
ISO/IEC JTC 1/SC 2/WG 2 N2987
2005-09-05

Title: Proposed additions to Principles and Procedures document
Source: US and Unicode (drafted by V.S. Umamaheswaran, umavs@ca.ibm.com)
Reference: Principles and Procedures document - N2902
Action: For consideration and acceptance at WG2 meeting M47
Distribution: ISO/IEC JTC 1/SC 2/WG 2

(Note: The section numbers below are referencing sections in document N2902 -- see
www.dkuug.dk/jtc1/sc2/wg2/docs/n2902.doc)

1. Add a new section F.5

F.5 Some additional guiding principles
An analysis of the following three additions to Amendment 1 to 10646: 2003 has shown some particular
difficulties for existing implementations (see document N2987).

a. Addition of HEBREW POINT QAMATS QATAN per resolution M45.4 item j to distinguish it from use

of HEBREW POINT QAMATS as GADOL in some orthographies that distinguish these. Here an
annotation was made to the existing character.

b. Addition of HEBREW ACCENT ATNAH HAFUKH per resolution M45.4 item k to distinguish it from
use of HEBREW ACCENT YERAH BEN YOMO as GALGAL in some orthographies that distinguish
these. Here the glyph for the existing character was given to the new character, changing the glyph
of the existing character to be more aligned with the character names.

c. Addition of LATIN CAPITAL LETTER GLOTTAL STOP to cater for orthographies that use the
phonetic symbol LATIN LETTER GLOTTAL STOP as a lower case letter (per resolution M45.5 item
a).

Based on this analysis of these cases of disunification, to preserve the pre-disunification use of existing
characters also after disunification, some additional guiding principles are provided here.

F5.1 The representative glyphs of existing characters will not be changed in such a way as to
change their identity, and the range of glyphs expected for existing characters will not increase as
a result of disunification.
F5.2 Very significant character properties (such as case) for existing characters shall not be
changed, because of the large risk of adverse impact on existing implementations of the
standard.

If a character disunification cannot be achieved by adding one new character without requiring a change
in very significant properties of the existing character and without changing the representative glyph or
range of expected glyphs for the existing character, then new characters will be added for each of the
distinct, specific letterforms required. The existing character will not be intended for use in scenarios in
which the distinct, specific letterforms are used. This may result in visually duplicate characters, which
may be necessary under the above conditions. While it is desirable that a character name be fully
appropriate to the given character and its representative glyph, concern over less-than-ideal names will
not provide a sufficient basis for overriding these guidelines. Exceptions will be permitted only after
careful consideration of hits on existing implementations and on the basis of substantial rationale.

Rationale:
An analysis of three new characters added to Amendment 1 to ISO/IEC 10646: 2003, disunified from
existing characters showed some implementation difficulties that could have been avoided. See
attachment 1 for details. The above guiding principles are proposed to avoid future hits on
implementation of existing characters.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 1 of 27

http://www.dkuug.dk/JTC1/SC2/WG2/docs/n2902.doc

2. Add new section D.2.5 and a pointer from A.1 Submitter's responsibilities if any of the proposed
characters can be Syntax characters.

(Rationale: The wording in the proposed text below is self-explanatory).

D.2.5 Reserved code points for stability of identifiers

Implementers of programming languages, markup languages, scripting languages, regular expression
engines, character-based protocols, and similar programs or systems require the ability to clearly
distinguish between characters that can serve in identifiers, and those that are for syntactic elements.
Moreover, a high degree of stability is required. To provide the necessary level of stability, all of the
reserved code points in the following blocks are reserved for syntax characters.

[U+2300-U+23FF] Miscellaneous_Technical
[U+2400-U+243F] Control_Pictures
[U+2440-U+245F] Optical_Character_Recognition
[U+2600-U+26FF] Miscellaneous_Symbols
[U+2700-U+27BF] Dingbats
[U+27C0-U+27EF] Miscellaneous_Mathematical_Symbols_A
[U+2B00-U+2BFF] Miscellaneous_Symbols_And_Arrows
[U+2E00-U+2E7F] Supplemental_Punctuation

What this means is that no new letters suitable for identifiers (letters, combining marks, or numbers) will
be allocated in these ranges. In addition, it is strongly encouraged (but not required) that any new
characters that are suitable as programmatic syntax characters be allocated in these blocks. (For more
information, see Unicode Standard Annex #31 Identifier and Pattern Syntax at
http://www.unicode.org/reports/tr31/.) "

Attachment 1 --L2/05-057 - Proposed Principles for Character Disunifications, Peter Constable, Microsoft,
2005-2-2

Attachment 2 - Unicode Standard Annex #31, Identifier and Pattern Syntax, Version 4.1.0, 2005-03-25
.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 2 of 27

 L2/05-057

 Page 1

Proposed Principles for Character Disunifications
Peter Constable, Microsoft
2005-2-2

In the past year, UTC has approved various character disunifications – encoding new characters
to create distinctions that were not previously made.1 For implementers, these have been a
mixed bag: some present no significant problems; others, however, were done in ways that
leave implementers facing some significant problems that could have been avoided. To avoid
such problems in the future, I propose that UTC adopt certain principles that guide how
character disunifications should be handled.

Three particular disunifications are considered here: QAMATS, YERAH BEN YOMO and GLOTTAL
STOP. I will describe each, explaining why the disunification of YERAH BEN YOMO and GLOTTAL
STOP have resulted in problems while the disunification of QAMATS does not. By considering
these three cases, some simple principles can be identified that can serve to avoid similar
problems in the future.

Disunification of QAMATS
The Hebrew mark qamats is one of the vowel points used in pointed Hebrew text. While
historically there was only one mark, it can to be used to write two different vowel
pronunciations. This led in recent times to publishers creating a glyph distinction in order to
distinguish the two readings.

Most users do not make this distinction in texts; for them, the existing character U+05B8 HEBREW
POINT QAMATS has been adequate. For those that wish to make the distinction, however, two
characters are needed: qamats (gadol), and a separate character qamats qatan. The latter typically
differs from the former in having a longer stem.

Figure 1. Contrast between qamats gadol (short stem) and qamats qatan (long stem)

What was proposed and accepted by UTC was to leave the existing character U+05B8 HEBREW
POINT QAMATS as it is, and to encode a new character U+05BA HEBREW POINT QAMATS QATAN.
Because the existing character was not changed, existing implementations are unaffected, and
users that do not make the distinction can continue to use it, regardless of whether the

1 This discussion applies only to disunification of individual characters, not the disunification of entire

scripts, such as the decision to encode Coptic separately from Greek.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 3 of 27

umavs
Text Box
ATTACHMENT 1 to N2987

 L2/05-057

 Page 2

implementation also supports the new character or not. For users that do make the distinction,
they use the existing character, though now in fewer instances and with a more restrictive
meaning.

Disunification of YERAH BEN YOMO
The Hebrew mark yerah ben yomo is one of the accents from the Tiberian accentual system used
by Masoretic scribes to indicate textual structure within verses and to provide guidance on the
correct chanting of the text. Historically, two similarly-shaped but distinct accents were used,
but the distinction was at some point lost. The distinction has been rediscovered in recent years,
however, and some users now want to make the distinction in encoded texts.

The existing character U+05AA HEBREW ACCENT YERAH BEN YOMO was encoded without
awareness of the distinction, and it has been used in contexts where the distinction is not made.
Most users do not make the distinction in texts; for them, this existing character has, thus far,
been adequate. Typically, the preferred glyph for users that do no make the distinction is
roughly the shape of a small v optionally with a slight vertical stem at the bottom, though the
name apparently means “day-old moon”, suggesting a crescent shape.

Figure 2. Glyphs for U+05AA YERAH BEN YOMO from three existing fonts

Figure 3. Nu. 35:5:5 (right) and Ps. 1:3:3 (left) from Snaith’s edition: no contrast between
historically-distinct accents (galgal—blue highlight—and atnah hafukh—red highlight)

For users that do wish to make the distinction, two characters are needed: galgal, which has
roughly a crescent or semi-circular shape, and atnah hafukh, which rougly has the shape of a
small v with a slight vertical stem.2

2 I have refrained from using the name yerah ben yomo when describing the situation in which two

accents are distinguish, using an alternate name, to avoid any predispositions about which of the two
distinct accents might be represented using the existing character.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 4 of 27

 L2/05-057

 Page 3

Figure 4. Nu. 35:5:5 (right) and Ps. 1:3:3 (left) from Biblia Hebraica Leningradensia: galgal (blue
highlight) and atnah hafukh (red highlight) are distinguished

The shape of one of the two distinct accents, atnah hafukh, matches the representative glyph of
the existing character, YERAH BEN YOMO: the small-v shape with a vertical stem. Thus, one might
expect that the existing character would be used for atnah hafukh, and that a new character,
GALGAL, would be added, having a semi-circular shape. This is not what was proposed,
however: because the name yerah ben yomo suggests a crescent shape, the proposers apparently
felt that it would be inaccurate to have a character with that name but a small-v shape while
another character was added with the crescent shape.

Thus, what was proposed, and what was accepted by UTC, was to change the representative
glyph for the existing character U+05AA HEBREW ACCENT YERAH BEN YOMO to a semi-circular
shape, and to encode a new character U+05A2 HEBREW ACCENT ATNAH HAFUKH with the small-v
shape. For users that do make the distinction, YERAH BEN YOMO must have a semi-circular shape,
but for users that do not make the distinction, a small-v shape is required.

Disunification of LATIN LETTER GLOTTAL STOP
The character U+0294 LATIN LETTER GLOTTAL STOP was encoded to represent the phonetic
symbol glottal stop used in linguistic transcription. In phonetic usage, the character is drawn
with a cap-height glyph, but no case distinction is made. At the time it was encoded, there was
no usage known that involved a case distinction. Thus, the character name does not include
“small” or “capital” as would be used for cased letters. For some reason, though, this character
was assigned the general-category property lowercase letter (Ll) rather than letter – other (Lo).

Figure 5. Glottal stop in phonetic transcription: cap-height glyph used (IPA 1999, p. 98)

Certain languages with Latin-based orthographies do use glottal stop as a casing character, with
an uppercase and lowercase pair. In these orthographies, the capital letter is displayed with a
cap-height glyph, while the small letter is displayed with a glyph of roughly x-height.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 5 of 27

 L2/05-057

 Page 4

Figure 6. Bi-cameral glottal stops in orthographic use: lowercase (red highlight) is x-height,
uppercase (blue highlight) is cap-height (from Koyina 1983)

Because the existing character has a cap-height glyph, which is what is required for phonetic
transcription, it was originally proposed to change the case property of the existing character to
uppercase and to add a new lowercase letter SMALL GLOTTAL STOP with an x-height glyph.
Concerns were raised, however, regarding potential problems for existing implementations if
the case of the existing character were changed. (E.g. it could affect indexes, file systems or
other protocols that use case mapping.)

Therefore, the proposal was changed to leave the existing character as is with its originally-
intended usage for phonetic transcription, and to encode two new characters, a casing pair, for
orthographic usage. The decision of UTC, however, was to leave the existing character as is, but
to encode only one new character, U+0241 LATIN CAPITAL LETTER GLOTTAL STOP.

With this UTC decision, those that want to use the existing character U+0294 LATIN LETTER
GLOTTAL STOP for phonetic transcription require a cap-height glyph, which is what would be
found in existing font implementations. Those that want to use the pair of characters for
orthographic purposes, however, require a font that has an x-height glyph for the existing
character.

Comparison of the disunifications
The three disunifications described above differ in terms of the ease with which they can be
implemented: the qamats disunification presents no problems, while the other two
disunifications present significant dilemmas for implementers. The reason for the difference is
that the disunification of qamats left the existing character completely unchanged, while the
other two disunifications did not.

The representative glyphs for the characters in question before and after the disunifications are
shown in Table 1:

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 6 of 27

 L2/05-057

 Page 5

Character TUS 4.0 TUS 4.1

U+05B8 HEBREW POINT QAMATS

U+05BA HEBREW POINT QAMATS QATAN N/A

U+05AA HEBREW ACCENT YERAH BEN YOMO

U+05A2 HEBREW ACCENT ATNAH HAFUKH N/A

U+0294 LATIN LETTER GLOTTAL STOP

U+0241 LATIN CAPITAL LETTER GLOTTAL STOP N/A

Table 1. Representative glyphs in TUS 4.0 and TUS 4.1

It should be noted that the glyph for LATIN CAPITAL LETTER GLOTTAL STOP does not actually
correspond to what is, in fact, used. Rather, it is an invention, created specifically to provide a
capital-like contrast to the representative glyph for the existing lowercase letter.

A better comparison can be seen by considering what glyphs are required in different usage
contexts: by users that do not require a two-way distinction, and by users that do. This is shown
in Table 2:

Character No
distinction
required

Two-way
distinction
required

Note

U+05B8 HEBREW POINT QAMATS

U+05BA HEBREW POINT QAMATS QATAN N/A

U+05AA HEBREW ACCENT YERAH BEN YOMO

U+05A2 HEBREW ACCENT ATNAH HAFUKH N/A

U+0294 LATIN LETTER GLOTTAL STOP ʔ 
Cap-height glyph required for
phonetic transcription; x-height
glyph required for orthographic
usage.

U+0241 LATIN CAPITAL LETTER GLOTTAL STOP N/A ʔ

Table 2. Glyphs required in different usage contexts

Consider the impact of these disunifications for font vendors or product vendors that include
fonts with their products (e.g. operating systems, business-app suites). First, in the case of

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 7 of 27

 L2/05-057

 Page 6

qamats and qamats qatan, implementing support for TUS 4.1 is not a problem: the new character
can be added to a font with no effect on existing documents. The revised font will be useful both
for existing scenarios in which no distinction was made and also for new scenarios in which a
two-way distinction is made.

In contrast, for the other two disunifications, there is no easy way for the change to be
implemented.3 The glyphs for the existing characters cannot be changed in existing fonts
without having potentially-damaging effects on existing documents. The new characters could
be added to existing fonts, but because the glyphs for the existing characters cannot be changed,
the result will be that both the existing and new characters have the same glyphs, which is not
particularly useful.

Even in new fonts, which are not encumbered by legacy usage, there is no way to support both
usage scenarios: in order to know what glyphs are needed for the existing characters, it must
first be known whether the user does or doesn’t make the two-way distinctions. The only real
options are:

o create fonts that can only work for one usage scenario or the other; or

o create fonts that use the same default glyph for both existing and new characters with an
alternate glyph for the existing character selectable by a font feature – but the two-way
distinction will be available only in certain applications that support font-feature
mechanisms.

For instance, after reviewing the disunification of yerah ben yomo, John Hudson (Tiro Typeworks)
concluded that the best option for implementing the new character ATNAH HAFUKH was to use
the same default glyph for both U+05AA YERAH BEN YOMO and U+05A2 ATNAH HAFUKH, and
provide an alternate glyph for U+05AA for use when galgal is distinguished from atnah hafukh,
selectable using an OpenType feature. John recently commented on this disunification on the
Unicore list:4

“…the proposed disunification of yerah ben yomo… raises some problems at the
display level, since in this case it is the existing character for which a glyph
change would be required by users desiring to make the distinction visual…
[This] is a problem we should have spotted when the new character was first
proposed… But the fact that we failed to identify the problem early does not
mean that the problem does not exist.

“My current inclination is to use the etnah hafukh glyph as default for both
characters, and to handle the distinct form of yerah ben yomo as a glyph variant
associated with a stylistic alternate feature. This is not ideal, since it requires a

3 The problem cannot be described as breaking existing implementations, since existing fonts can continue

to be used in the same ways they were used before without any issues. Rather, the problem is that both
of the post-disunification characters cannot be easily implemented, with potential for new implemen-
tations—revised or new fonts—to break existing documents.

4 Quoted from a message from John Hudson to the Unicore list, January 27, 2005, on the subject
“QAMATS QATAN and HOLAM HASER FOR VAV”.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 8 of 27

 L2/05-057

 Page 7

fairly sophisticated level of glyph substitution support from apps in order to
handle what should be a fairly straight forward distinction between two
characters.”

Some fonts are designed with specific uses in mind, and for such fonts the first option makes
sense. This may be sufficient, for instance, for publishers of Hebrew religious texts who require
a contrast between galgal and atnah hafukh. But this is the exceptional case: most users depend
on fonts designed for general-purpose usage. Certainly for a platform vendor, such as Microsoft,
fonts need to support as broad a range of uses as possible, and having to choose, for instance,
between supporting phonetic transcription or the orthographies of living languages is a
problem.

Avoiding the problems
It should be reasonably clear that the key factor that differentiates the qamats disunification from
the other two is that it did not involve any change to the existing character, with only the new
character requiring a different glyph. This was not the case with the other disunifications: the
yerah ben yomo disunification involved a change in the representative glyph for U+05AA, and
both resulted in a situation in which the existing character requires distinct glyphs depending
on the usage.

In the case of yerah ben yomo, this could easily have been avoided by handling the disunification
in a different way, as shown in Table 3:

Character TUS 4.0 TUS 4.1

U+05AA HEBREW ACCENT YERAH BEN YOMO

U+05xx HEBREW ACCENT GALGAL N/A

Table 3. Possible alternate disunification of yerah ben yomo

Reportedly, this alternative was considered by the proposers but abandoned since it would
result in a less-than-ideal relationship between the name and glyph for U+05AA. End users are
not the primary intended audience for character names, however, and less-than-ideal names can
be mitigated by annotations or explanatory text in block descriptions. The cost of preserving the
best possible name-glyph relationship has been the problems now faced by implementers, costs
that will also be borne by end users.

It is too late to change the yerah ben yomo disunification, but the aforementioned problems
associated with it can perhaps still be remedied by adding GALGAL as a second new character:

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 9 of 27

 L2/05-057

 Page 8

Character TUS 4.0 TUS 5.0 Comment

U+05AA HEBREW ACCENT YERAH BEN YOMO

Used only in scenarios in
which the two-way distinction
is not made.

U+05A2 HEBREW ACCENT ATNAH HAFUKH N/A

Used only in scenarios in
which atnah hafukh is
distinguished from galgal.

U+05xx HEBREW ACCENT GALGAL N/A

Table 4. Possible revised disunification of yerah ben yomo

This remedy to the current situation would have as a disadvantage that there would be two
characters with the same glyph; in effect, one of the two characters would lose any useful
purpose. That would simply have to be considered the price of having handled the initial
disunification poorly. Arguably, this would be less problematic than the current situation since
there are ways, at least, that the effective duplication can be dealt with in implementations,
whereas there are no good ways for implementations to deal with the current situation.

The more important point, though, is that the need to create a situation in which one character
becomes fully redundant could have been avoided in this case had there been a set of guiding
principles for disunification in place beforehand.

The glottal stop disunification was a more difficult case. In terms of the glyphs needed for
different usage contexts, it would have been adequate to make the existing character the capital
in orthographic usage and add only one new character for the small glottal stop, but this was
not a viable option because of problems related to changing the case property of the existing
character. There was another alternative, though, which still remains as a possible remedy for
the current problems: encode two new characters:

Character TUS 4.0 TUS 5.0 Comment

U+0294 LATIN LETTER GLOTTAL STOP ʔ ʔ
Used only for phonetic
transcription, or in orthographies
without bi-cameral glottal stops.

U+0241 LATIN CAPITAL LETTER GLOTTAL STOP N/A ʔ
Used only for orthographies that
have bi-cameral glottal stops.

U+xxxx LATIN SMALL LETTER GLOTTAL STOP N/A 

Table 5. Possible alternative / revised disunification of glottal stop

Again, there is a visual duplication of characters, though this duplication is only partial (unlike
the situation that would hold for yerah ben yomo and atnah hafukh) since, in this case, the two
characters would have distinct case properties. The visual duplication would be less than ideal,
but it appears to be the only possible option that avoids the implementation problems described
above.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 10 of 27

 L2/05-057

 Page 9

In considering how these two disunifications could have been done without creating the
implementation problems mentioned above, and how the disunifications can still be revised to
remedy those problems, we find certain principles.

First, we do not want to disunify existing characters in a manner that entails changes to the
glyphs of existing characters, since that is central to the problems that have been described.

More generally, we want to ensure that, as much as possible, viable uses of the existing
character prior to disunification remain viable after the disunification.

In this regard, note that pre-disunification use of U+05AA specifically for atnah hafukh, with a
private-use code point for the contrasting character galgal, would be viable, and this use of
U+05AA would remain viable if a new character GALGAL were added. Thus, the possible
disunification shown in Table 4 would have been workable. On the other hand, a pre-
disunification use of U+0294 for an orthographic capital letter, with a private-use character for
the lowercase counterpart, would not really have been viable because of the case property of
U+0294; thus, it should not be essential to preserve that usage in a disunification of glottal stop.

Another principle we find is that, if it is not possible to add only one new character for the
distinct letterform that is needed, then two new characters should be added, as that is the only
way to create a distinction without creating implementation problems in relation to the existing
character. This results in a visual or complete duplication of characters, and should be avoided
if possible, but it must be recognized that there may be situations in which implementation
problems cannot be avoided without such duplication. For instance, the existing character
LATIN LETTER GLOTTAL STOP could not be used as the capital of a casing pair because its existing
case property is lowercase, hence it was not possible to add only one new character for the x-
height SMALL GLOTTAL STOP. The only way to create the distinction, then, without creating
implementation problems in relation to the existing character is to add two new characters.

A further principle to note is that we must not give higher priority to a desire to have
appropriate names for characters than we give to the impact on implementations. For instance,
using the name YERAH BEN YOMO for atnah hafukh certainly would not be ideal, but that would
be a much less serious concern than the problems now presented to implementers in how to
support the existing and new characters.

Proposed principles on character disunification
In light of the preceding discussion, I propose that UTC adopt the following principles to be
applied whenever a character disunification is being considered. These would be applied as
general guidelines that could be overridden, but only after careful consideration.

When disunifying an existing character in the UCS, the following principles will
be observed:

1. As much as possible, viable uses of existing characters prior to
disunification will be preserved after disunification.

2. The normative properties of existing characters will not be changed.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 11 of 27

 L2/05-057

 Page 10

3. The representative glyphs of existing characters will not be changed, and
the range of glyphs expected for existing characters will not increase as a
result of disunification.

4. If a character disunification cannot be achieved by adding one new
character without requiring a change in normative properties of the
existing character and without changing the representative glyph or
range of expected glyphs for the existing character, then new characters
will be added for each of the distinct, specific letterforms required; the
existing character will not be intended for use in scenarios in which the
distinct, specific letterforms are used. This may result in visually-
duplicate characters, which in general should be avoided if possible, but
may be necessary under the aforementioned conditions.

5. While it is desirable that a character name be fully appropriate to the
given character and its representative glyph, concern over less-than-ideal
names will not provide a sufficient basis for overriding principles 1 to 4,
above.

Exceptions to these principles will be permitted only after careful consideration
and on the basis of substantial rationale.

If these principles are accepted by UTC, I would further recommend that they be proposed for
inclusion in WG2’s Principles and Procedures document.

References
Dotan, Aron, ed. 2001. Biblia Hebraica Leningradensia. Peabody, MA: Hendrickson Publishers.

International Phonetic Association. 1999. Handbook of the International Phonetic Association: A
guide to the use of the International Phonetic Alphabet. Cambridge: Cambridge University
Press.

Koyina, Laiza. 1983. Dǫ weda goòle xè Teèt’o si. (The Blind Man and the Loon.) Yellowknife, NWT,
Canada: Northwest Terretories Department of Education.

Snaith, Norman Henry. 1982. תורה נביאים וכתובים. (Hebrew Old Testament.) London: British and
Foreign Bible Society.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 12 of 27

•

 Technical Reports

Unicode Standard Annex #31

Identifier and Pattern Syntax

Version 4.1.0

Authors Mark Davis (mark.davis@us.ibm.com)

Date 2005-03-25

This Version http://www.unicode.org/reports/tr31/tr31-5.html

Previous
Version

http://www.unicode.org/reports/tr31/tr31-4.html

Latest
Version

http://www.unicode.org/reports/tr31/

Revision 5

Summary

This document describes specifications for recommended defaults for the use
of Unicode in the definitions of identifiers and in pattern-based syntax. It
incorporates the Identifier section of Unicode 4.0 (somewhat reorganized) and a
new section on the use of Unicode in patterns. As a part of the latter, it
presents recommended new properties for addition to the Unicode Character
Database. It also incorporates guidelines for use of normalization with
identifiers (from UAX #15).

● Section 2 supersedes Section 5.15 Identifiers from [Unicode4.0].
● Section 5 supersedes Annex 7 in UAX #15: Normalization from

[Unicode4.0.1].

Status

This document has been reviewed by Unicode members and other interested
parties, and has been approved for publication by the Unicode Consortium. This
is a stable document and may be used as reference material or cited as a
normative reference by other specifications.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 13 of 27

http://www.unicode.org/
http://www.unicode.org/reports
mailto:mark.davis@us.ibm.com
http://www.unicode.org/reports/tr31/tr31-5.html
http://www.unicode.org/reports/tr31/tr31-4.html
http://www.unicode.org/reports/tr31/
http://www.unicode.org/reports/tr31/tr31-5.html#Modifications
http://www.unicode.org/reports/tr31/tr31-5.html#Unicode4.0
http://www.unicode.org/reports/tr31/tr31-5.html#Unicode4.0.1
umavs
Text Box
ATTACHMENT 2 to N2987

A Unicode Standard Annex (UAX) forms an integral part of the Unicode
Standard, but is published as a separate document. The Unicode
Standard may require conformance to normative content in a Unicode
Standard Annex, if so specified in the Conformance chapter of that
version of the Unicode Standard. The version number of a UAX
document corresponds to the version number of the Unicode Standard
at the last point that the UAX document was updated.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this document
is found in References. For the latest version of the Unicode Standard see
[Unicode]. For a list of current Unicode Technical Reports see [Reports]. For
more information about versions of the Unicode Standard, see [Versions].

Contents

● 1 Introduction
● 2 Default Identifier Syntax
● 3 Alternative Identifier Syntax
● 4 Pattern Syntax
● 5 Normalization and Case
● Acknowledgements
● References
● Modifications

1 Introduction

A common task facing an implementer of the Unicode Standard is the provision
of a parsing and/or lexing engine for identifiers. To assist in the standard
treatment of identifiers in Unicode character-based parsers, a set of
specifications is provided here as a recommended default for the definition of
identifier syntax. These guidelines are no more complex than current rules in
the common programming languages, except that they include more characters
of different types. This document also provides guidelines for the user of
normalization and case-insensitivity with identifiers, expanding on a section
that was originally in UAX #15: Unicode Normalization Forms [UAX15].

These specifications provide a definition of identifiers that is guaranteed to be
backward compatible with each successive release of Unicode, but also makes
available any appropriate new Unicode characters. Unicode properties are also
provided for stable pattern syntax: syntax that is stable over future versions of
the Unicode Standard. These can either be used alone or with the identifier
characters.

The following types of code points are defined (the sizes of the boxes are not
to scale):

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 14 of 27

http://www.unicode.org/reports/tr31/tr31-5.html#Feedback
http://www.unicode.org/reports/tr31/tr31-5.html#References
http://www.unicode.org/reports/tr31/tr31-5.html#Unicode
http://www.unicode.org/reports/tr31/tr31-5.html#Reports
http://www.unicode.org/reports/tr31/tr31-5.html#Versions
http://www.unicode.org/reports/tr31/tr31-5.html#Introduction
http://www.unicode.org/reports/tr31/tr31-5.html#Default_Identifier_Syntax
http://www.unicode.org/reports/tr31/tr31-5.html#Alternative_Identifier_Syntax
http://www.unicode.org/reports/tr31/tr31-5.html#Pattern_Syntax
http://www.unicode.org/reports/tr31/tr31-5.html#normalization_and_case
http://www.unicode.org/reports/tr31/tr31-5.html#Acknowledgements
http://www.unicode.org/reports/tr31/tr31-5.html#References
http://www.unicode.org/reports/tr31/tr31-5.html#Modifications
http://www.unicode.org/reports/tr31/tr31-5.html#UAX15

Character Classes for Programming

Identifier
Start

Characters

Pattern Syntax
Characters

Unassigned Code Points
Identifier

Only-
Continue

Characters

Pattern
Whitespace
Characters

Other Assigned
Code Points

The set consisting of both Identifier Start and Only-Continue characters is are
known as Identifier Characters, also as Identifier Continue characters.

There are certain features that developers can depend on for stability:

● Identifier characters, Pattern Syntax characters, and Pattern Whitespace
are disjoint: they will never overlap.

● The Identifier characters are always a superset of the Identifier Start
characters

● The Pattern Syntax characters and Pattern Whitespace characters are
immutable, and will not change over successive versions of Unicode.

● The Identifier characters and the Identifier Start characters may grow
over time, either by the addition of new characters provided in a future
version of Unicode, or (in rare cases) by the addition of characters that
were in Other. However, neither will ever decrease.

In successive versions of Unicode, only the following changes are allowed, from
one of the above classes to another:

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 15 of 27

Permitted Changes in Future Versions

 Identifier Start Identifier Only
Continue

Other Assigned

Unassigned + + +
Other Assigned + +
Identifier Only

Continue
+

The Unicode Consortium has formally adopted a stability policy on identifiers.
For more information, see [Stability].

Each programming language standard has its own identifier syntax; different
programming languages have different conventions for the use of certain
characters such as $, @, #, or _ in identifiers. To extend such a syntax to cover
the full behavior of a Unicode implementation, implementers may combine
those specific rules with the syntax and properties provided here.

That is, each programming language can define their identifier syntax as
relative to the Unicode identifier syntax, such as saying that identifiers are
defined by the Unicode properties, with the addition of "$". By addition or
subtraction of a small set of language specific characters, a programming
language standard can easily track a growing repertoire of Unicode characters
in a compatible way.

Similarly, each programming language can define white space characters or
syntax characters relative to the Unicode pattern white space or syntax
characters, with some specified set of additions or subtractions.

Systems that want to extend identifiers so as to encompass words used in
natural languages may add characters identified in Section 4 Word Boundaries
of [UAX29] with the property values Katakana, ALetter, and MidLetter, plus
characters described in the notes at the end of that section.

Note that to preserve the disjoint nature of categories illustrated in the diagram
"Character Classes for Programming", any character added to one of the
categories must be subtracted from the others.

In some cases there are security implications that may require additional
constraints on identifiers. For more information, see [UTR36].

1.1 Conformance

The following describes the possible ways that an implementation can claim
conformance to this technical standard.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 16 of 27

http://www.unicode.org/reports/tr31/tr31-5.html#Stability
http://www.unicode.org/reports/tr31/tr31-5.html#UAX29
http://www.unicode.org/reports/tr31/tr31-5.html#UAX36

C1. An implementation claiming conformance to this specification at any Level
shall identify the version of this specification and the version of the
Unicode Standard.

C2. An implementation claiming conformance to Level 1 of this specification
shall describe which of the following it observes:

● R1 Default Identifiers
● R2 Alternative Identifiers
● R3 Pattern Whitespace and Syntax Characters
● R4 Normalized Identifiers
● R5 Case-Insensitive Identifiers

2 Default Identifier Syntax

The formal syntax provided here captures the general intent that an identifier
consists of a string of characters beginning with a letter or an ideograph, and
following with any number of letters, ideographs, digits, or underscores. It
provides a definition of identifiers that is guaranteed to be backward
compatible with each successive release of Unicode, but also adds any
appropriate new Unicode characters.

D1. Default Identifier Syntax

<identifier> := <ID_Start> <ID_Continue>*

Identifiers are defined by the following sets of character categories from the
Unicode Character Database.

Syntactic Classes for Identifiers

Properties Alternates General Description of Coverage

ID_Start XID_Start Uppercase letters, lowercase letters, titlecase
letters, modifier letters, other letters, letter
numbers, stability extensions

ID_Continue XID_Continue All of the above, plus nonspacing marks,
spacing combining marks, decimal numbers,
connector punctuations, stability extensions.
These are also known simply as Identifier
Characters, since they are a superset of the
ID_Start. The set of ID_Start characters
minus the ID_Continue characters are
known as ID_Only_ Continue characters.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 17 of 27

http://www.unicode.org/reports/tr31/tr31-5.html#R1
http://www.unicode.org/reports/tr31/tr31-5.html#R2
http://www.unicode.org/reports/tr31/tr31-5.html#R3
http://www.unicode.org/reports/tr31/tr31-5.html#R4
http://www.unicode.org/reports/tr31/tr31-5.html#R5

The innovations in the identifier syntax to cover the Unicode Standard include
the following:

● Incorporation of proper handling of combining marks
● Allowance for layout and format control characters, which should be

ignored when parsing identifiers
● The XID_Start and XID_Continue properties are alternates that

incorporate the NFKC Modifications.

2.1 Combining Marks

Combining marks are accounted for in identifier syntax: a composed character
sequence consisting of a base character followed by any number of combining
marks is valid in an identifier. Combining marks are required in the
representation of many languages, and the conformance rules in Chapter 3,
Conformance of [Unicode] require the interpretation of canonical-equivalent
character sequences.

Enclosing combining marks (such as U+20DD..U+20E0) are excluded from the
syntactic definition of ID_Continue, because the composite characters that
result from their composition with letters are themselves not normally
considered valid constituents of these identifiers.

2.2 Layout and Format Control Characters

Certain Unicode characters are used to control joining behavior, bidirectional
ordering control, and alternative formats for display. These have the General
Category value of Cf. Unlike space characters or other delimiters, they do not
indicate word, line, or other unit boundaries.

While it is possible to ignore these characters in determining identifiers, the
recommendation is to not ignore them, and not permit them in identifiers
except in special cases. This is because of the possibility for confusion between
two visually identical strings: see [UTR36]. Some possible exceptions are the
ZWJ and ZWNJ in certain contexts, such as between certain characters in Indic
words.

2.3 Specific Character Adjustments

Specific identifier syntaxes can be treated as tailorings of the generic syntax
based on character properties. For example, SQL identifiers allow an underscore
as an identifier part, but not as an identifier start; C identifiers allow an
underscore as either an identifier part or an identifier start. Specific languages
may also want to exclude the characters that have a decomposition_type
other than canonical or none, or to exclude some subset of those, such as
those with a decomposition_type equal to font.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 18 of 27

http://www.unicode.org/reports/tr31/tr31-5.html#NFKC_Modifications
http://www.unicode.org/reports/tr31/tr31-5.html#Unicode
http://www.unicode.org/reports/tr31/tr31-5.html#UAX36

For programming language identifiers, normalization and case have a number
of important implications. For a discussion of these issues, see Normalization
and Case.

2.4 Backward Compatibility

Unicode General Category values are kept as stable as possible, but they can
change across versions of the Unicode Standard. The bulk of the characters
having a given value are determined by other properties, and the coverage
expands in the future according to the assignment of those properties. In
addition, the Other_ID_Start property adds a small list of characters that
qualified as ID_Start characters in some previous version of Unicode solely on
the basis of their General Category properties, but that no longer qualify in the
current version. In Unicode 4.1.0, this list consists of four characters:

U+2118 Script Capital P
U+212E Estimated Symbol
U+309B Katakana-Hiragana Voiced Sound Mark
U+309C Katakana-Hiragana Semi-Voiced Sound Mark

Similarly, the Other_ID_Continue property adds a small list of characters that
qualified as ID_Continue characters in some previous version of Unicode solely
on the basis of their General Category properties, but that no longer qualify in
the current version. In Unicode 4.1.0, this list consists of nine characters:

U+1369 ETHIOPIC DIGIT ONE
...
U+1371 ETHIOPIC DIGIT NINE

The Other_ID_Start and Other_ID_Continue properties are thus designed to
ensure that the Unicode identifier specification is backward compatible: Any
sequence of characters that qualified as an identifier in some version of
Unicode will continue to qualify as an identifier in future versions.

R1 Default Identifiers
 To meet this requirement, an implementation shall use the D1 and the

properties ID_Start and ID_Continue (or XID_Start and XID_Continue) to
determine whether a string is an identifier or not.

Or, it shall declare that it uses a modification, and provide a precise list of
characters that are added to or removed from the above properties, and/or
provide a list of additional constraints on identifiers.

3 Alternative Identifier Syntax

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 19 of 27

http://www.unicode.org/reports/tr31/tr31-5.html#normalization_and_case
http://www.unicode.org/reports/tr31/tr31-5.html#normalization_and_case
http://www.unicode.org/reports/tr31/tr31-5.html#R1

The disadvantage of working with the syntactic classes defined above is the
storage space needed for the detailed definitions, plus the fact that with each
new version of the Unicode Standard new characters are added, which an
existing parser would not be able to recognize. In other words, the
recommendations based on that table are not upwardly compatible.

This problem can be addressed by turning the question around. Instead of
defining the set of code points that are allowed, define a small, fixed set of
code points that are reserved for syntactic use and allow everything else
(including unassigned code points) as part of an identifier. All parsers written to
this specification would behave the same way for all versions of the Unicode
Standard, because the classification of code points is fixed forever.

The drawback of this method is that it allows “nonsense” to be part of
identifiers because the concerns of lexical classification and of human
intelligibility are separated. Human intelligibility can, however, be addressed by
other means, such as usage guidelines that encourage a restriction to
meaningful terms for identifiers. For an example of such guidelines, see the
XML 1.1 specification by the W3C [XML1.1].

By increasing the set of disallowed characters, a reasonably intuitive
recommendation for identifiers can be achieved. This approach uses the full
specification of identifier classes, as of a particular version of the Unicode
Standard, and permanently disallows any characters not recommended in that
version for inclusion in identifiers. All code points unassigned as of that version
would be allowed in identifiers, so that any future additions to the standard
would already be accounted for. This approach ensures both upwardly
compatible identifier stability and a reasonable division of characters into those
that do and do not make human sense as part of identifiers.

Some additional extensions to the list of disallowed code points can be made to
further constrain “unnatural” identifiers. For example, one could include
unassigned code points in blocks of characters set aside for future encoding as
symbols, such as mathematical operators.

With or without such fine-tuning, such a compromise approach still incurs the
expense of implementing large lists of code points. While they no longer
change over time, it is a matter of choice whether the benefit of enforcing
somewhat word-like identifiers justifies their cost.

Alternatively, one can use the properties described below, and allow all
sequences of characters to be identifiers that are neither pattern syntax nor
pattern whitespace. This has the advantage of simplicity and small tables, but
allows many more “unnatural” identifiers.

R2 Alternative Identifiers

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 20 of 27

http://www.unicode.org/reports/tr31/tr31-5.html#XML1.1
http://www.unicode.org/reports/tr31/tr31-5.html#R2

 To meet this requirement, an implementation shall define identifiers to be
any string of characters that contains neither Pattern_White_Space nor
Pattern_Syntax characters.

Or, it shall declare that it uses a modification, and provide a precise list of
characters that are added to or removed from the sets of code points
defined by these properties.

4 Pattern Syntax

There are many circumstances where software interprets patterns that are a
mixture of literal characters, whitespace, and syntax characters. Examples
include regular expressions, Java collation rules, Excel or ICU number formats,
and many others. These patterns have been very limited in the past, and forced
to use clumsy combinations of ASCII characters for their syntax. As Unicode
becomes ubiquitous, some of these will start to use non-ASCII characters for
their syntax: first as more readable optional alternatives, then eventually as the
standard syntax.

For forward and backward compatibility, it is advantageous to have a fixed set
of whitespace and syntax code points for use in patterns. This follows the
recommendations that the Unicode Consortium made regarding completely
stable identifiers, and the practice that is seen in XML 1.1 [XML1.1]. (In
particular, the consortium committed to not allocating characters suitable for
identifiers in the range 2190..2BFF, which is being used by XML 1.1.)

With a fixed set of whitespace and syntax code points, a pattern language can
then have a policy requiring all possible syntax characters (even ones currently
unused) to be quoted if they are literals. By using this policy, it preserves the
freedom to extend the syntax in the future by using those characters. Past
patterns on future systems will always work; future patterns on past systems
will signal an error instead of silently producing the wrong results.

Example:

In version 1.3 of program X, '≈' is a reserved syntax character, e.g. it
does not perform an operation, but you have to quote it. In version 1.4,
'≈' gets a real meaning, for example, "uppercase the subsequent
characters". In program X, '\' quotes the next character; that is, causes
it to be treated as a literal instead of a syntax character.

● The pattern abc...\≈...xyz works on both version 1.3 and 1.4,
and refers to the literal character since it is quoted in both
cases.

● The pattern abc...≈...xyz works on 1.1 and uppercases the
following characters. On version 1.0, the engine (rightfully) has
no idea what to do with ≈. Rather than silently fail (by ignoring
≈ or turning it into a literal), it has the opportunity signal an
error.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 21 of 27

http://www.unicode.org/reports/tr31/tr31-5.html#XML1.1

As of Unicode 4.1.0, there are two Unicode character properties that can be
used for for stable syntax: Pattern_White_Space and Pattern_Syntax. Particular
pattern languages may, of course, override these recommendations (for
example, adding or removing other characters for compatibility in ASCII).

For stability, the property values are absolutely invariant; not changing with
successive versions of Unicode. Of course, this does not limit the ability of the
Unicode Standard to add more symbol or whitespace characters, but the syntax
and whitespace characters recommended for use in patterns will not change.

When generating rules or patterns, all whitespace and syntax code points that
are to be literals require quoting, using whatever quoting mechanism is
available. For readability, it is recommended practice to quote or escape all
literal whitespace and default ignorable code points as well.

Example: consider the following, where the items in angle brackets
indicate literal characters.

● a<SPACE>b => x<ZERO WIDTH SPACE>y + z;

Since <SPACE> is a Pattern_White_Space character, it requires quoting.
Because <ZERO WIDTH SPACE> is a default ignorable character, it
should also be quoted for readability. So if in this example \uXXXX is
used for hex expression, but resolved before quoting, and single
quotes are used for quoting, this might be expressed as:

● 'a\u0020b' => 'x\u200By' + z;

R3 Pattern Whitespace and Syntax Characters
 To meet this requirement, an implementation shall use

Pattern_White_Space characters as all and only those characters interpreted
as whitespace in parsing, and shall use Pattern_Syntax characters as all and
only those characters with syntactic use.

Or, it shall declare that it uses a modification, and provide a precise list of
characters that are added to or removed from the sets of code points
defined by these properties.

● Note: all characters other than those defined by these properties
would be available as identifiers or literals.

5 Normalization and Case

R4 Normalized Identifiers

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 22 of 27

http://www.unicode.org/reports/tr31/tr31-5.html#R3
http://www.unicode.org/reports/tr31/tr31-5.html#R4

 To meet this requirement, an implementation shall specify the
normalization form, and shall provide a precise list of any characters that
are excluded from normalization, and if the normalization form is NFKC,
shall apply the modifications in NFKC Modifications given by the properties
XID_Start and XID_Continue. Except for identifiers containing excluded
characters, any two identifiers that have the same normalization form shall
be treated as equivalent by the implementation.

R5 Case-Insensitive Identifiers
 To meet this requirement, an implementation shall specify either simple or

full case folding, and adhere to the Unicode specification for that folding.
Any two identifiers that have the same case-folded form shall be treated as
equivalent by the implementation.

This section discusses issues that must be taken into account when considering
normalization and case folding of identifiers in programming languages or
scripting languages. Using normalization avoids many problems where
apparently identical identifiers are not treated equivalently. Such problems can
appear both during compilation and during linking, in particular across
different programming languages. To avoid such problems, programming
languages can normalize identifiers before storing or comparing them.
Generally if the programming language has case-sensitive identifiers then
Normalization Form C is appropriate, while if the programming language has
case-insensitive identifiers then Normalization Form KC is more appropriate.

Note: In mathematically-oriented programming languages which make
distinctive use of the Mathematical Alphanumeric Symbols such as U
+1D400 MATHEMATICAL BOLD CAPITAL A, an application of NFKC must
filter characters to exclude characters with the property value
decomposition_type=font. For related information, see UTR #30:
Character Foldings.

If programming languages are using NFKC to fold differences between
characters, then they use the following modification of the identifier syntax
from the Unicode Standard to deal with the idiosyncrasies of a small number of
characters. These characters fall into three classes:

NFKC Modifications

1. Middle Dot. Because most Catalan legacy data will be encoded in Latin-
1, U+00B7 MIDDLE DOT needs to be allowed in ID_Continue. (If the
programming language is using a dot as an operator, then U+2219
BULLET OPERATOR or U+22C5 DOT OPERATOR should be used instead.
However, care should be taken when dealing with U+00B7 MIDDLE DOT,
as many processes will assume its use as punctuation, rather than as a
letter extender.)

2. Combining-like characters. Certain characters are not formally
combining characters, although they behave in most respects as if they
were. Ideally, they should not be in ID_Start, but rather in
ID_Continue, along with combining characters. In most cases, the

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 23 of 27

http://www.unicode.org/reports/tr31/tr31-5.html#NFKC_Modifications
http://www.unicode.org/reports/tr31/tr31-5.html#R5
http://www.unicode.org/reports/tr31/tr31-5.html?ch=1D400#here
http://www.unicode.org/reports/tr31/tr31-5.html?ch=1D400#here
http://www.unicode.org/reports/tr30/
http://www.unicode.org/reports/tr30/

mismatch does not cause a problem, but when these characters have
compatibility decompositions, they can cause identifiers not to be
closed under Normalization Form KC. In particular, the following four
characters are to be in ID_Continue and not ID_Start:

� 0E33 THAI CHARACTER SARA AM
� 0EB3 LAO VOWEL SIGN AM
� FF9E HALFWIDTH KATAKANA VOICED SOUND MARK
� FF9F HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK

3. Irregularly decomposing characters. U+037A GREEK YPOGEGRAMMENI
and certain Arabic presentation forms have irregular compatibility
decompositions, and must be excluded from both ID_Start and
ID_Continue. It is recommended that all Arabic presentation forms be
excluded from identifiers in any event, although only a few of them
must be excluded for normalization to guarantee identifier closure.

With these amendments to the identifier syntax, all identifiers are closed under
all four Normalization forms. This means that for any string S,

isIdentifier(S) implies

isIdentifier(toNFD(S))
isIdentifier(toNFC(S))
isIdentifier(toNFKD(S))
isIdentifier(toNFKC(S))

Identifiers are also closed under case operations (with one exception), so that
for any string S,

 isIdentifier(S) implies

isIdentifier(toLowercase(S))
isIdentifier(toUppercase(S))
isIdentifier(toFoldedcase(S))

The one exception is U+0345 COMBINING GREEK YPOGEGRAMMENI. In the very
unusual case that U+0345 is at the start of S, U+0345 is not in ID_Start, but
its uppercase and case-folded version are. In practice this is not a problem,
because of the way normalization is used with identifiers.

Note: Those programming languages with case-insensitive identifiers
should use the case foldings described in Section 3.13 Default Case
Operations of [Unicode] to produce a case-insensitive normalized form.

When source text is parsed for identifiers, the folding of distinctions (using
case mapping or NFKC) must be delayed until after parsing has located the
identifiers. Thus such folding of distinctions should not be applied to string
literals or to comments in program source text.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 24 of 27

http://www.unicode.org/reports/tr31/tr31-5.html#Unicode

The UCD provides support for handling case folding with normalization: the
property FC_NFKC_Closure can be used in case folding, so that a case folding of
an NFKC string is itself normalized. These properties, and the files containing
them, are described in the UCD documentation [UCD].

Acknowledgements

Thanks to Eric Muller, Asmus Freytag, and Martin Duerst for feedback on this
document.

References

[Feedback] Reporting Errors and Requesting Information
Online
http://www.unicode.org/reporting.html

[Stability] Unicode Consortium Stability Policies
http://www.unicode.org/standard/
stability_policy.html

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/
For information on the status and
development process for technical reports,
and for a list of technical reports.

[UCD] Unicode Character Database.
http://www.unicode.org/ucd/
For an overview of the Unicode Character
Database and a list of its associated files

[Unicode] The Unicode Standard
For the latest version see: http://www.unicode.
org/versions/latest/.
For the current version see: http://www.
unicode.org/versions/Unicode4.1.0//.
For the last major version see: The Unicode
Consortium. The Unicode Standard, Version
4.0. (Boston, MA, Addison-Wesley, 2003. 0-
321-18578-1).

[Unicode4.0] The Unicode Consortium. The Unicode
Standard, Version 4.0. Reading, MA, Addison-
Wesley, 2003. 0-321-18578-1.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 25 of 27

http://www.unicode.org/reports/tr31/tr31-5.html#UCD
http://www.unicode.org/reporting.html
http://www.unicode.org/standard/stability_policy.html
http://www.unicode.org/standard/stability_policy.html
http://www.unicode.org/reports/
http://www.unicode.org/ucd/
http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/Unicode4.1.0/
http://www.unicode.org/versions/Unicode4.1.0/
http://www.unicode.org/versions/Unicode4.0.0/
http://www.unicode.org/versions/Unicode4.0.0/
http://www.unicode.org/versions/Unicode4.0.0/
http://www.unicode.org/versions/Unicode4.0.0/

[Unicode4.0.1] The Unicode Consortium. The Unicode
Standard, Version 4.0.1, defined by:
The Unicode Standard, Version 4.0 (Boston,
MA, Addison-Wesley, 2003. ISBN 0-321-
18578-1), as amended by Unicode 4.0.1
(http://www.unicode.org/versions/
Unicode4.0.1/).

[UAX15] UAX #15: Unicode Normalization Forms
http://www.unicode.org/reports/tr15/

[UAX29] UAX #29: Text Boundaries
http://www.unicode.org/reports/tr29/

[UAX36] UTR #36: Security Considerations for the
Implementation of Unicode and Related
Technology
http://unicode.org/reports/tr36/
in draft state, as of the publication of this
document

[Versions] Versions of the Unicode Standard
http://www.unicode.org/versions/
For information on version numbering, and
citing and referencing the Unicode Standard,
the Unicode Character Database, and Unicode
Technical Reports.

[XML1.1] Extensible Markup Language (XML) 1.1
http://www.w3.org/TR/xml11/

Modifications

The following summarizes modifications from previous revisions of this
document.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 26 of 27

http://www.unicode.org/versions/Unicode4.0.1/
http://www.unicode.org/versions/Unicode4.0.1/
http://www.unicode.org/reports/tr15/
http://www.unicode.org/reports/tr29/
http://unicode.org/reports/tr36/
http://www.unicode.org/versions/
http://www.w3.org/TR/xml11/

5 ● Removed section 4.1, since the two properties have been accepted
for Unicode 4.1.

● Expanded introduction
● Adding information about stability, and tailoring for identifiers.
● Added the list of characters in Other_ID_Continue .
● Changed <identifier_continue> and <identifier_start> to just use

the property names, to avoid confusion.
● Included XID_Start and XID_Continue in R1 and elsewhere.
● Added reference to UTR #36, and the phrase "or a list of additional

constraints on identifiers" to R1.
● Changed "Coverage" to "General Description of Coverage", since the

UCD value are definitive.
● Added clarifications in 2.4
● Revamped 2.2 Layout and Format Control Characters
● Minor editing

3 ● Made draft UAX
● Incorporated Annex 7 from UAX #15
● Added Other_ID_Continue for Unicode 4.1
● Added conformance clauses
● Changed <identifier_extend> to <identifier_continue> to better

match the property name.
● Some additional edits.

2 ● Modified Pattern White Space to remove compatibility characters
● Added example explaining use of Pattern White Space

1 ● First version: incorporated section from Unicode 4.0 on Identifiers
plus new section on patterns.

Copyright © 2000-2005 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed
or implied warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed
for incidental and consequential damages in connection with or arising out of the use of the information
or programs contained or accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

N2987 / 2005-09-05 Proposed additions to Principles and Procedures document Page 27 of 27

http://www.unicode.org/copyright.html

	Local Disk
	UAX #31: Identifier and Pattern Syntax

	N2987.pdf
	F.5 Some additional guiding principles

