JTC1/SC2/WG2 N3248
	Doc Type
	Working Group Document

	Title
	Synchronization Issues for UTF-8

	Source
	Ken Whistler

	Status
	Individual Contribution

	Action
	For consideration by JTC1/SC2/WG2

	Date
	2007-04-20

Introduction
The continued synchronization of the contents of ISO/IEC 10646 and the Unicode Standard has served both standards very well and has been welcomed by implementers of the standards. This synchronization has been carefully maintained for the encoded character repertoire, the names, the charts, and many other details in the standards.
However, there are a few important details in which minor

differences between the specifications have continued to cause some level of confusion among implementers and where the differences may conceivably lead to interoperability issues in implementations.
The most notable of these issues currently is the formal difference in the specification of UTF-8 in Annex D of ISO/IEC 10646 and the specification of UTF-8 in the Unicode Standard.
The main intent of the UCS Transformation Formats (both UTF-8 and UTF-16) is to provide interoperable, "alternative coded representation forms for all of the characters of the UCS." Depending on implementation constraints, applications are often unable to use the canonical UCS-4 form of UCS characters directly, and UTF-8 and UTF-16 provide solutions for environments which need to manipulate either 8-bit
or 16-bit code units, respectively. These are, in fact, the overwhelmingly dominant means of implementing the UCS in actual practice, so their importance cannot be overestimated.
The problem for ISO/IEC 10646 arises because there is a slight mismatch in interoperability between UTF-8 and UTF-16 as currently specified in ISO/IEC 10646. Both, in principle, are intended to be able to provide coded representation forms for all of the characters of the UCS. UTF-16, by design, can only represent code positions U+0000 … U+10FFFF, however. Clause 9.2 of the standard explicitly takes this into account, noting that all planes past 10hex (= Plane 16) are reserved, and that "code positions in these planes do not have a mapping to the UTF-16 form." Furthermore, WG2 has noted the importance of not disregarding this restriction -- precisely because it is an interoperability concern -- and notes, both in its procedures document and in 10646 itself, that no character should *ever* be encoded in those planes.
However, UTF-8 was originally specified so as to be able to represent all *code positions* in 10646, not merely those code positions in which characters could actually be allocated. This may seem like a somewhat subtle distinction, but it causes a real interoperability problem.
UTF-8, as defined in Annex D, has 1- to 6-octet sequences specified, and the *only* purpose of the 5- and 6-octet sequences (and a subset of the 4-octet sequences) is to enable representation of code positions for which no actual character can ever be allocated, due to the restrictions on the UTF-16 form. This differs from the formal specification of UTF-8 in the Unicode Standard, which limits the allowable forms to only those representing the code positions U+0000...U+10FFFF, namely the same range which is also valid for UTF-16.
While the difference may seem innocuous -- what should it matter if UTF-8 can refer to those code positions, as long as no actual character is ever encoded there? -- There actually is a lurking interoperability problem here. The issue arises from the different ways that a 6-byte UTF-8 convertor and a 4-byte UTF-8 convertor handle out-of-range error conditions.
A 4-byte UTF-8 convertor treats any UTF-8 sequence larger than <F4 8F BF BF> as a range error. And there is a reason for doing so, because if it is converting to UTF-16 – the normal reason for doing conversions -- any value larger than <F4 8F BF BF> simply cannot be represented in UTF-16.
A 6-byte UTF-8 convertor, on the other hand, has the conversion algorithm extended to deal with longer sequences as non-errors, and may convert values up to <FD BF BF BF BF BF> to UCS values. (The one would be U+7FFFFFFF, for example.) But such values are useless for interoperability with UTF-16, as they are non-convertible. The problem, however, is that by the current Annex D specification of UTF-8, that is not
actually a range error, and a UTF-8 convertor conformant to that specification might inadvertently be feeding noninterpretable data to some other process. The error-handling would be arbitrarily different, from the point of view of the process that expects a valid conversion, depending on which type of convertor it were connected to.
There would be no difference in behavior as long as only valid, encoded characters were ever handled by implementing processes, but actual implementations must deal with error conditions, including out-of-range errors, and having two specifications
which treat that edge condition somewhat differently can be real trouble in distributed software.
Proposed Solution
It seems advisable, given this situation where the two standards have a small, but important failure of synchronization in the specifications, to modify the specification of UTF-8 in Annex D to maximize both the internal consistency and interoperability with the specification of UTF-16 in Annex C and to maximize synchronization with the specification of UTF-8 widely used by implementations following the Unicode Standard.
This can be accomplished with very minor changes to the text of UTF-8, and with no impact to the actual coded representation of any valid UCS character whatsoever, by simply constraining UTF-8 to the same upper bound of code positions as already applies for UTF-16.
Therefore, I suggest the following specific edits to Annex D, which would have the effect of establishing complete synchronization between the two standards for the UTF-8 transformation format.
1. In the second paragraph of Annex D:

The number of octets in the UTF-8 coded representation of
the characters of the UCS ranges from one to six;
-->
The number of octets in the UTF-8 coded representation of
the characters of the UCS ranges from one to four;

2. Clause D.2, first paragraph:

...comprises a sequence of octets of length 1, 2, 3, 4, 5, or 6 octets.
-->
...comprises a sequence of octets of length 1, 2, 3, or 4 octets.

3. Table D.1

Delete the rows starting "1st of 5" and "1st of 6" from the table.

Change the Maximum UCS-4 value for the "1st of 4" row to 0010 FFFF.

4. In the explanation of Table D.1 change:

C0 to FD first octet of a multi-octet sequence;
-->
C0 to F4 first octet of a multi-octet sequence;

FE or FF not used.
-->
F5 to FF not used.

5. Table D.2

Delete the last five examples in the table (which are for
UTF-8 values outside the allowable range) and replace
with one example for 0010 FFFF (which is currently missing).

6. Table D.3

Delete the last five examples in the table (which are for
UTF-8 values outside the allowable range).

7. Table D.4

Delete the last two entries in the table (which are for
5- and 6-octet sequences), and update the maximum range
for the 4-octet sequence to 0010 FFFF.

8. Table D.5

Delete the last two entries in the table (which are for
5- and 6-octet sequences), and update the maximum octet
value on the 4-octet sequence line of the table from
F7 to F4.

In the explanation of Table D.5, delete the lines for
"v" and "u", which identify the 5th and 6th octets of
sequences, respectively.

9. In the first paragraph of Clause D.7, change:

C0 to FB
-->
C0 to F4

followed by the appropriate number (from 0 to 5) of continuing octets
-->
followed by the appropriate number (from 0 to 3) of continuing octets

octets whose value is FE or FF are not used;
-->
octets whose values are in the range F5 to FF are not used;

Note that not only would these changes to the specification of UTF-8 in Annex D result in complete synchronization of the technical specifications of the form in both standards, it would also have the benefit of shortening and cleaning up the explanation and examples of UTF-8 in Annex D. The 5- and 6-octet sequences are by necessity the longest and most formidable entries in the tables – particularly in the mapping tables, D.4 and D.5. But it is precisely those longest sequences which are of no practical value whatsoever, because they are not interoperable with UTF-16 and because they can never validly be used to represent an actual allocated code position for an encoded UCS character.

