Appendix C

Relationship to ISO/IEC 10646

The Unicode Consortium maintains a strong working relationship with ISO/IEC/JTC1/SC2/WG2, the working group developing International Standard 10646. Today both organizations are firmly committed to maintaining the synchronization between the Unicode Standard and 10646. Each standard nevertheless uses its own form of reference and, to some degree, separate terminology. This appendix gives a brief history and explains how the standards are related.

C.1 History

Having recognized the benefits of developing a single universal character code standard, members of the Unicode Consortium worked with representatives from the International Organization for Standardization (ISO) during the summer and fall of 1991 to pursue this goal. Meetings between the two bodies resulted in mutually acceptable changes to both Unicode Version 1.0 and the first ISO/IEC Draft International Standard DIS 10646.1, which merged their combined repertoire into a single numerical character encoding. This work culminated in The Unicode Standard, Version 1.1.

ISO/IEC 10646-1:1993, Information Technology—Universal Multiple-Octet1 Coded Character Set (UCS)—Part 1: Architecture and Basic Multilingual Plane, was published in May 1993 after final editorial changes were made to accommodate the comments of voting members. The Unicode Standard, Version 1.1, reflected the additional characters introduced from the DIS 10646.1 repertoire and incorporated minor editorial changes.

Merging The Unicode Standard, Version 1.0, and DIS 10646.1 consisted of aligning the numerical values of identical characters and then filling in some groups of characters that were present in DIS 10646.1, but not in the Unicode Standard. As a result, the encoded character values of ISO/IEC 10646-1:1993 and The Unicode Standard, Version 1.1, are precisely the same.


In 2001, Part 2 of ISO/IEC 10646 was published as ISO/IEC 10646-2:2001. Version 3.1 of the Unicode Standard was synchronized with that publication, which added supplementary characters for the first time. Subsequently, Versions 3.2 and 4.0 of the Unicode Standard

---

1. Octet is ISO/IEC terminology for byte—that is, an ordered sequence of 8 bits considered as a unit.
C.1 History Relationship to ISO/IEC 10646

added characters matching further amendments to both parts of ISO/IEC 10646. The Unicode Standard, Version 4.0, is precisely aligned with the forthcoming third version of ISO/IEC 10646 (first edition), to be published as a single standard merging the former two parts.

Table C-1 gives the timeline for these efforts.

Table C-1. Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Version</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>DP 10646</td>
<td>Draft proposal, independent of Unicode</td>
</tr>
<tr>
<td>1990</td>
<td>Unicode Prepublication</td>
<td>Prepublication review draft</td>
</tr>
<tr>
<td>1990</td>
<td>DIS-1 10646</td>
<td>First draft, independent of Unicode</td>
</tr>
<tr>
<td>1991</td>
<td>Unicode 1.0</td>
<td>Edition published by Addison-Wesley</td>
</tr>
<tr>
<td>1992</td>
<td>Unicode 1.0.1</td>
<td>Modified for merger compatibility</td>
</tr>
<tr>
<td>1992</td>
<td>DIS-2 10646</td>
<td>Second draft, merged with Unicode</td>
</tr>
<tr>
<td>1993</td>
<td>IS 10646-1:1993</td>
<td>Merged standard</td>
</tr>
<tr>
<td>1993</td>
<td>Unicode 1.1</td>
<td>Revised to match IS 10646-1:1993</td>
</tr>
<tr>
<td>1995</td>
<td>10646 amendments</td>
<td>Korean realigned, plus additions</td>
</tr>
<tr>
<td>1996</td>
<td>Unicode 2.0</td>
<td>Synchronized with 10646 amendments</td>
</tr>
<tr>
<td>1998</td>
<td>Unicode 2.1</td>
<td>Added euro sign and corrigenda</td>
</tr>
<tr>
<td>1999</td>
<td>10646 amendments</td>
<td>Additions</td>
</tr>
<tr>
<td>2000</td>
<td>Unicode 3.0</td>
<td>Synchronized with 10646 second edition</td>
</tr>
<tr>
<td>2000</td>
<td>IS 10646-1:2000</td>
<td>10646 part 1, second edition, publication with amendments to date</td>
</tr>
<tr>
<td>2001</td>
<td>IS 10646-2:2001</td>
<td>10646 part 2 (supplementary planes)</td>
</tr>
<tr>
<td>2001</td>
<td>Unicode 3.1</td>
<td>Synchronized with 10646 part 2</td>
</tr>
<tr>
<td>2002</td>
<td>Unicode 3.2</td>
<td>Synchronized with Amd 1 to 10646 part 1</td>
</tr>
<tr>
<td>2003</td>
<td>Unicode 4.0</td>
<td>Synchronized with 10646 third version</td>
</tr>
<tr>
<td>2003 (expected)</td>
<td>IS 10646:2003</td>
<td>10646 third version (first edition), merging the two parts</td>
</tr>
</tbody>
</table>

Unicode 1.0

The combined repertoire presented in ISO/IEC 10646 is a superset of The Unicode Standard, Version 1.0, repertoire as amended by The Unicode Standard, Version 1.0.1. The Unicode Standard, Version 1.0, was amended by the Unicode 1.0.1 Addendum to make the Unicode Standard a proper subset of ISO/IEC 10646. This effort entailed both moving and eliminating a small number of characters.

Unicode 2.0

The Unicode Standard, Version 2.0, covered the repertoire of The Unicode Standard, Version 1.1 (and IS 10646), plus the first seven amendments to IS 10646, as follows:

Amd. 1: UTF-16
Amd. 2: UTF-8
Amd. 3: Coding of C1 Controls
Amd. 4: Removal of Annex G: UTF-1
Amd. 5: Korean Hangul Character Collection
Amd. 6: Tibetan Character Collection
Amd. 7: 33 Additional Characters (Hebrew, Long S, Dong)
In addition, *The Unicode Standard, Version 2.0*, covered Technical Corrigendum No. 1 (on renaming of AE ligature to letter) and such Editorial Corrigenda to ISO/IEC 10646 as were applicable to the Unicode Standard. The euro sign and the object replacement character were added in Version 2.1, per amendment 18 of ISO 10646-1.

**Unicode 3.0**

*The Unicode Standard, Version 3.0*, is synchronized with the second edition of ISO/IEC 10646-1. The latter contains all of the published amendments to 10646-1; the list includes the first seven amendments, plus the following:

- Amd. 8: Addition of Annex T: Procedure for the Unification and Arrangement of CJK Ideographs
- Amd. 9: Identifiers for Characters
- Amd. 10: Ethiopic Character Collection
- Amd. 11: Unified Canadian Aboriginal Syllabics Character Collection
- Amd. 12: Cherokee Character Collection
- Amd. 13: CJK Unified Ideographs with Supplementary Sources (Horizontal Extension)
- Amd. 14: Yi Syllables and Yi Radicals Character Collection
- Amd. 15: Kangxi Radicals, Hangzhou Numerals Character Collection
- Amd. 16: Braille Patterns Character Collection
- Amd. 17: CJK Unified Ideographs Extension A (Vertical Extension)
- Amd. 18: Miscellaneous Letters and Symbols Character Collection (which includes the euro sign)
- Amd. 19: Runic Character Collection
- Amd. 20: Ogham Character Collection
- Amd. 21: Sinhala Character Collection
- Amd. 22: Keyboard Symbols Character Collection
- Amd. 23: Bopomofo Extensions and Other Character Collection
- Amd. 24: Thaana Character Collection
- Amd. 25: Khmer Character Collection
- Amd. 26: Myanmar Character Collection
- Amd. 27: Syriac Character Collection
- Amd. 28: Ideographic Description Characters
- Amd. 29: Mongolian
- Amd. 30: Additional Latin and Other Characters
- Amd. 31: Tibetan Extension

The second edition of 10646-1 also contains the contents of Technical Corrigendum No. 2 and all the Editorial Corrigenda to the year 2000.
C.2 Encoding Forms in ISO/IEC 10646

ISO/IEC 10646 defines two alternative forms of encoding:

- A four-octet (32-bit) encoding containing $2^{31}$ code positions. These code positions are conceptually divided into 128 groups of 256 planes, with each plane containing 256 rows of 256 cells.

- A two-octet (16-bit) encoding consisting of plane zero, the Basic Multilingual Plane (BMP).

The 32-bit form is referred to as UCS-4 (Universal Character Set coded in 4 octets), and the 16-bit form is referred to as UCS-2 (Universal Character Set coded in 2 octets).

The code positions from 0 through 65,535 decimal (0–FFFF hexadecimal) can be represented by code units of 16 bits. The most useful characters (that is, the characters found in major existing standards worldwide) are assigned in the BMP. Other, less-used characters are assigned in supplementary planes.

The Principles and Procedures document of JTC1/SC2/WG2 states that all future assignments of characters to 10646 will be constrained to the BMP or the first 14 supplementary planes. This is to ensure interoperability between the 10646 transformation formats (see below). It also guarantees interoperability with implementations of the Unicode Standard, for which only code positions 0..10FFFF are meaningful. The former provision for private-use code positions in groups 60 to 7F and in planes E0 to FF in 10646 has been removed from 10646. As a consequence, UCS-4 can now be taken effectively as an alias for the Unicode encoding form UTF-32, except that UTF-32 has the extra requirement that additional Unicode semantics be observed for all characters.

The character repertoires and encoding assignments of the Unicode Standard and ISO/IEC 10646 are identical.

Zero Extending

The character "A", U+0041 LATIN CAPITAL LETTER A, has the unchanging numerical value 41 hexadecimal. This value may be extended by any quantity of leading zeros to serve in the context of the following encoding standards and transformation formats (see Table C-2).
This design eliminates the problem of disparate values in all systems that use any of the standards and transformation formats just mentioned.

### C.3 UCS Transformation Formats

**UTF-8**

The term UTF-8 stands for UCS Transformation Format, 8-bit form. UTF-8 is an alternative coded representation form for all of the characters of ISO/IEC 10646. The ISO/IEC definition is identical in format to UTF-8 as described under definition D36 in Section 3.9, Unicode Encoding Forms.

UTF-8 can be used to transmit text data through communications systems that assume that individual octets in the range of x00 to x7F have a definition according to ISO/IEC 4873, including a C0 set of control functions according to the 8-bit structure of ISO/IEC 2022. UTF-8 also avoids the use of octet values in this range that have special significance during the parsing of file name character strings in widely used file-handling systems.

The definition of UTF-8 in Annex D of ISO/IEC 10646-1:2000 also allows for the use of five- and six-byte sequences to encode characters that are outside the range of the Unicode character set; those five- and six-byte sequences are illegal for the use of UTF-8 as an encoding form of Unicode characters. ISO/IEC 10646 does not allow mapping of surrogate code positions, known as RC-elements in that standard; that restriction is identical to the restriction for the Unicode definition of UTF-8.

**UTF-16**

The term UTF-16 stands for UCS Transformation Format for 16 Planes of Group 00. UTF-16 is the ISO/IEC encoding that is equivalent to the Unicode Standard with the use of surrogates as described in Chapter 3, Conformance. In UTF-16, each UCS-2 code position represents itself. Non-BMP code positions of ISO/IEC 10646 in planes 1..16 are represented using pairs of special codes. UTF-16 defines the transformation between the UCS-4 code positions in planes 1 to 16 of Group 00 and the pairs of special codes, and is identical to the UTF-16 encoding form defined in the Unicode Standard under definition D35 in Section 3.9, Unicode Encoding Forms. Sample code for transforming UCS-4 into UTF-16 can be found on the Unicode Web site.

In ISO/IEC 10646, high-surrogates are called RC-elements from the high-half zone and low-surrogates are called RC-elements from the low-half zone. Together, they constitute the S (Special) Zone of the BMP.

UTF-16 represents the BMP and the next 16 planes. This system should not be an undue limitation because ISO JTC1/SC2/WG2 has no intention of assigning characters outside of planes 1..14, as that would break synchronization with the Unicode Standard. Planes 15 and 16 (000F0000..000FFFFF16 and 00100000..0010FFFF16) are reserved for private use.

---

**Table C-2. Zero Extending**

<table>
<thead>
<tr>
<th>Bits</th>
<th>Standard</th>
<th>Binary</th>
<th>Hex</th>
<th>Dec</th>
<th>Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>ASCII</td>
<td>1000001</td>
<td>41</td>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>8859-1</td>
<td>01000001</td>
<td>41</td>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td>UTF-16, UCS-2</td>
<td>00000000 01000001</td>
<td>41</td>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>32</td>
<td>UTF-32, UCS-4</td>
<td>00000000 00000000 00000000 01000001</td>
<td>41</td>
<td>65</td>
<td>A</td>
</tr>
</tbody>
</table>
C.4 Synchronization of the Standards

The goal of merging the Unicode Standard and DIS 10646.1 has been realized, making character code assignments identical in the Unicode Standard and ISO/IEC 10646. Programmers and system users should treat the encoded character values from the Unicode Standard and ISO/IEC 10646 as identities, especially in the transmission of raw character data across system boundaries. The Unicode Consortium and ISO/IEC JTC1/SC2/WG2 are committed to maintaining the synchronization between the two standards.

However, the Unicode Standard and ISO/IEC 10646 differ in the precise terms of their conformance specifications. Any Unicode implementation will conform to ISO/IEC 10646, Level 3, but because the Unicode Standard imposes additional constraints on character semantics and transmittability, not all implementations that are compliant with ISO/IEC 10646 will be compliant with the Unicode Standard.

C.5 Identification of Features for the Unicode Standard

ISO/IEC 10646 provides mechanisms for specifying a number of implementation parameters, generating what may be termed instantiations of the standard. ISO/IEC 10646 contains no means of explicitly declaring the Unicode Standard as such. As a whole, however, the Unicode Standard may be considered as encompassing the entire repertoire of ISO/IEC 10646 and having the following features (as well as additional semantics):

- Numbered subset 305 (UNICODE 4.0)
- UTF-8, UTF-16, or UCS-4 (= UTF-32)
- Implementation level 3 (allowing both combining marks and precomposed characters)
- Device type 1 (receiving device with full retransmission capability)

Few applications are expected to make use of all of the characters defined in ISO/IEC 10646. The conformance clauses of the two standards address this situation in very different ways. ISO/IEC 10646 provides a mechanism for specifying included subsets of the character repertoire, permitting implementations to ignore characters that are not included (see normative Annex A of ISO/IEC 10646). A Unicode implementation requires a minimal level of handling all character codes—namely, the ability to store and retransmit them undamaged. Thus the Unicode Standard encompasses the entire ISO/IEC 10646 repertoire without requiring that any particular subset be implemented.

The Unicode Standard does not provide formal mechanisms for identifying a stream of bytes as Unicode characters, although to some extent this function is served by use of the byte order mark (U+FEFF) to indicate byte ordering. ISO/IEC 10646 defines an ISO/IEC 2022 control sequence to introduce the use of 10646. ISO/IEC 10646 also allows the use of U+FEFF as a “signature” as described in ISO/IEC 10646. This optional “signature” convention for identification of UTF-8, UTF-16, and UCS-4 is described in the informative Annex H of 10646. It is consistent with the description of the byte order mark in Section 15.9, Specials.
C.6 Character Names

Unicode character names follow the ISO/IEC character naming guidelines (summarized in informative Annex L of ISO/IEC 10646). In the first version of the Unicode Standard, the naming convention followed the ISO/IEC naming convention, but with some differences that were largely editorial. For example,

<table>
<thead>
<tr>
<th>ISO/IEC 10646 name</th>
<th>029A</th>
<th>LATIN SMALL LETTER CLOSED OPEN E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicode 1.0 name</td>
<td>029A</td>
<td>LATIN SMALL LETTER CLOSED EPSILON</td>
</tr>
</tbody>
</table>

In the ISO/IEC framework, the unique character name is viewed as the major resource for both character semantics and cross-mapping among standards. In the framework of the Unicode Standard, character semantics are indicated via alias names, usage annotations, character properties, and functional specifications as mentioned in Chapter 3, Conformance; cross-mappings among standards are provided in the form of explicit tables available on the Unicode Web site. The disparities between the Unicode 1.0 names and ISO/IEC 10646 names have been remedied by adoption of ISO/IEC 10646 names in the Unicode Standard. If the Unicode 1.0 name differed from the ISO/IEC 10646 name, then the previous name is provided as a dedicated informative data field in the Unicode Character Database.

C.7 Character Functional Specifications

The core of a character code standard is a mapping of code points to characters, but in some cases the semantics or even the identity of the character may be unclear. Certainly a character is not simply the representative glyph used to depict it in the standard. For this reason, the Unicode Standard supplies the information necessary to specify the semantics of the characters it encodes.

Thus the Unicode Standard encompasses far more than a chart of code points. It also contains a set of extensive character functional specifications and data, as well as substantial background material designed to help implementers better understand how the characters interact. The Unicode Standard specifies properties and algorithms. Conformant implementations of the Unicode Standard will also be conformant with ISO/IEC 10646, Level 3.

Compliant implementations of ISO/IEC 10646 can be conformant to the Unicode Standard—as long as the implementations conform to all additional specifications that apply to the characters of their adopted subsets, and as long as they support all Unicode characters outside their adopted subsets in the manner referred to in Section C.5, Identification of Features for the Unicode Standard.

---

1. The names adopted by the Unicode Standard are from the English-language version of ISO/IEC 10646, even when other language versions are published by ISO.