
PRI 185: Extension of UBA for
improved display of URL/IRIs

Contents

Proposal
Problem
Recognizing IRIs in plain text

Open issues
Termination and Continuation

Proposed extension of UBA for bidi_IRIs
Option 1: Constant Order
Open Issues
Environment Order
Content Order
TLD Order

Proposal
This document discusses proposals for an extension to the Unicode Bidirectional Algorithm
(UBA) to better handle URLs and similar common structured text. The Unicode Technical
Committee would appreciate feedback on the advantages and disadvantages of introducing such
an extension, and the best choices among the options for doing so.

Problem
The Unicode Bidirectional Algorithm (UBA) was designed for handling ordinary text, and
predated the rise of the web. Unfortunately, IRI/URLs* are not ordinary text; they are
syntactically complex in ways that don’t work well with the UBA. That causes IRIs that contain
right-to-left text (such as Arabic or Hebrew) to appear jumbled, to the point where the IRIs are
either uninterpretable, misleading, or ambiguous. In particular the ambiguous displays could
cause security problems.

*Formally speaking, what we are talking about are IRIs, although most end-users know
them as URLs. For more information, see idn-and-iri.

For example, consider the IRIs in Table 1. These sample IRIs are shown in “memory” order first;
uppercase bold represents right-to-left characters.

Table 1. Sample IRIs, Memory order

IRIs Comments on fields

http://ab.cd.com/mn/op All LTR characters

#h.m093e2ki5wvv
#h.m093e2ki5wvv
#h.m093e2ki5wvv
http://www.unicode.org/reports/tr9/proposed.html
http://www.unicode.org/reports/tr9/proposed.html
http://www.unicode.org/reports/tr9/proposed.html
http://www.unicode.org/reports/tr9/proposed.html
http://www.unicode.org/reports/tr9/proposed.html
http://www.unicode.org/reports/tr9/proposed.html
http://www.unicode.org/reports/tr9/proposed.html
http://www.unicode.org/reports/tr9/proposed.html
http://www.unicode.org/reports/tr9/proposed.html
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FInternational%2Farticles%2Fidn-and-iri%2F&sa=D&sntz=1&usg=AFQjCNGZYV7_r3kwKzsiD0N4LL4dMvDQ9Q
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FInternational%2Farticles%2Fidn-and-iri%2F&sa=D&sntz=1&usg=AFQjCNGZYV7_r3kwKzsiD0N4LL4dMvDQ9Q
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FInternational%2Farticles%2Fidn-and-iri%2F&sa=D&sntz=1&usg=AFQjCNGZYV7_r3kwKzsiD0N4LL4dMvDQ9Q
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FInternational%2Farticles%2Fidn-and-iri%2F&sa=D&sntz=1&usg=AFQjCNGZYV7_r3kwKzsiD0N4LL4dMvDQ9Q
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FInternational%2Farticles%2Fidn-and-iri%2F&sa=D&sntz=1&usg=AFQjCNGZYV7_r3kwKzsiD0N4LL4dMvDQ9Q

http://ab.cd.EF.GH.com/IJ/KL/mn/op Mixture of RTL and LTR fields

http://EF.GH/IJ/KL All RTL characters (except the scheme “http”)

They would be displayed as in Table 2 by any Unicode-compliant implementation.

Table 2. Sample IRIs, Display order

Environment Display Details

LTR http://ab.cd.com/mn/op

http://ab.cd.HG.FE.com/LK/JI/mn/op

http://LK/JI/HG.FE

http://goo.gl/yvNFq

RTL http://ab.cd.com/mn/op

mn/op/LK/JI/com.HG.FE.http://ab.cd

LK/JI/HG.FE//:http

http://goo.gl/DuELB

People have been looking for an extension to the Unicode Bidirectional Algorithm (UBA) that
handles IRIs in a more consistent way for bidi users. The general goal of such an extension
would be for the “fields” of an IRI to flow in a consistent direction.

While the UBA permits higher-level protocols to modify the display of text, serious
interoperability problems result if different applications use different conventions for IRIs. A
number of major companies either are in the process of extending, or intend to extend the UBA
for display of IRIs, in response to pressure from users. To avoid interoperability problems, a
consistent set of conventions needs to be adopted across a wide range of applications for any
such extension for handling IRIs and other structured text. For example, when someone copies
the contents of an address bar into an email, we don’t want all the fields in the IRI to switch
around. Attaining such consistency would require a general extension to the UBA to indicate
how IRIs should be displayed, both in the limited context of an address bar, and in plain text.

While a major focus for such extensions is the display of IRIs, it is important that any solution
also apply to email addresses and filenames.

There are challenges for developing such an extension.

1. There will be a long migration period as implementations are updated from the
current version of UBA to a revised version. During that period, people will be using a
mixture of old and new applications. It is crucial to minimize the negative effects for
interoperability of different displays of IRIs during this transition period.

2. It is necessary to have a simple, comprehensible way to recognize IRIs in plain text to

http://goo.gl/yvNFq
http://goo.gl/yvNFq
http://goo.gl/yvNFq
http://goo.gl/yvNFq
http://goo.gl/yvNFq
http://goo.gl/yvNFq
http://goo.gl/yvNFq
http://goo.gl/DuELB
http://goo.gl/DuELB
http://goo.gl/DuELB
http://goo.gl/DuELB
http://goo.gl/DuELB
http://goo.gl/DuELB
http://goo.gl/DuELB
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols
http://www.unicode.org/reports/tr9/proposed.html#Higher-Level_Protocols

support correct display in text, and to avoid jumbled, ambiguous IRIs

The Unicode Technical Committee approaches changes to the UBA very carefully. Any changes
must be carefully vetted, because the exact behavior of the UBA is crucial to the appearance of
millions of already-published documents and web pages. Thus an extended period of comment
and testing is required. Any specification for an extension may be initially characterized as
experimental.

Recognizing IRIs in plain text

There are two problems:

1. A formal reading of the IRI spec allows almost anything in fields, so it is hard to test for
termination.

2. The scheme for an IRI (such as “http://”) is commonly omitted when IRIs are
represented in text. For example, the string “adobe.com” should be recognized as being
an IRI when it occurs in the body of an email message.

The first issue can be addressed with the following approach. While in theory, almost any
Unicode character can occur in fields in an IRI, in practice many characters have very restricted
usage in IRIs. One can take advantage of this pattern by defining a restricted and simplified
syntax for IRIs, which captures the majority of actual practice. This syntax can then be used to
define display of IRIs for UBA. IRIs that need to use characters outside of this restricted syntax
can still be appropriately displayed by the UBA by representing those characters with % escapes.

For the second issue, a common technique can be applied. The technique is to recognized a list
of TLDs in context. For example, microsoft.com and google.de can both be recognized. (See
http://www.iana.org/domains/root/db/).

Here is a proposed BNF for recognizing IRIs and other structured text within plain text. This
BNF uses a Perl-style syntax:

[Review Note: this BNF is simplified so as to not interfere with understanding the
general proposal. It would be completed in a final proposal.]

bidi_structure := bidi_IRI | bidi_filename | bidi_email

bidi_IRI := ((scheme “://” domain) | domainWithTLD)
 (“/” path)?

(“?” query)?
(“#” fragment)?

http://microsoft.com
http://microsoft.com
http://microsoft.com
http://google.de
http://google.de
http://google.de
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)
http://www.iana.org/domains/root/db/.)

domain := label (IDNSep label)* IDNSep?
domainWithTLD := label (IDNSep label)* IDNSep TLD IDNSep?
label := UTS46Chars +
IDNSep := [\u002E \uFF0E \u3002\uFF61] // see http://unicode.org/reports/tr46/
#Notation

TLD := <list on http://www.iana.org/domains/root/db/>

path := (char - “?” - “#”)*
query := (char - “#”)*
fragment := char*

char := percentEncodedUTF8
 | [[:L:][:N:][:M:][:S:][:Pd:][:Pc:][:Cf:] inclusionChar - exclusionChar]

inclusionChar :=

U+0021 (!) EXCLAMATION MARK
U+0022 (") QUOTATION MARK
U+0023 (#) NUMBER SIGN
U+0025 (%) PERCENT SIGN
U+0026 (&) AMPERSAND
U+0027 (') APOSTROPHE
U+002A (*) ASTERISK
U+002C (,) COMMA
U+002E (.) FULL STOP
U+002F (/) SOLIDUS
U+003A (:) COLON
U+003B (;) SEMICOLON
U+003F (?) QUESTION MARK
U+0040 (@) COMMERCIAL AT
U+005C (\) REVERSE SOLIDUS
U+00A1 (¡) INVERTED EXCLAMATION MARK
U+00B7 (·) MIDDLE DOT
U+00BF (¿) INVERTED QUESTION MARK

exclusionChar :=
U+003C (<) LESS-THAN SIGN
U+003E (>) GREATER-THAN SIGN

bidi_filename := path_sep? char+ (path_sep char+)* path_sep?
path_sep :=

U+002F (/) SOLIDUS
U+005C (\) REVERSE SOLIDUS

bidi_email := char* ‘@’ domainWithTLD

http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://unicode.org/reports/tr46/#Notation
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://www.iana.org/domains/root/db/
http://unicode.org/cldr/utility/character.jsp?a=0021
http://unicode.org/cldr/utility/character.jsp?a=0021
http://unicode.org/cldr/utility/character.jsp?a=0022
http://unicode.org/cldr/utility/character.jsp?a=0022
http://unicode.org/cldr/utility/character.jsp?a=0023
http://unicode.org/cldr/utility/character.jsp?a=0023
http://unicode.org/cldr/utility/character.jsp?a=0025
http://unicode.org/cldr/utility/character.jsp?a=0025
http://unicode.org/cldr/utility/character.jsp?a=0026
http://unicode.org/cldr/utility/character.jsp?a=0026
http://unicode.org/cldr/utility/character.jsp?a=0027
http://unicode.org/cldr/utility/character.jsp?a=0027
http://unicode.org/cldr/utility/character.jsp?a=002A
http://unicode.org/cldr/utility/character.jsp?a=002A
http://unicode.org/cldr/utility/character.jsp?a=002A
http://unicode.org/cldr/utility/character.jsp?a=002C
http://unicode.org/cldr/utility/character.jsp?a=002C
http://unicode.org/cldr/utility/character.jsp?a=002C
http://unicode.org/cldr/utility/character.jsp?a=002E
http://unicode.org/cldr/utility/character.jsp?a=002E
http://unicode.org/cldr/utility/character.jsp?a=002E
http://unicode.org/cldr/utility/character.jsp?a=002F
http://unicode.org/cldr/utility/character.jsp?a=002F
http://unicode.org/cldr/utility/character.jsp?a=002F
http://unicode.org/cldr/utility/character.jsp?a=003A
http://unicode.org/cldr/utility/character.jsp?a=003A
http://unicode.org/cldr/utility/character.jsp?a=003A
http://unicode.org/cldr/utility/character.jsp?a=003B
http://unicode.org/cldr/utility/character.jsp?a=003B
http://unicode.org/cldr/utility/character.jsp?a=003B
http://unicode.org/cldr/utility/character.jsp?a=003F
http://unicode.org/cldr/utility/character.jsp?a=003F
http://unicode.org/cldr/utility/character.jsp?a=003F
http://unicode.org/cldr/utility/character.jsp?a=0040
http://unicode.org/cldr/utility/character.jsp?a=0040
http://unicode.org/cldr/utility/character.jsp?a=005C
http://unicode.org/cldr/utility/character.jsp?a=005C
http://unicode.org/cldr/utility/character.jsp?a=005C
http://unicode.org/cldr/utility/character.jsp?a=00A1
http://unicode.org/cldr/utility/character.jsp?a=00A1
http://unicode.org/cldr/utility/character.jsp?a=00A1
http://unicode.org/cldr/utility/character.jsp?a=00A1
http://unicode.org/cldr/utility/character.jsp?a=00B7
http://unicode.org/cldr/utility/character.jsp?a=00B7
http://unicode.org/cldr/utility/character.jsp?a=00B7
http://unicode.org/cldr/utility/character.jsp?a=00B7
http://unicode.org/cldr/utility/character.jsp?a=00BF
http://unicode.org/cldr/utility/character.jsp?a=00BF
http://unicode.org/cldr/utility/character.jsp?a=00BF
http://unicode.org/cldr/utility/character.jsp?a=003C
http://unicode.org/cldr/utility/character.jsp?a=003C
http://unicode.org/cldr/utility/character.jsp?a=003C
http://unicode.org/cldr/utility/character.jsp?a=003E
http://unicode.org/cldr/utility/character.jsp?a=003E
http://unicode.org/cldr/utility/character.jsp?a=003E
http://unicode.org/cldr/utility/character.jsp?a=002F
http://unicode.org/cldr/utility/character.jsp?a=002F
http://unicode.org/cldr/utility/character.jsp?a=002F
http://unicode.org/cldr/utility/character.jsp?a=005C
http://unicode.org/cldr/utility/character.jsp?a=005C
http://unicode.org/cldr/utility/character.jsp?a=005C

There is one extra condition:

When parsing a bidi_structure, an inclusionChar (such as “!”) is treated specially.
If it is followed by a char, then it is included in the BNF. If not, it is excluded.
For example, “abc.com/foo.bar” would be parsed completely as a bidi_IRI,
but “abc.com/foo. other text” would stop before the period.

It is possible to capture this extra condition in the BNF, but it would make the
formulation far less readable.

Open issues
● Are there other characters (or categories of characters) to include or exclude in this BNF?
● The inclusionChars are currently from ASCII/Latin1. Should any of the ASCII/Latin1

exceptions be changed to terminating characters instead?

Please provide feedback on these open issues.

To compare this simplified UBA syntax for a bidi_IRI with the full standard IRI syntax, see:

http://tools.ietf.org/html/rfc3987#section-2.2

Termination and Continuation
In summary, encountering any of the following classes of characters would cause parsing of a
bidi_structure in plain text to continue:

1. Letters, Marks, Numbers
2. Dash and connector punctuation
3. Symbols

Encountering any of the following classes of characters would cause parsing of a bidi_IRI in
plain text to terminate:

1. Unassigned, surrogates, private-use, control codes
2. Whitespace
3. Opening, closing or most ‘other’ punctuation, plus special cases < and >.

Many of these characters can be included in an IRI, but they would need to be % encoded for the
specialized bidi display to kick in.

For ASCII and Latin1, the list of terminating punctuation consists of:

U+003C < LESS-THAN SIGN
U+003E > GREATER-THAN SIGN
U+0028 (LEFT PARENTHESIS

http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://tools.ietf.org/html/rfc3987#section-2.2
http://unicode.org/cldr/utility/character.jsp?a=003C
http://unicode.org/cldr/utility/character.jsp?a=003C
http://unicode.org/cldr/utility/character.jsp?a=003C
http://unicode.org/cldr/utility/character.jsp?a=003E
http://unicode.org/cldr/utility/character.jsp?a=003E
http://unicode.org/cldr/utility/character.jsp?a=003E
http://unicode.org/cldr/utility/character.jsp?a=0028
http://unicode.org/cldr/utility/character.jsp?a=0028

U+0029) RIGHT PARENTHESIS
U+005B [LEFT SQUARE BRACKET
U+005D] RIGHT SQUARE BRACKET
U+007B { LEFT CURLY BRACKET
U+007D } RIGHT CURLY BRACKET
U+00AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
U+00BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK

Proposed extension of UBA for bidi_IRIs

The proposed UBA extension would display any recognized bidi_IRI in the following way. The
goal of this display is to ensure that the fields of bidi_IRI occur in a predictable, uniform order.

Characters are escaped in IRIs using a sequence like ‘%61’ for ‘a’. In each of the following
options, any such sequence, that is, (%[0-9A-Fa-f]{2})+ is handled specially. It is displayed as
though it were embedded in LRO..PDF.

For a bidi_IRI:

A separator is defined as any instance of the quoted strings in the bidi_IRI BNF:

● right after a scheme: “://”
● in a domain: IDNSep
● right after a domain: “/” , “?”, “#”
● in a path: “/”
● right after a path: “?”, “#”
● in a query: “=” or “&”
● right after a query: “#”

A field is defined as any text between separators, or at the front or end.

For a bidi_filename, a separator is defined as any path_sep.

For a bidi_email, the ‘@’ is a separator, as is any IDNSep in the domain.

Option 1: Constant Order
Each bidi_structure is displayed with fields from left to right. Thus the examples shown above
in Table 2 will instead appear with a predicatible order of their fields. The order is the same
whether the bidi_structure is in a RTL or in a LTR environment (paragraph).

Table 3. Constant order

http://unicode.org/cldr/utility/character.jsp?a=0029
http://unicode.org/cldr/utility/character.jsp?a=0029
http://unicode.org/cldr/utility/character.jsp?a=005B
http://unicode.org/cldr/utility/character.jsp?a=005B
http://unicode.org/cldr/utility/character.jsp?a=005B
http://unicode.org/cldr/utility/character.jsp?a=005D
http://unicode.org/cldr/utility/character.jsp?a=005D
http://unicode.org/cldr/utility/character.jsp?a=005D
http://unicode.org/cldr/utility/character.jsp?a=007B
http://unicode.org/cldr/utility/character.jsp?a=007B
http://unicode.org/cldr/utility/character.jsp?a=007B
http://unicode.org/cldr/utility/character.jsp?a=007D
http://unicode.org/cldr/utility/character.jsp?a=007D
http://unicode.org/cldr/utility/character.jsp?a=007D
http://unicode.org/cldr/utility/character.jsp?a=00AB
http://unicode.org/cldr/utility/character.jsp?a=00AB
http://unicode.org/cldr/utility/character.jsp?a=00AB
http://unicode.org/cldr/utility/character.jsp?a=00BB
http://unicode.org/cldr/utility/character.jsp?a=00BB
http://unicode.org/cldr/utility/character.jsp?a=00BB

Environment Display

LTR, RTL http://ab.cd.com/mn/op

http://ab.cd.FE.HG.com/JI/LK/mn/op

http://FE.HG/JI/LK

Note that just the ordering of the fields is changed. The ordering of the characters within
each field is unaffected; the rules for bidirectional display specified in the UBA still apply. For
example, the field with memory order EF still displays from right to left, as FE.

An implementation of the UBA extension can accomplish the display of Table 3 by behaving as
if:

● the entire bidi_IRI is embedded in an <LRE>...<PDF> sequence, and
● each field in that bidi_IRI is surrounded by LRMs.

If the field ordering of IRIs were consistently “big-endian”, it would be useful to have their
display ordering depend on the direction of the paragraph. However, IRIs are not consistently
big-endian; the most important part, the domain, has its fields organized in little-endian order.
For example, http://www12.sap.com/uk/about would be http://com.sap.www12/uk/about if it
were in big-endian order.

Because the ordering of fields in an IRI is already inconsistent, this proposal is to have a
consistent ordering always, no matter what the bidi environment is (RTL vs LTR).

The UTC is leaning towards this option, but would like feedback on this choice, whether pro or
con.

Option 2. Environment Order
Alternatively, the ordering of fields could be subject to the environment (whether the current
embedding level is RTL or LTR). Thus the examples shown above in Table 2 will instead appear
as in Table 4:

Table 4. Environment order

Environment Display

LTR http://ab.cd.com/mn/op

http://ab.cd.FE.HG.com/JI/LK/mn/op

http://FE.HG/JI/LK

RTL op/mn/com.cd.ab//:http

op/mn/LK/JI/com.HG.FE.cd.ab//:http

LK/JI/HG.FE//:http

An advantage of this option is that for IRIs that have only RTL letters, the appearance would
more closely match what happens currently. A disadvantage is that the appearance of an IRI
may change radically depending on the environment.

Option 3. Content Order
A third option would be to have the ordering not depend only on the environment, but instead
depend on whether there were any RTL characters in the bidi_structure. Thus the examples
shown above in Table 2 will instead appear as in Table 5:

Table 5. Content order

Environment Display

LTR, RTL http://ab.cd.com/mn/op

op/mn/LK/JI/com.HG.FE.cd.ab//:http

LK/JI/HG.FE//:http

Having the order of fields depend on whether there is any RTL character in the IRI, is
problematic. Having or not having a RTL character in the path, query or fragment part would
turn around the whole bidi_structure display, including any domain part. This is likely to be
very confusing for users.

Option 4. TLD Order
A further suggested option is to use the direction of the TLD to determine the order. So if, say,
the TLD had no LTR characters, the overall direction would be RTL. The appearance would be
the same as in Table 4.

A significant advantage of this is that the order would be determinant, like that of Constant
Order. A different strategy would need to be applied for file names, however.

