : String Modification

• C++ Unicode Strings, macros for arrays

1. s.append(cp);

2. s.replace(offset, length, cp);

3. s.insert(offset, cp);

4. UTF_APPEND_CHAR(p, offset, length, cp)

Dublin, Ireland, May 200221st International Unicode Conference 50

5021st International Unicode Conference Dublin, Ireland, May 2002

Character Iterator

• Convenience class, allows for elegant
looping over strings

• Subclasses can be instantiated from:
– UChar array
– UnicodeString class

• Performance worse than previous
examples

• Provides APIs parallel to UTF_* macros

Dublin, Ireland, May 200221st International Unicode Conference 51

5121st International Unicode Conference Dublin, Ireland, May 2002

Looping Using CharacterIterator

• convenient way to loop over strings

1. StringCharacterIterator it(s);

2. UChar32 c;

3. for(it.setToStart(); it.hasNext ();) {

4. c=it.next32PostInc();

5. if (u_isalpha(c)) {

6. doSomething(c);

7. }

8. }

Instead of StringCharacterIterator, we could have used UCharCharacterIterator
it(UCharArray, UCharArrayLen).

Very useful when a function takes a CharacterIterator reference as an argument.

Dublin, Ireland, May 200221st International Unicode Conference 52

5221st International Unicode Conference Dublin, Ireland, May 2002

ICU4C : Character Properties

• Common API for C/C++
• u_isalpha(cp);

• u_charName(cp, …);

• …

C++ APIs exist, but are deprecated, as they are 1-1 wrappers around C APIs

Dublin, Ireland, May 200221st International Unicode Conference 53

5321st International Unicode Conference Dublin, Ireland, May 2002

Summary

• Because of the design of UTF-16, most code
remains the same.

• Conversion is fairly straightforward…

With the right tools!

Dublin, Ireland, May 200221st International Unicode Conference 54

5421st International Unicode Conference Dublin, Ireland, May 2002

Q & A

Dublin, Ireland, May 200221st International Unicode Conference 55

5521st International Unicode Conference Dublin, Ireland, May 2002

Example of UTF-8; iterating

• UTF-8 is supported by ICU, but it is not used internally
• All the APIs require either UTF-16 strings or UTF-32

single code points – need to convert

1. for(int32_t i = 0; i < utf8ArrayLen;) {

2. UTF8_NEXT_CHAR_UNSAFE(utf8Array, i, cp);

3. if(u_isalpha(cp)) {

4. doSomething(cp);

5. }

6. }

To iterate over UTF-8 strings, one can use one of the macros that support different
encoding forms. Do note, however, that the _UNSAFE functions are unsafe (both in
regard to potential bounds breakage and malformation of the strings). These are to
be used if and only if one is sure that the strings that are to be processed are well
formed. Otherwise, go with _SAFE variants.

Dublin, Ireland, May 200221st International Unicode Conference 56

5621st International Unicode Conference Dublin, Ireland, May 2002

Example of UTF-8: converting

• For APIs that require strings, it is usually the
best to convert beforehand

• UTF-8 converter is algorithmic and very fast
1. UConverter *conv = ucnv_open("utf-8",

2. &status);

3. bufferLen = ucnv_toUChars(conv,

4. buffer, 256,

5. source, sourceLen, &status);

6. ucnv_close(conv);

Converter is very fast and gives additional security. If dealing with external strings
that are UTF-8 encoded, use a converter

Dublin, Ireland, May 200221st International Unicode Conference 57

5721st International Unicode Conference Dublin, Ireland, May 2002

Example of UTF-8: fast API

• Even faster is specialized API
UChar* u_strFromUTF8(UChar *dest,

int32_t destCapacity,

int32_t *pDestLength,

const char *src,

int32_t srcLength,

UErrorCode *pErrorCode);

When processing well formed data – provided by other APIs or trusted sources, you
can use a faster converter – u_strFromUTF8, which avoids the overhead imposed by
initializing and using converters.

