The Unicode® Standard
Version 15.0 — Core Specification

To learn about the latest version of the Unicode Standard, see https://www.unicode.org/versions/latest/.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc., in the United States and
other countries.

The authors and publisher have taken care in the preparation of this specification, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.

The Unicode Character Database and other files are provided as-is by Unicode, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any kind are expressed or implied.
The recipient agrees to determine applicability of information provided.

© 2022 Unicode, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction. For information regarding permissions, inquire

at https://www.unicode.org/reporting. html. For information about the Unicode terms of use, please
see https://www.unicode.org/copyright.html.
The Unicode Standard / the Unicode Consortium; edited by the Unicode Consortium. — Version
15.0.
Includes index.
ISBN 978-1-936213-32-0 (https://www.unicode.org/versions/Unicode15.0.0/)
1. Unicode (Computer character set) L. Unicode Consortium.
QA268.U545 2022

ISBN 978-1-936213-32-0
Published in Mountain View, CA
September 2022



71

Chapter 3

Conformance

This chapter defines conformance to the Unicode Standard in terms of the principles and
encoding architecture it embodies. The first section defines the format for referencing the
Unicode Standard and Unicode properties. The second section consists of the confor-
mance clauses, followed by sections that define more precisely the technical terms used in
those clauses. The remaining sections contain the formal algorithms that are part of con-
formance and referenced by the conformance clause. Additional definitions and algo-
rithms that are part of this standard can be found in the Unicode Standard Annexes listed
at the end of Section 3.2, Conformance Requirements.

In this chapter, conformance clauses are identified with the letter C. Definitions are identi-
fied with the letter D. Bulleted items are explanatory comments regarding definitions or
subclauses.

For information on implementing best practices, see Chapter 5, Implementation Guide-
lines.



Conformance 72 3.1 Versions of the Unicode Standard

3.1 Versions of the Unicode Standard

For most character encodings, the character repertoire is fixed (and often small). Once the
repertoire is decided upon, it is never changed. Addition of a new abstract character to a
given repertoire creates a new repertoire, which will be treated either as an update of the
existing character encoding or as a completely new character encoding.

For the Unicode Standard, by contrast, the repertoire is inherently open. Because Unicode
is a universal encoding, any abstract character that could ever be encoded is a potential
candidate to be encoded, regardless of whether the character is currently known.

Each new version of the Unicode Standard supersedes the previous one, but implementa-
tions—and, more significantly, data—are not updated instantly. In general, major and
minor version changes include new characters, which do not create particular problems
with old data. The Unicode Technical Committee will neither remove nor move charac-
ters. Characters may be deprecated, but this does not remove them from the standard or
from existing data. The code point for a deprecated character will never be reassigned to a
different character, but the use of a deprecated character is strongly discouraged. These
rules make the encoded characters of a new version backward-compatible with previous
versions.

Implementations should be prepared to be forward-compatible with respect to Unicode
versions. That is, they should accept text that may be expressed in future versions of this
standard, recognizing that new characters may be assigned in those versions. Thus they
should handle incoming unassigned code points as they do unsupported characters. (See
Section 5.3, Unknown and Missing Characters.)

A version change may also involve changes to the properties of existing characters. When
this situation occurs, modifications are made to the Unicode Character Database and a
new version is issued for the standard. Changes to the data files may alter program behav-
ior that depends on them. However, such changes to properties and to data files are never
made lightly. They are made only after careful deliberation by the Unicode Technical
Committee has determined that there is an error, inconsistency, or other serious problem
in the property assignments.

Stability

Each version of the Unicode Standard, once published, is absolutely stable and will never
change. Implementations or specifications that refer to a specific version of the Unicode
Standard can rely upon this stability. When implementations or specifications are
upgraded to a future version of the Unicode Standard, then changes to them may be neces-
sary. Note that even errata and corrigenda do not formally change the text of a published
version; see “Errata and Corrigenda” later in this section.

Some features of the Unicode Standard are guaranteed to be stable across versions. These
include the names and code positions of characters, their decompositions, and several
other character properties for which stability is important to implementations. See also



Conformance 73 3.1 Versions of the Unicode Standard

“Stability of Properties” in Section 3.5, Properties. The formal statement of such stability
guarantees is contained in the policies on character encoding stability found on the Uni-
code website. See the subsection “Policies” in Appendix B.3, Other Unicode Online
Resources. See the discussion of backward compatibility in Section 2.5 of Unicode Standard
Annex #31, “Unicode Identifier and Pattern Syntax,” and the subsection “Interacting with
Downlevel Systems” in Section 5.3, Unknown and Missing Characters.

Version Numbering

Version numbers for the Unicode Standard consist of three fields, denoting the major ver-
sion, the minor version, and the update version, respectively. For example, “Unicode 5.2.0”
indicates major version 5 of the Unicode Standard, minor version 2 of Unicode 5, and
update version 0 of minor version Unicode 5.2.

To simplify implementations of Unicode version numbering, the version fields are limited
to values which can be stored in a single byte. The major version is a positive integer con-
strained to the range 1..255. The minor and update versions are non-negative integers con-
strained to the range 0..255.

Additional information on the current and past versions of the Unicode Standard can be
found on the Unicode website. See the subsection “Versions” in Appendix B.3, Other Uni-
code Online Resources. The online document contains the precise list of contributing files
from the Unicode Character Database and the Unicode Standard Annexes, which are for-
mally part of each version of the Unicode Standard.

Major and Minor Versions. Major and minor versions have significant additions to the
standard, including, but not limited to, additions to the repertoire of encoded characters.
Both are published as an updated core specification, together with associated updates to
the code charts, the Unicode Standard Annexes and the Unicode Character Database. Such
versions consolidate all errata and corrigenda and supersede any prior documentation for
major, minor, or update versions.

A major version typically is of more importance to implementations; however, even update
versions may be important to particular companies or other organizations. Major and
minor versions are often synchronization points with related standards, such as with ISO/
IEC 10646.

Prior to Version 5.2, minor versions of the standard were published as online amendments
expressed as textual changes to the previous version, rather than as fully consolidated new
editions of the core specification.

Update Version. An update version represents relatively small changes to the standard, typ-
ically updates to the data files of the Unicode Character Database. An update version never
involves any additions to the character repertoire. These versions are published as modifi-
cations to the data files, and, on occasion, include documentation of small updates for
selected errata or corrigenda.



Conformance 74 3.1 Versions of the Unicode Standard

Formally, each new version of the Unicode Standard supersedes all earlier versions. How-
ever, update versions generally do not obsolete the documentation of the immediately
prior version of the standard.

Scheduling of Versions. Prior to Version 7.0.0, major, minor, and update versions of the
Unicode Standard were published whenever the work on each new set of repertoire, prop-
erties, and documentation was finished. The emphasis was on ensuring synchronization of
the major releases with corresponding major publication milestones for ISO/IEC 10646,
but that practice resulted in an irregular publication schedule.

The Unicode Technical Committee changed its process as of Version 7.0.0 of the Unicode
Standard, to make the publication time predictable. Major releases of the standard are now
scheduled for annual publication. Further minor and update releases are not anticipated,
but might occur under exceptional circumstances. This predictable, regular publication
makes planning for new releases easier for most users of the standard. The detailed state-
ments of synchronization between versions of the Unicode Standard and ISO/IEC 10646
have become somewhat more complex as a result, but in practice this has not been a prob-
lem for implementers.

Errata and Corrigenda

From time to time it may be necessary to publish errata or corrigenda to the Unicode Stan-
dard. Such errata and corrigenda will be published on the Unicode website. See
Appendix B.3, Other Unicode Online Resources, for information on how to report errors in
the standard.

Errata. Errata correct errors in the text or other informative material, such as the represen-
tative glyphs in the code charts. See the subsection “Updates and Errata” in Appendix B.3,
Other Unicode Online Resources. Whenever a new major or minor version of the standard is
published, all errata up to that point are incorporated into the core specification, code
charts, or other components of the standard.

Corrigenda. Occasionally errors may be important enough that a corrigendum is issued
prior to the next version of the Unicode Standard. Such a corrigendum does not change the
contents of the previous version. Instead, it provides a mechanism for an implementation,
protocol, or other standard to cite the previous version of the Unicode Standard with the
corrigendum applied. If a citation does not specifically mention the corrigendum, the cor-
rigendum does not apply. For more information on citing corrigenda, see “Versions” in
Appendix B.3, Other Unicode Online Resources.

References to the Unicode Standard

The documents associated with the major, minor, and update versions are called the major
reference, minor reference, and update reference, respectively. For example, consider Uni-
code Version 3.1.1. The major reference for that version is The Unicode Standard, Version
3.0 (ISBN 0-201-61633-5). The minor reference is Unicode Standard Annex #27, “The Uni-
code Standard, Version 3.1” The update reference is Unicode Version 3.1.1. The exact list



Conformance 75 3.1 Versions of the Unicode Standard

of contributory files, Unicode Standard Annexes, and Unicode Character Database files
can be found at Enumerated Version 3.1.1.

The reference for this version, Version 15.0.0, of the Unicode Standard, is

The Unicode Consortium. The Unicode Standard, Version 15.0.0,
defined by: The Unicode Standard, Version 15.0 (Mountain View, CA:
The Unicode Consortium, 2022. ISBN 978-1-936213-32-0)

References to an update (or minor version prior to Version 5.2.0) include a reference to
both the major version and the documents modifying it. For the standard citation format

for other versions of the Unicode Standard, see “Versions” in Appendix B.3, Other Unicode
Online Resources.

Precision in Version Citation

Because Unicode has an open repertoire with relatively frequent updates, it is important
not to over-specify the version number. Wherever the precise behavior of all Unicode char-
acters needs to be cited, the full three-field version number should be used, as in the first
example below. However, trailing zeros are often omitted, as in the second example. In
such a case, writing 3.1 is in all respects equivalent to writing 3.1.0.

1. The Unicode Standard, Version 3.1.1

2. The Unicode Standard, Version 3.1

3. The Unicode Standard, Version 3.0 or later
4. The Unicode Standard

Where some basic level of content is all that is important, phrasing such as in the third
example can be used. Where the important information is simply the overall architecture
and semantics of the Unicode Standard, the version can be omitted entirely, as in example 4.

References to Unicode Character Properties
Properties and property values have defined names and abbreviations, such as
Property: General_Category (gc)
Property Value: Uppercase_Letter (Lu)
To reference a given property and property value, these aliases are used, as in this example:

The property value Uppercase_Letter from the General_Category prop-
erty, as specified in Version 14.0.0 of the Unicode Standard.

Then cite that version of the standard, using the standard citation format that is provided
for each version of the Unicode Standard.

When referencing multi-word properties or property values, it is permissible to omit the
underscores in these aliases or to replace them by spaces.



Conformance 76 3.1 Versions of the Unicode Standard

When referencing a Unicode character property, it is customary to prepend the word “Uni-
code” to the name of the property, unless it is clear from context that the Unicode Standard
is the source of the specification.

References to Unicode Algorithms

A reference to a Unicode algorithm must specify the name of the algorithm or its abbrevia-
tion, followed by the version of the Unicode Standard, as in this example:

The Unicode Bidirectional Algorithm, as specified in Version 14.0.0 of
the Unicode Standard.

See Unicode Standard Annex #9, “Unicode Bidirectional Algorithm,”
(https://www.unicode.org/reports/tr9/tr9-44.html)

Where algorithms allow tailoring, the reference must state whether any such tailorings
were applied or are applicable. For algorithms contained in a Unicode Standard Annex, the
document itself and its location on the Unicode website may be cited as the location of the
specification.

When referencing a Unicode algorithm it is customary to prepend the word “Unicode” to
the name of the algorithm, unless it is clear from the context that the Unicode Standard is
the source of the specification.

Omitting a version number when referencing a Unicode algorithm may be appropriate
when such a reference is meant as a generic reference to the overall algorithm. Such a
generic reference may also be employed in the sense of latest available version of the algo-
rithm. However, for specific and detailed conformance claims for Unicode algorithms,
generic references are generally not sufficient, and a full version number must accompany
the reference.



Conformance 77 32 ConformanceRequirements

3.2 Conformance Requirements

This section presents the clauses specifying the formal conformance requirements for pro-
cesses implementing this version of the Unicode Standard.

In addition to this core specification, the Unicode Standard, Version 14.0.0, includes a
number of Unicode Standard Annexes (UAXes) and the Unicode Character Database. At
the end of this section there is a list of those annexes that are considered an integral part of
the Unicode Standard, Version 14.0.0, and therefore covered by these conformance
requirements.

The Unicode Character Database contains an extensive specification of normative and
informative character properties completing the formal definition of the Unicode Stan-
dard. See Chapter 4, Character Properties, for more information.

Not all conformance requirements are relevant to all implementations at all times because
implementations may not support the particular characters or operations for which a given
conformance requirement may be relevant. See Section 2.14, Conforming to the Unicode
Standard, for more information.

In this section, conformance clauses are identified with the letter C.

Code Points Unassigned to Abstract Characters

C1 A process shall not interpret a high-surrogate code point or a low-surrogate code point
as an abstract character.

« The high-surrogate and low-surrogate code points are designated for surrogate
code units in the UTF-16 character encoding form. They are unassigned to any
abstract character.

C2 A process shall not interpret a noncharacter code point as an abstract character.

« The noncharacter code points may be used internally, such as for sentinel val-
ues or delimiters, but should not be exchanged publicly.

C3 A process shall not interpret an unassigned code point as an abstract character.

« This clause does not preclude the assignment of certain generic semantics to
unassigned code points (for example, rendering with a glyph to indicate the
position within a character block) that allow for graceful behavior in the pres-
ence of code points that are outside a supported subset.

« Unassigned code points may have default property values. (See D26.)

« Code points whose use has not yet been designated may be assigned to abstract
characters in future versions of the standard. Because of this fact, due care in
the handling of generic semantics for such code points is likely to provide bet-
ter robustness for implementations that may encounter data based on future
versions of the standard.



Conformance 78 32 ConformanceRequirements

Interpretation

Interpretation of characters is the key conformance requirement for the Unicode Standard,
as it is for any coded character set standard. In legacy character set standards, the single
conformance requirement is generally stated in terms of the interpretation of bit patterns
used as characters. Conforming to a particular standard requires interpreting bit patterns
used as characters according to the list of character names and the glyphs shown in the
associated code table that form the bulk of that standard.

Interpretation of characters is a more complex issue for the Unicode Standard. It includes
the core issue of interpreting code points used as characters according to the names and
representative glyphs shown in the code charts, of course. However, the Unicode Standard
also specifies character properties, behavior, and interactions between characters. Such
information about characters is considered an integral part of the “character semantics
established by this standard.”

Information about the properties, behavior, and interactions between Unicode characters
is provided in the Unicode Character Database and in the Unicode Standard Annexes.
Additional information can be found throughout the other chapters of this core specifica-
tion for the Unicode Standard. However, because of the need to keep extended discussions
of scripts, sets of symbols, and other characters readable, material in other chapters is not
always labeled as to its normative or informative status. In general, supplementary seman-
tic information about a character is considered normative when it contributes directly to
the identification of the character or its behavior. Additional information provided about
the history of scripts, the languages which use particular characters, and so forth, is merely
informative. Thus, for example, the rules about Devanagari rendering specified in
Section 12.1, Devanagari, or the rules about Arabic character shaping specified in
Section 9.2, Arabic, are normative: they spell out important details about how those charac-
ters behave in conjunction with each other that is necessary for proper and complete inter-
pretation of the respective Unicode characters covered in each section.

C4 Aprocess shall interpret a coded character sequence according to the character seman-
tics established by this standard, if that process does interpret that coded character
sequence.

« This restriction does not preclude internal transformations that are never visi-
ble external to the process.

C5 A process shall not assume that it is required to interpret any particular coded charac-
ter sequence.

Processes that interpret only a subset of Unicode characters are allowed; there
is no blanket requirement to interpret all Unicode characters.

« Any means for specifying a subset of characters that a process can interpret is
outside the scope of this standard.

« The semantics of a private-use code point is outside the scope of this standard.



Conformance 79 32 ConformanceRequirements

« Although these clauses are not intended to preclude enumerations or specifica-
tions of the characters that a process or system is able to interpret, they do sep-
arate supported subset enumerations from the question of conformance. In
actuality, any system may occasionally receive an unfamiliar character code
that it is unable to interpret.

C6 A process shall not assume that the interpretations of two canonical-equivalent char-
acter sequences are distinct.

« The implications of this conformance clause are twofold. First, a process is
never required to give different interpretations to two different, but canonical-
equivalent character sequences. Second, no process can assume that another
process will make a distinction between two different, but canonical-equivalent
character sequences.

« Ideally, an implementation would always interpret two canonical-equivalent
character sequences identically. There are practical circumstances under which
implementations may reasonably distinguish them.

« Even processes that normally do not distinguish between canonical-equivalent
character sequences can have reasonable exception behavior. Some examples of
this behavior include graceful fallback processing by processes unable to sup-
port correct positioning of nonspacing marks; “Show Hidden Text” modes that
reveal memory representation structure; and the choice of ignoring collating
behavior of combining character sequences that are not part of the repertoire
of a specified language (see Section 5.12, Strategies for Handling Nonspacing
Marks).

Modification

C7 When a process purports not to modify the interpretation of a valid coded character
sequence, it shall make no change to that coded character sequence other than the pos-
sible replacement of character sequences by their canonical-equivalent sequences.

+ Replacement of a character sequence by a compatibility-equivalent sequence
does modify the interpretation of the text.

+ Replacement or deletion of a character sequence that the process cannot or
does not interpret does modify the interpretation of the text.

« Changing the bit or byte ordering of a character sequence when transforming it
between different machine architectures does not modify the interpretation of
the text.

« Changing a valid coded character sequence from one Unicode character
encoding form to another does not modify the interpretation of the text.



Conformance 80 32 ConformanceRequirements

« Changing the byte serialization of a code unit sequence from one Unicode
character encoding scheme to another does not modify the interpretation of
the text.

« If a noncharacter that does not have a specific internal use is unexpectedly
encountered in processing, an implementation may signal an error or replace
the noncharacter with U+FFFD REPLACEMENT CHARACTER. If the implementa-
tion chooses to replace, delete or ignore a noncharacter, such an action consti-
tutes a modification in the interpretation of the text. In general, a noncharacter
should be treated as an unassigned code point. For example, an API that
returned a character property value for a noncharacter would return the same
value as the default value for an unassigned code point.

« Note that security problems can result if noncharacter code points are removed
from text received from external sources. For more information, see
Section 23.7, Noncharacters, and Unicode Technical Report #36, “Unicode
Security Considerations.”

« All processes and higher-level protocols are required to abide by conformance
clause C7 at a minimum. However, higher-level protocols may define addi-
tional equivalences that do not constitute modifications under that protocol.
For example, a higher-level protocol may allow a sequence of spaces to be
replaced by a single space.

« There are important security issues associated with the correct interpretation
and display of text. For more information, see Unicode Technical Report #36,
“Unicode Security Considerations.”

Character Encoding Forms

C8 When a process interprets a code unit sequence which purports to be in a Unicode
character encoding form, it shall interpret that code unit sequence according to the
corresponding code point sequence.

« The specification of the code unit sequences for UTF-8 is given in D92.
« The specification of the code unit sequences for UTF-16 is given in D91.
« The specification of the code unit sequences for UTF-32 is given in D90.

C9 When a process generates a code unit sequence which purports to be in a Unicode
character encoding form, it shall not emit ill-formed code unit sequences.

« The definition of each Unicode character encoding form specifies the ill-
formed code unit sequences in the character encoding form. For example, the
definition of UTF-8 (D92) specifies that code unit sequences such as <C0O AF>
are ill-formed.



Conformance 81 32 ConformanceRequirements

C10 When a process interprets a code unit sequence which purports to be in a Unicode
character encoding form, it shall treat ill-formed code unit sequences as an error con-
dition and shall not interpret such sequences as characters.

« For example, in UTF-8 every code unit of the form 110xxxx, must be followed
by a code unit of the form 10xxxxxx,. A sequence such as 110Xxxxx, 0XXXXXXX, is
ill-formed and must never be generated. When faced with this ill-formed code
unit sequence while transforming or interpreting text, a conformant process
must treat the first code unit 110xxxxx, as an illegally terminated code unit
sequence—for example, by signaling an error or representing the code unit
with a marker such as U+FFFD REPLACEMENT CHARACTER.

« Silently ignoring ill-formed sequences is strongly discouraged because joining
text from before and after the ill-formed sequence can cause the resulting text
to take a new meaning. This result would be especially dangerous in the context
of textual formats that carry embedded program code, such as JavaScript.

« Conformant processes cannot interpret ill-formed code unit sequences. How-
ever, the conformance clauses do not prevent processes from operating on
code unit sequences that do not purport to be in a Unicode character encoding
form. For example, for performance reasons a low-level string operation may
simply operate directly on code units, without interpreting them as characters.
See, especially, the discussion under D89.

« Utility programs are not prevented from operating on “mangled” text. For
example, a UTF-8 file could have had CRLF sequences introduced at every 80
bytes by a bad mailer program. This could result in some UTF-8 byte
sequences being interrupted by CRLFs, producing illegal byte sequences. This
mangled text is no longer UTF-8. It is permissible for a conformant program to
repair such text, recognizing that the mangled text was originally well-formed
UTF-8 byte sequences. However, such repair of mangled data is a special case,
and it must not be used in circumstances where it would cause security prob-
lems. There are important security issues associated with encoding conversion,
especially with the conversion of malformed text. For more information, see
Unicode Technical Report #36, “Unicode Security Considerations.”

Character Encoding Schemes

C11 When a process interprets a byte sequence which purports to be in a Unicode character
encoding scheme, it shall interpret that byte sequence according to the byte order and
specifications for the use of the byte order mark established by this standard for that
character encoding scheme.

+ Machine architectures differ in ordering in terms of whether the most signifi-
cant byte or the least significant byte comes first. These sequences are known as
“big-endian” and “little-endian” orders, respectively.



Conformance 82 32 ConformanceRequirements

« For example, when using UTF-16LE, pairs of bytes are interpreted as UTF-16
code units using the little-endian byte order convention, and any initial <FF
FE> sequence is interpreted as U+FEFF ZERO WIDTH NO-BREAK SPACE (part of
the text), rather than as a byte order mark (not part of the text). (See D97.)

Bidirectional Text

CI12 Aprocess that displays text containing supported right-to-left characters or embedding
codes shall display all visible representations of characters (excluding format charac-
ters) in the same order as if the Bidirectional Algorithm had been applied to the text,
unless tailored by a higher-level protocol as permitted by the specification.

« The Bidirectional Algorithm is specified in Unicode Standard Annex #9, “Uni-
code Bidirectional Algorithm.”

Normalization Forms

C13 A process that produces Unicode text that purports to be in a Normalization Form
shall do so in accordance with the specifications in Section 3.11, Normalization Forms.

Cl14 A process that tests Unicode text to determine whether it is in a Normalization Form
shall do so in accordance with the specifications in Section 3.11, Normalization Forms.

C15 A process that purports to transform text into a Normalization Form must be able to
produce the results of the conformance test specified in Unicode Standard Annex #15,
“Unicode Normalization Forms.”

« This means that when a process uses the input specified in the conformance
test, its output must match the expected output of the test.

Normative References

C16 Normative references to the Unicode Standard itself, to property aliases, to property
value aliases, or to Unicode algorithms shall follow the formats specified in Section 3.1,
Versions of the Unicode Standard.

C17 Higher-level protocols shall not make normative references to provisional properties.

« Higher-level protocols may make normative references to informative proper-
ties.

Unicode Algorithms

C18 Ifa process purports to implement a Unicode algorithm, it shall conform to the specifi-
cation of that algorithm in the standard, including any tailoring by a higher-level pro-
tocol as permitted by the specification.

« The term Unicode algorithm is defined at D17.



Conformance 83 32 ConformanceRequirements

« An implementation claiming conformance to a Unicode algorithm need only
guarantee that it produces the same results as those specified in the logical
description of the process; it is not required to follow the actual described pro-
cedure in detail. This allows room for alternative strategies and optimizations
in implementation.

C19 The specification of an algorithm may prohibit or limit tailoring by a higher-level pro-
tocol. If a process that purports to implement a Unicode algorithm applies a tailoring,
that fact must be disclosed.

« For example, the algorithms for normalization and canonical ordering are not
tailorable. The Bidirectional Algorithm allows some tailoring by higher-level
protocols. The Unicode Default Case algorithms may be tailored without lim-
itation.

Default Casing Algorithms

C20 An implementation that purports to support Default Case Conversion, Default Case
Detection, or Default Caseless Matching shall do so in accordance with the definitions
and specifications in Section 3.13, Default Case Algorithms.

+ A conformant implementation may perform casing operations that are differ-
ent from the default algorithms, perhaps tailored to a particular orthography,
so long as the fact that a tailoring is applied is disclosed.

Unicode Standard Annexes

The following standard annexes are approved and considered part of Version 14.0 of the
Unicode Standard. These annexes may contain either normative or informative material,
or both. Any reference to Version 14.0 of the standard automatically includes Version 14.0
of these standard annexes.

« UAX #9: Unicode Bidirectional Algorithm

« UAX #11: East Asian Width

« UAX #14: Unicode Line Breaking Algorithm

« UAX #15: Unicode Normalization Forms

« UAX #24: Unicode Script Property

« UAX #29: Unicode Text Segmentation

« UAX #31: Unicode Identifier and Pattern Syntax
« UAX #34: Unicode Named Character Sequences
« UAX #38: Unicode Han Database (Unihan)

o UAX #41: Common References for Unicode Standard Annexes



Conformance 84 32 ConformanceRequirements

o UAX #42: Unicode Character Database in XML
« UAX #44: Unicode Character Database

« UAX #45: U-Source Ideographs

« UAX #50: Unicode Vertical Text Layout

Conformance to the Unicode Standard requires conformance to the specifications con-
tained in these annexes, as detailed in the conformance clauses listed earlier in this section.



Conformance 85 3.3 Semantics

3.3 Semantics

Definitions

This and the following sections more precisely define the terms that are used in the confor-
mance clauses.

Character Identity and Semantics

D1

D2

D3

Normative behavior: The normative behaviors of the Unicode Standard consist of
the following list or any other behaviors specified in the conformance clauses:

Character combination
Canonical decomposition
Compeatibility decomposition
Canonical ordering behavior

Bidirectional behavior, as specified in the Unicode Bidirectional Algorithm
(see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”)

Conjoining jamo behavior, as specified in Section 3.12, Conjoining Jamo Behav-
ior

Variation selection, as specified in Section 23.4, Variation Selectors
Normalization, as specified in Section 3.11, Normalization Forms
Default casing, as specified in Section 3.13, Default Case Algorithms

Character identity: The identity of a character is established by its character name
and representative glyph in the code charts.

A character may have a broader range of use than the most literal interpretation
of its name might indicate; the coded representation, name, and representative
glyph need to be assessed in context when establishing the identity of a charac-
ter. For example, U+002E FULL sTOP can represent a sentence period, an abbre-
viation period, a decimal number separator in English, a thousands number
separator in German, and so on. The character name itself is unique, but may
be misleading. See “Character Names” in Section 24.1, Character Names List.

Consistency with the representative glyph does not require that the images be
identical or even graphically similar; rather, it means that both images are gen-
erally recognized to be representations of the same character. Representing the
character U+0061 LATIN SMALL LETTER A by the glyph “X” would violate its
character identity.

Character semantics: The semantics of a character are determined by its identity,
normative properties, and behavior.



Conformance 86 3.3 Semantics

« Some normative behavior is default behavior; this behavior can be overridden
by higher-level protocols. However, in the absence of such protocols, the
behavior must be observed so as to follow the character semantics.

« The character combination properties and the canonical ordering behavior
cannot be overridden by higher-level protocols. The purpose of this constraint
is to guarantee that the order of combining marks in text and the results of nor-
malization are predictable.

D4 Character name: A unique string used to identify each abstract character encoded in
the standard.

« The character names in the Unicode Standard match those of the English edi-
tion of ISO/IEC 10646.

« Character names are immutable and cannot be overridden; they are stable
identifiers. For more information, see Section 4.8, Name.

« The name of a Unicode character is also formally a character property in the
Unicode Character Database. Its long property alias is “Name” and its short
property alias is “na”. Its value is the unique string label associated with the
encoded character.

« The detailed specification of the Unicode character names, including rules for
derivation of some ranges of characters, is given in Section 4.8, Name. That sec-
tion also describes the relationship between the normative value of the Name
property and the contents of the corresponding data field in UnicodeData.txt
in the Unicode Character Database.

D5 Character name alias: An additional unique string identifier, other than the charac-
ter name, associated with an encoded character in the standard.

« Character name aliases are assigned when there is a serious clerical defect with
a character name, such that the character name itself may be misleading
regarding the identity of the character. A character name alias constitutes an
alternate identifier for the character.

« Character name aliases are also assigned to provide string identifiers for con-
trol codes and to recognize widely used alternative names and abbreviations for
control codes, format characters and other special-use characters.

« Character name aliases are unique within the common namespace shared by
character names, character name aliases, and named character sequences.

« More than one character name alias may be assigned to a given Unicode char-
acter. For example, the control code U+000D is given a character name alias for
its ISO 6429 control function as CARRIAGE RETURN, but is also given a character
name alias for its widely used abbreviation “CR”.

« Character name aliases are a formal, normative part of the standard and should
be distinguished from the informative, editorial aliases provided in the code



Conformance 87 3.3 Semantics

charts. See Section 24.1, Character Names List, for the notational conventions
used to distinguish the two.

D6 Namespace: A set of names together with name matching rules, so that all names are
distinct under the matching rules.

« Within a given namespace all names must be unique, although the same name
may be used with a different meaning in a different namespace.

+ Character names, character name aliases, and named character sequences
share a single namespace in the Unicode Standard.



Conformance 88 34 Characters and Encoding

3.4

D7

D8

D9

DI10b

Characters and Encoding

Abstract character: A unit of information used for the organization, control, or rep-
resentation of textual data.

When representing data, the nature of that data is generally symbolic as
opposed to some other kind of data (for example, aural or visual). Examples of
such symbolic data include letters, ideographs, digits, punctuation, technical
symbols, and dingbats.

An abstract character has no concrete form and should not be confused with a
glyph.

An abstract character does not necessarily correspond to what a user thinks of
as a “character” and should not be confused with a grapheme.

The abstract characters encoded by the Unicode Standard are known as Uni-
code abstract characters.

Abstract characters not directly encoded by the Unicode Standard can often be
represented by the use of combining character sequences.

Abstract character sequence: An ordered sequence of one or more abstract charac-
ters.

Unicode codespace: A range of integers from 0 to 10FFFF.

This particular range is defined for the codespace in the Unicode Standard.
Other character encoding standards may use other codespaces.

Code point: Any value in the Unicode codespace.
A code point is also known as a code position.
See D77 for the definition of code unit.

Code point type: Any of the seven fundamental classes of code points in the stan-
dard: Graphic, Format, Control, Private-Use, Surrogate, Noncharacter, Reserved.

See Table 2-3 for a summary of the meaning and use of each class.
For Noncharacter, see also D14 Noncharacter.

For Reserved, see also D15 Reserved code point.

For Private-Use, see also D49 Private-use code point.

For Surrogate, see also D71 High-surrogate code point and D73 Low-surrogate
code point.

Block: A named range of code points used to organize the allocation of characters.

The exact list of blocks defined for each version of the Unicode Standard is
specified by the data file Blocks.txt in the Unicode Character Database.



Conformance 89 34 Characters and Encoding

« The range for each defined block is specified by Field 0 in Blocks.txt; for exam-
ple, “0000..007F”.

« The ranges for blocks are non-overlapping. In other words, no code point can
be contained in the range for one block and also in the range for a second dis-
tinct block.

« The range for each block is defined as a contiguous sequence. In other words, a
block cannot consist of two (or more) discontiguous sequences of code points.

« Each range for a defined block starts with a value for which code point MOD
16 = 0 and terminates with a larger value for which code point MOD 16 = 15.
This specification results in block ranges which always include full code point
columns for code chart display. A block never starts or terminates in mid-col-
umn.

« All assigned characters are contained within ranges for defined blocks.

« Blocks may contain reserved code points, but no block contains only reserved
code points. The majority of reserved code points are outside the ranges of
defined blocks.

« A few designated code points are not contained within the ranges for defined
blocks. This applies to the noncharacter code points at the last two code points
of supplementary planes 1 through 14.

« The name for each defined block is specified by Field 1 in Blocks.txt; for exam-
ple, “Basic Latin”

« The names for defined blocks constitute a unique namespace.

« The uniqueness rule for the block namespace is LM3, as defined in Unicode
Standard Annex #44, “Unicode Character Database.” In other words, casing,
whitespace, hyphens, and underscores are ignored when matching strings for
block names. The string “BASIC LATIN” or “Basic_Latin” would be consid-
ered as matching the name for the block named “Basic Latin”

« There is also a normative Block property. See Table 3-2. The Block property is a
catalog property whose value is a string that identifies a block.

« Property value aliases for the Block property are defined in PropertyVal-
ueAliases.txt in the Unicode Character Database. The long alias defined for the
Block property is always a loose match for the name of the block defined in
Blocks.txt. Additional short aliases and other aliases are provided for conve-
nience of use in regular expression syntax.

« The default value for the Block property is “No_Block™. This default applies to
any code point which is not contained in the range of a defined block.

For a general discussion of blocks and their relation to allocation in the Unicode Standard,
see “Allocation Areas and Blocks” in Section 2.8, Unicode Allocation. For a general discus-



Conformance 90 34 Characters and Encoding

sion of the use of blocks in the presentation of the Unicode code charts, see Chapter 24,
About the Code Charts.

D11 Encoded character: An association (or mapping) between an abstract character and
a code point.

« An encoded character is also referred to as a coded character.

« While an encoded character is formally defined in terms of the mapping
between an abstract character and a code point, informally it can be thought of
as an abstract character taken together with its assigned code point.

« Occasionally, for compatibility with other standards, a single abstract character
may correspond to more than one code point—for example, “A” corresponds
both to U+00C5 A LATIN CAPITAL LETTER A WITH RING ABOVE and to U+212B
A ANGSTROM SIGN.

« A single abstract character may also be represented by a sequence of code
points—for example, latin capital letter g with acute may be represented by the
sequence <U+0047 LATIN CAPITAL LETTER G, U+0301 COMBINING ACUTE
ACCENT>, rather than being mapped to a single code point.

D12 Coded character sequence: An ordered sequence of one or more code points.
« A coded character sequence is also known as a coded character representation.

« Normally a coded character sequence consists of a sequence of encoded char-
acters, but it may also include noncharacters or reserved code points.

« Internally, a process may choose to make use of noncharacter code points in its
coded character sequences. However, such noncharacter code points may not
be interpreted as abstract characters (see conformance clause C2). Their
removal by a conformant process constitutes modification of interpretation of
the coded character sequence (see conformance clause C7).

+ Reserved code points are included in coded character sequences, so that the
conformance requirements regarding interpretation and modification are
properly defined when a Unicode-conformant implementation encounters
coded character sequences produced under a future version of the standard.

Unless specified otherwise for clarity, in the text of the Unicode Standard the term charac-
ter alone designates an encoded character. Similarly, the term character sequence alone
designates a coded character sequence.

D13 Deprecated character: A coded character whose use is strongly discouraged.

« Deprecated characters are retained in the standard indefinitely, but should not
be used. They are retained in the standard so that previously conforming data
stay conformant in future versions of the standard.

« Deprecated characters typically consist of characters with significant architec-
tural problems, or ones which cause implementation problems. Some examples



Conformance 91 34 Characters and Encoding

D14

D15

of characters deprecated on these grounds include U+E0001 LANGUAGE TAG
(see Section 23.9, Tag Characters) and the alternate format characters (see
Section 23.3, Deprecated Format Characters).

Deprecated characters are explicitly indicated in the Unicode code charts. They
are also given an explicit property value of Deprecated = True in the Unicode
Character Database.

Deprecated characters should not be confused with obsolete characters, which
are historical. Obsolete characters do not occur in modern text, but they are not
deprecated; their use is not discouraged.

Noncharacter: A code point that is permanently reserved for internal use. Nonchar-
acters consist of the values U+nFFFE and U+nFFFF (where n is from 0 to 10,4) and
the values U+FDDO0..U+FDEF.

For more information, see Section 23.7, Noncharacters.
These code points are permanently reserved as noncharacters.

Reserved code point: Any code point of the Unicode Standard that is reserved for
future assignment. Also known as an unassigned code point.

Surrogate code points and noncharacters are considered assigned code points,
but not assigned characters.

For a summary classification of reserved and other types of code points, see
Table 2-3.

In general, a conforming process may indicate the presence of a code point whose use has
not been designated (for example, by showing a missing glyph in rendering or by signaling
an appropriate error in a streaming protocol), even though it is forbidden by the standard
from interpreting that code point as an abstract character.

Dié6

D17

Higher-level protocol: Any agreement on the interpretation of Unicode characters
that extends beyond the scope of this standard.

Such an agreement need not be formally announced in data; it may be implicit
in the context.

The specification of some Unicode algorithms may limit the scope of what a
conformant higher-level protocol may do.

Unicode algorithm: The logical description of a process used to achieve a specified
result involving Unicode characters.

This definition, as used in the Unicode Standard and other publications of the
Unicode Consortium, is intentionally broad so as to allow precise logical
description of required results, without constraining implementations to fol-
low the precise steps of that logical description.



Conformance 92 34 Characters and Encoding

D18 Named Unicode algorithm: A Unicode algorithm that is specified in the Unicode
Standard or in other standards published by the Unicode Consortium and that is
given an explicit name for ease of reference.

« Named Unicode algorithms are cited in titlecase in the Unicode Standard.

Table 3-1 lists the named Unicode algorithms and indicates the locations of their specifica-
tions. Details regarding conformance to these algorithms and any restrictions they place on
the scope of allowable tailoring by higher-level protocols can be found in the specifications.
In some cases, a named Unicode algorithm is provided for information only. When exter-
nally referenced, a named Unicode algorithm may be prefixed with the qualifier “Unicode”
to make the connection of the algorithm to the Unicode Standard and other Unicode spec-
ifications clear. Thus, for example, the Bidirectional Algorithm is generally referred to by
its full name, “Unicode Bidirectional Algorithm.” As much as is practical, the titles of Uni-
code Standard Annexes which define Unicode algorithms consist of the name of the Uni-
code algorithm they specify. In a few cases, named Unicode algorithms are also widely
known by their acronyms, and those acronyms are also listed in Table 3-1.

Table 3-1. Named Unicode Algorithms

Name Description
Canonical Ordering Section 3.11
Canonical Composition Section 3.11
Normalization Section 3.11
Hangul Syllable Composition Section 3.12
Hangul Syllable Decomposition Section 3.12
Hangul Syllable Name Generation Section 3.12
Default Case Conversion Section 3.13
Default Case Detection Section 3.13
Default Caseless Matching Section 3.13
Bidirectional Algorithm (UBA) UAX #9
Line Breaking Algorithm UAX #14
Character Segmentation UAX #29
Word Segmentation UAX #29
Sentence Segmentation UAX #29
Hangul Syllable Boundary Determination UAX #29
Standard Compression Scheme for Unicode (SCSU) ~ UTS #6
Unicode Collation Algorithm (UCA) UTS #10




Conformance 93 3.5 Properties

3.5 Properties

The Unicode Standard specifies many different types of character properties. This section
provides the basic definitions related to character properties.

The actual values of Unicode character properties are specified in the Unicode Character
Database. See Section 4.1, Unicode Character Database, for an overview of those data files.
Chapter 4, Character Properties, contains more detailed descriptions of some particular,
important character properties. Additional properties that are specific to particular charac-
ters (such as the definition and use of the right-to-left override character or zero width
space) are discussed in the relevant sections of this standard.

The interpretation of some properties (such as the case of a character) is independent of
context, whereas the interpretation of other properties (such as directionality) is applicable
to a character sequence as a whole, rather than to the individual characters that compose
the sequence.

Types of Properties

D19 Property: A named attribute of an entity in the Unicode Standard, associated with a
defined set of values.

« The lists of code point and encoded character properties for the Unicode Stan-
dard are documented in Unicode Standard Annex #44, “Unicode Character
Database,” and in Unicode Standard Annex #38, “Unicode Han Database (Uni-
han).”

 The file PropertyAliases.txt in the Unicode Character Database provides a
machine-readable list of the non-Unihan properties and their names.

D20 Code point property: A property of code points.

« Code point properties refer to attributes of code points per se, based on archi-
tectural considerations of this standard, irrespective of any particular encoded
character.

« Thus the Surrogate property and the Noncharacter property are code point
properties.

D21 Abstract character property: A property of abstract characters.

o Abstract character properties refer to attributes of abstract characters per se,
based on their independent existence as elements of writing systems or other
notational systems, irrespective of their encoding in the Unicode Standard.

« Thus the Alphabetic property, the Punctuation property, the Hex_Digit prop-
erty, the Numeric_Value property, and so on are properties of abstract charac-
ters and are associated with those characters whether encoded in the Unicode
Standard or in any other character encoding—or even prior to their being
encoded in any character encoding standard.



Conformance 94 3.5 Properties

D22 Encoded character property: A property of encoded characters in the Unicode Stan-
dard.

« For each encoded character property there is a mapping from every code point
to some value in the set of values associated with that property.

Encoded character properties are defined this way to facilitate the implementation of char-
acter property APIs based on the Unicode Character Database. Typically, an API will take
a property and a code point as input, and will return a value for that property as output,
interpreting it as the “character property” for the “character” encoded at that code point.
However, to be useful, such APIs must return meaningful values for unassigned code
points, as well as for encoded characters.

In some instances an encoded character property in the Unicode Standard is exactly equiv-
alent to a code point property. For example, the Pattern_Syntax property simply defines a
range of code points that are reserved for pattern syntax. (See Unicode Standard Annex
#31, “Unicode Identifier and Pattern Syntax.”)

In other instances, an encoded character property directly reflects an abstract character
property, but extends the domain of the property to include all code points, including
unassigned code points. For Boolean properties, such as the 