
JTC1/SC2/WG2 N4943 Page 1

JTC1/SC2/WG2 N4943
2018-04-15

Universal Multiple-Octet Coded Character Set
International Organization for Standardization
Organisation Internationale de Normalisation

Международная организация по стандартизации

Doc Type: Working Group Document

Title: Cluster Formation Model for Khitan Small Script

Source: Andrew West, Viacheslav Zaytsev, Michael Everson

Status: Individual Contribution

Action: For consideration by JTC1/SC2/WG2 and UTC

Date: 2018-04-15

1. Introduction

The Khitan Small Script (KSS) is traditionally written in vertical columns running right to
left, and comprises a mixture of standalone logographic characters and clusters of two to
eight phonographic characters that form a rectangular block representing an individual
word. There is no analogy for these rectangular clusters in any other script encoded in the
UCS, and so various possible mechanisms for controlling cluster formation at the encoding
level have been suggested.

Following on from the Meeting on Khitan Scripts held at Yinchuan, China in August 2016,
the authors of “Final proposal to encode the Khitan Small Script in the SMP of the UCS”
(WG2 N4738R2, L2/16-245R) proposed putting a single format character at the start of
each cluster to indicate that the contiguous sequence of following characters formed a
cluster. Two format characters (KHITAN SMALL SCRIPT SINGLE CLUSTER INITIAL and
KHITAN SMALL SCRIPT DOUBLE CLUSTER INITIAL) would be required for encoding as
there are two distinct cluster patterns (described in Section 2 below). Thus, a cluster of five
KSS character would be represented as <-ABCDE> or <=ABCDE> (where – and = represent
the single and double cluster initials respectively).

At WG2 Meeting 65 in San José in September 2016 the Ad Hoc Meeting on Khitan Small
Script (see WG2 N4768, L2/16-338) decided not to accept the model agreed at Yinchuan,
but rather to use two format characters (KHITAN SMALL SCRIPT HORIZONTAL JOINER and
KHITAN SMALL SCRIPT VERTICAL JOINER) which would be placed alternatively between
every graphic character in a cluster. Thus, a cluster of five KSS characters would be
represented as <A*B:C*D:E> or <A:B*C:D*E> (where * and : represent the horizontal and
vertical joiners respectively).

JTC1/SC2/WG2 N4943 Page 2

This document proposes a new model for automatic cluster formation, which requires no
new format characters to be encoded. Font design and OpenType implementation with
respect to this model are also discussed.

In summary, this document proposes the following clustering model which:

 Automatically composes any sequence of two or more KSS characters into a cluster;
 Starts a default cluster with two adjacent characters;
 Inserts Combining Grapheme Joiner (CGJ) between the 1st and 2nd characters in a

sequence to produce a cluster starting with a single centred character;
 Terminates a cluster sequence by EOL or any character that is not a KSS graphic

character or CGJ;
 Separates clusters in the text stream from each other with a space character (U+0020

or any desired space character); and
 Separates single standalone characters in the text stream with a space character to

prevent them forming a cluster.

With this model, caret placement, caret movement, selection, deletion and backspacing
should work in exactly the same way as for decomposed Hangul displayed using a
composing font. That is to say, it should not be possible to click into the middle of a
composed Khitan cluster or visually select a partial section of a composed Khitan cluster;
backspacing should delete one character at a time, with a new cluster forming each time;
the number of presses of the left/right arrow keys required to move through a composed
Khitan cluster should match the number of characters in the cluster (cf. a decomposed LVT
Hangul syllable which requires three arrow presses to move past it). This has been tested
using our prototype Khitan font on Notepad under Windows 10, and caret placement, caret
movement, selection, deletion and backspacing behaviour is as described above. With
Word 2016 it is possible to place the caret in the middle of a composed cluster and to
visually select part of a composed cluster, but we consider this to be a bug with Word.

When composing a Khitan cluster by entering one character at a time, a new cluster should
form for each character entered. All intermediate clusters, which may not be valid final
clusters, should be supported in the font. This is the case with our prototype Khitan font.

For a linear style Khitan font which is designed not to compose clusters but to display
individual cluster components in linear layout, caret placement, caret movement, selection,
deletion and backspacing should all be the same as for decomposed Hangul displayed using
a font that does not support dynamic composition.

As is the case with decomposed Hangul, the user may not know where exactly the caret is
positioned when using arrow keys to move through a cluster. There is no way of solving
that at the encoding level, but it can be solved at the application level, for example
BabelPad indicates the character at the current cursor position on the status bar.

JTC1/SC2/WG2 N4943 Page 3

2. Structure of the Khitan Small Script

Khitan Small Script is written using a mixture of standalone characters and clusters of two
to eight characters, as outlined below.

A. Standalone Characters

Only certain KSS characters can occur in isolation as standalone characters, and they are
mostly logograms representing numbers, calendrical terms, kinship terms, etc. Dates
usually include sequences of several standalone characters, but in other contexts
standalone characters are much less frequent than clusters. Some standalone characters
only occur by themselves, but others may also occur within a cluster. Examples of
standalone characters are shown in Fig. 1 (p. 5 below).

B. Type A Clusters

Two types of cluster are attested in extant KSS texts. The standard cluster starts with two
adjacent KSS characters and finishes with two adjacent characters or a single centred
character. The seven patterns shown in Table 1 are attested.

Table 1: Type A Cluster Patterns

2 3 4 5 6 7 8

①② ①②

③

①②

③④

①②

③④

⑤

①②

③④

⑤⑥

①②

③④

⑤⑥

⑦

①②

③④

⑤⑥

⑦⑧

�

�

�

�

�

�

�

JTC1/SC2/WG2 N4943 Page 4

C. Type B Clusters

Occasionally an alternative cluster pattern, starting with a single centred character, is
encountered. This pattern is most usually found with two or sometimes three characters,
and only very rarely with more than three characters. Only a very small proportion of
clusters conform to this pattern. Some examples of Type B clusters are shown in Table 2.

Table 2: Type B Cluster Patterns

2 2 2 2 3 3 4

①

②

①

②

①

②

①

②

①

②③

①

②③

①

②③

④

�

�

�

�

�

�

�

There do not seem to be any semantic differences between clusters that start with two
adjacent characters (Type A) and clusters that start with a single centred character (Type
B), and it seems to be an aesthetic choice. Cluster Type B is preferred for certain characters,

for example � ‘north’ and � ‘south’ (� is flattened at the start of a cluster).

Some two-character words are attested in both cluster patterns. For example, in the

Epitaph for Emperor Daozong (1101) the word �� [18B1D 18C66] mó.er ‘mother, wife’
is written four times with the two characters horizontally aligned (Cluster Type A), and
once with the two characters vertically aligned (Cluster Type B):

An iteration mark (�) also occurs, either by itself to stand for the preceding cluster or as the
first component of a cluster where it indicates that the preceding cluster is repeated with

the suffix attached to the iteration mark. For example � � stands for � �, and

� � stands for � �.

JTC1/SC2/WG2 N4943 Page 5

Fig. 1: Start of the Epitaph for Emperor Daozong (1101)

Standalone characters highlighted in red

JTC1/SC2/WG2 N4943 Page 6

3. Proposed Clustering Model

Because the pattern of clusters in KSS is fixed, there is no need to put a format character
between each character in a cluster in order to determine the cluster pattern and the
position of glyphs in this pattern. If the position of the first character in a cluster is known
(adjacent to the second character or centred by itself) then the relative positions of all
following characters in the cluster can be trivially determined.

The original proposal for two format characters was based on the idea that every cluster
would need to be prefixed by a format character in order to specify the pattern type
(starting with two adjacent characters or starting with a single centred character).
However, after further consideration and consultation with users, we now consider that
there is no need for any dedicated format characters for KSS layout and rendering.

We consider that the simplest solution for end users, as well as for the layout system and
font, is to have automatic cluster formation of any string of contiguous KSS characters
without the intervention of format characters. In order for automatic clustering to occur,
sequences of characters that form a cluster and standalone characters should be separated
by whitespace. This reflects the behaviour seen in original KSS texts where there is usually
visible whitespace between clusters and/or standalone characters. The space character
used can be left to the user to decide, but we recommend using the ordinary U+0020 space
but with a relatively narrow glyph width in a KSS font. Users could use ZWSP if no gap is
desired between clusters and/or standalone characters.

The vast majority of clusters in KSS texts are Cluster Type A, so the proposed automatic
clustering mechanism would produce clusters starting with two adjacent characters by
default. For Cluster Type B starting with a single centred character, we propose inserting
U+034F COMBINING GRAPHEME JOINER (CGJ) after the first character in the cluster to
indicate this cluster pattern. We considered using ZWNJ, but CGJ is more appropriate as it
inhibits line breaking before and after, which is the desired behaviour for KSS. Using CGJ
will also cause the desired sorting behaviour, which is to sort Cluster Type B sequences
before Cluster Type A sequences where both sequences comprise the same graphic

characters, e.g. <18B1D 034F 18C66> � should sort immediately before <18B1D

18C66> �.1

1 In this document KSS clusters embedded in English text are typeset with the Khitan Small Rotated font
which renders the text in rotated orientation. The Khitan Small Vertical font is not used as it would result in
huge gaps between lines.

JTC1/SC2/WG2 N4943 Page 7

4. Presentation Format and Font Implementations

Modern scholars of Khitan generally typeset or handwrite Khitan Small Script text in one of
the three presentation formats described below.

A. Running Vertical Format

In this format, KSS text is laid out in vertical columns running right to left across the page,
reproducing the format used in original Khitan sources. This format is often used for
transcribing KSS texts, as shown in the example given in Fig. 2.

Fig. 2: Transcription of the Epitaph for Court Attendant Yelü Yongning (1088) in
Zheng 2002, p. 66

JTC1/SC2/WG2 N4943 Page 8

B. Embedded Vertical Format

In this format, KSS standalone characters and clusters are written horizontally in vertical
orientation, either on a line by themselves or embedded in horizontal text in a different
language.

An example of vertical KSS clusters embedded in horizontal Chinese text is shown in Fig. 3.
In this example the clusters are vertically aligned at the bottom, but other alignments are
also found. For example, Fig. 4 shows vertical KSS text embedded in horizontal Japanese
with top alignment of KSS clusters, and Fig. 5 shows a Russian paper with vertical KSS text
aligned vertically along the centre.

Fig. 3: Vertical KSS clusters embedded in horizontal Chinese text in Bao 2002, p. 18

JTC1/SC2/WG2 N4943 Page 9

Fig. 4: Vertical KSS clusters embedded in horizontal Japanese text in Aisin Gioro
2006, p. 48

Fig. 5: Vertical KSS clusters embedded in horizontal Russian text in Zaytsev 2011, p.
144

JTC1/SC2/WG2 N4943 Page 10

C. Horizontal Linear Format

In horizontal linear format KSS characters are written horizontally left-to-right, with
clusters decomposed into linear strings of characters. Sequences of characters that form a
cluster in the original Khitan source are separated by whitespace. KSS text is presented this
way in Daniel Kane’s 2009 book, Kitan Language and Script (see Fig. 6), in Wu & Janhunen’s
2010 book New Materials on the Khitan Script, and in some works by Aisin Gioro Ulhicun
published after 2010.

Fig. 6: KSS text written in horizontal linear format in Kane 2009, pp. 186–187

Different font implementations will be required in order to realise these three different
presentation formats. Every KSS font should be able to handle the same input stream of
encoded KSS characters, but will render the KSS characters in particular ways.

Andrew West has developed working prototypes of three types of KSS font, corresponding
to the three presentation formats described above:

 Khitan Small Rotated — a prototype font for running vertical format;
 Khitan Small Vertical — a prototype font for embedded vertical format;
 Khitan Small Linear — a prototype font for horizontal linear format.

JTC1/SC2/WG2 N4943 Page 11

These fonts are derived from a font designed by Jing Yongshi, and can be provided to WG2
and UTC committee members on request.

These fonts have been verified as working as expected on Microsoft Windows 10 with
BabelPad, Notepad, Microsoft Word 2016, and Microsoft Edge browser (see Appendix 2). A
test page using a WOFF version of Khitan Small Rotated is available at
http://www.babelstone.co.uk/Fonts/KSS_Test.html.

These three types of font are described below, and a sample image of the same KSS text
using the provisional UCS code points is given for each font.

A. Rotated Vertical Font

The typical KSS font will be intended to display KSS text in vertical layout, as is usually the
case in original Khitan sources. However, in order to display running vertical text on
computers, the font needs to provide glyphs for individual characters and clusters that are
rotated counterclockwise. In plain text applications the font will produce horizontal lines of
rotated glyphs, but in rich text environments the horizontal lines can be rotated clockwise
to produce vertical columns of KSS text. For example, Microsoft Word 2016 supports
vertical rotation of text (Layout > Text Direction), and web pages support vertical layout
using CSS stylesheets.

This is the same mechanism that is used in Unicode fonts for other vertical scripts such as
Mongolian and Phags-pa.

Fig. 7 shows the display of KSS text using the Khitan Small Rotated font in a plain text
application, where the lines are displayed horizontally, and the glyphs are rotated
counterclockwise. Examples of rotated KSS text displayed in running vertical format with
HTML/CSS are given in Appendix 2.

Fig. 7: Sample of KSS text set with the Khitan Small Rotated font

JTC1/SC2/WG2 N4943 Page 12

B. Embedded Vertical Font

A KSS font could also provide glyphs for individual characters and clusters in vertical
orientation. This would allow individual characters or clusters to be embedded in
horizontal text with vertical orientation, either in a plain text or rich text environment.
However, this font could not be used to produce running vertical text. Moreover, the line
spacing of the font has to accommodate the tallest glyph in the font, which means that
when even a single standalone character is embedded in a paragraph of English or Chinese
text there will be a huge line gap between the line above and the line with embedded KSS
characters.

Fig. 8: Sample of KSS text set with the Khitan Small Vertical font

JTC1/SC2/WG2 N4943 Page 13

C. Linear Font

A linear font simply provides a single vertically-oriented glyph mapped to each encoded
KSS character. No clustering of sequences of KSS characters is enabled, and no OpenType
features are required to be supported. Because KSS clusters are separated by whitespace,
linear strings of KSS characters that would form a cluster in a rotated vertical font or
embedded vertical font are separated by whitespace in a linear font.

Fig. 9: Sample of KSS text set with the Khitan Small Linear font

JTC1/SC2/WG2 N4943 Page 14

5. OpenType Implementation

For the rotated vertical and embedded vertical fonts, which combine sequences of KSS
characters to form clusters, two possible OpenType implementations can be considered.
These are not relevant to a linear font as it has a one-to-one mapping between characters
and glyphs, and no OpenType transformations are required.

In both implementations a run of KSS characters is processed by the rendering system. A
KSS run comprises a contiguous sequence of KSS graphic characters, including zero or
many CGJ characters (valid KSS clusters should only have zero or one CGJ after the first
character in the run, but the implementation should be able to handle runs with more than
once CGJ or a single CGJ in a position other than between the first two graphic characters).
The boundaries of the run are marked by SOL, EOL, any space character, any punctuation
character, or any character that is not a KSS graphic character or CGJ.

A run comprising a single KSS character uses the default glyph mapped to the character in
the cmap table. For a run of two or more characters, cluster-forming glyphs are substituted
for the default glyphs using OpenType features.

A. Precomposed Implementation

For this implementation the KSS font provides precomposed glyphs for all supported
clusters, including incomplete clusters required during user input of KSS text. As there are
only about 2,000 to 3,000 attested cluster sequences, a font would need about 4,000 to
5,000 precomposed glyphs for partial and complete clusters, which is a large but
manageable number.2

The font would have a single GSUB table using the ccmp “Glyph Composition /

Decomposition” feature that substitutes sequences of KSS characters for the precomposed
glyphs.

The advantages of this implementation are that is:

 Is simple to implement in the font;
 Works the same for both rotated vertical and embedded vertical fonts;
 Does not require any special assistance from the rendering engine, and so should work

with rendering systems that have no knowledge of the Khitan Small Script;
 Allows the font designer to design cluster glyphs where the various components are

harmoniously integrated together (e.g. with strokes from one component crossing into
the space occupied by another component without clashing).

The disadvantages are that it:

 Only supports defined clusters, and cannot deal with arbitrary cluster sequences;
 Requires a large font size with thousands of glyphs.

2 At present there is no single source that lists all attested KSS clusters.

JTC1/SC2/WG2 N4943 Page 15

An extract of the OpenType table design used in the prototype fonts Khitan Small Rotated
and Khitan Small Vertical is shown below (the same OpenType lookups are used in both
fonts):

script DFLT {
 feature "Glyph Composition/Decomposition";
}

feature "Glyph Composition/Decomposition" ccmp {
 lookup Polygrams;
}

lookup Polygrams {
 sub u18B01 cgj u18C2D u18C40 -> u18B01.C2D.C40.centred;
 sub u18B1D cgj u18C66 -> u18B1D.C66.centred;
 sub u18B54 cgj u18B62 -> u18B54.B62.centred;
 sub u18BA0 cgj u18C64 -> u18BA0.C64.centred;
 sub u18B1C u18B5E u18C37 -> u18B1C.B5E.C37;
 sub u18B1C u18B5E -> u18B1C.B5E;
 sub u18B1C u18CCD u18C04 -> u18B1C.CCD.C04;
 sub u18B1C u18CCD -> u18B1C.CCD;
 sub u18B1D u18C66 -> u18B1D.C66;
 sub u18B25 u18C5B -> u18B25.C5B;
 sub u18B25 u18CCD u18C04 -> u18B25.CCD.C04;
 sub u18B25 u18CCD -> u18B25.CCD;
 sub u18B39 u18BFA u18BA2 -> u18B39.BFA.BA2;
 sub u18B39 u18BFA -> u18B39.BFA;
 sub u18B50 u18C31 -> u18B50.C31;
 sub u18BA1 u18C46 -> u18BA1.C46;
 sub u18BFA u18B85 u18B42 u18BE2 -> u18BFA.B85.B42.BE2;
 sub u18BFA u18B85 u18B42 -> u18BFA.B85.B42;
 sub u18BFA u18B85 -> u18BFA.B85;
}

B. Dynamic Composition Implementation

This implementation is only applicable to the rotated vertical font. It would be very difficult
to implement dynamic composition of arbitrary clusters in an embedded vertical font, and
such an implementation is not discussed here. As this implementation depends on
OpenType features that do not yet exist, a prototype font has not been developed.

For this implementation the KSS font provides three positional glyph forms for each KSS
character (in addition to the basic full-sized glyph):

A. Centred glyph used for the initial character in Type B clusters or for the final character
where there are an odd number of characters (Type A cluster) or an even number of
characters (Type B cluster);

B. Bottom-aligned glyph (in font orientation) used for odd-numbered non-final characters
in Type A clusters or even-numbered non-final characters in Type B clusters;

C. Top-aligned glyph (in font orientation) used for even-numbered characters in Type A
clusters or odd-numbered non-initial characters in Type B clusters.

JTC1/SC2/WG2 N4943 Page 16

A rendering engine would be required to apply specific OpenType features to the font in
order to substitute the correct positional glyph form for each KSS character in a run. There
are no existing OpenType features that can be used, so three new OpenType features would
need to be registered, which we refer to as kss1, kss2 and kss3. The default glyph form

and three positional forms for U+18C34 � in the prototype font are shown below (note
that the glyphs are rotated counterclockwise in the font to enable vertical layout in
applications that support vertical orientation of text):

The kss1 and kss2 glyphs are spacing, but the kss3 glyph has no advance width, with the
result that a kss3 glyph is rendered immediately above the preceding kss2 glyph.

The following pseudocode shows how a rendering engine might process a run of KSS
characters (including one or more CGJ characters). For runs of a single KSS character no
action is required as the normal full-sized glyph in the cmap mapping should be displayed.
For runs of two or more characters, the kss1, kss2 or kss3 feature will be applied to the

KSS characters to produce the expected shaping.

if (run.length > 1) {
{
 for (int i = 0; i < run.length; i++)
 {
 if (i % 2 == 1)
 {
 font.applyFeature(run[i], kss3);
 }
 else
 {
 if (((i + 1) == run.length) || (run[i+1] == CGJ))
 {
 font.applyFeature(run[i], kss1);
 i++;
 }
 else
 {
 font.applyFeature(run[i], kss2);
 }
 }
 }
}

This implementation supports arbitrary clusters of arbitrary length, and does not require
the font designer to create thousands of precomposed glyphs for clusters. However,
creating clusters by piecing together positional components does not give an ideal visual
result, and in a high-quality font additional substitutions and/or positioning may need to

JTC1/SC2/WG2 N4943 Page 17

be applied to ensure that the components forming a cluster are harmoniously integrated.
The following points need to be considered:

A. The relative widths of adjacent components may vary depending on the components

involved. For example, when � + � form a cluster, the left component should occupy
less than half the cluster width, and the right component should occupy more than half

the cluster width (�), but in other cluster combinations the right component would

need to be thinner in order to accommodate the left component.
B. In many cases the best visual results are achieved by allowing strokes from one

component to cross into the space occupied by another component, and to do this
without clashing would require individual tailoring of adjacent glyphs.

C. The length of components in a cluster may vary depending on the number of
components in a cluster. Clusters comprising just two adjacent components are
normally about the same length as a single standalone character, but in clusters with
three or more components each component is shorter than a standalone character, and
as a rule of thumb the longer a cluster is the shorter each component (or pair of
parallel adjacent components) is. It would be very difficult to mimic this behaviour
using dynamic composition.

For these reasons, a high-quality KSS font may need to use a mixture of precomposed
glyphs and dynamic composition. Precomposed glyphs could be used for important and
frequently-occurring clusters, whereas dynamic composition could be used for all other
arbitrary clusters.

Note that the above glyph design issues would still be present with a model that inserts a
horizontal joiner or vertical joiner format character between each graphic character in a
cluster.

JTC1/SC2/WG2 N4943 Page 18

6. Line Breaking Considerations

There should be no line break opportunity within a KSS cluster. As the proposed automatic
clustering model requires standalone characters to be separated by a space character, all
sequences of two or more KSS characters necessarily form a cluster. Therefore there
should be no line break opportunity between any two adjacent KSS characters.

Unicode Standard Annex #14 “Unicode Line Breaking Algorithm” should be updated with a
new rule to specify that there is no line break opportunity between KSS characters. This
would require a new line breaking class for KSS characters, which we provisionally call KS,
and the following rule: KS × KS. There would be a line break opportunity between KS and
any other non-gluing class.

CGJ may also occur in a cluster, but CGJ prohibits line breaking between it and the
preceding character and following character, so it does not provide a line break
opportunity when used in a KSS cluster.

Even though line-breaking might be acceptable within cluster sequences rendered in
horizontal linear format, because the line-breaking algorithm is independent of the font
used to display the text, KSS text displayed with a linear font would also have no line
breaks within sequences corresponding to a cluster. If desired, line break opportunities
could be manually inserted into linear clusters using ZWSP.

JTC1/SC2/WG2 N4943 Page 19

7. Bibliography

N4725R. Andrew West, Viacheslav Zaytsev, Michael Everson. Towards an Encoding of the
Khitan Small Script. ISO/IEC JTC1/SC2/WG2 N4725R (L2/16-113R). 2016-05-21.
http://www.unicode.org/wg2/docs/n4725r-khitan-small-script.pdf

N4736. Deborah Anderson, SEI, UC Berkeley. Summary of Meeting on Khitan Scripts, 20
August 2016 (Yinchuan, China) - Ad Hoc Report #1. ISO/IEC JTC1/SC2/WG2 N4736
(L2/16-243). 2016-08-20. http://www.unicode.org/wg2/docs/n4736-khitan-meeting-
1.pdf

N4737. Deborah Anderson, SEI, UC Berkeley. Summary of Meeting on Khitan Scripts, 22
August 2016 (Yinchuan, China) - Ad Hoc Report #2. ISO/IEC JTC1/SC2/WG2 N4737
(L2/16-244). 2016-08-22. http://www.unicode.org/wg2/docs/n4737-khitan-meeting-
2.pdf

N4738R2. Sun Bojun, Wu Yingzhe, Jing Yongshi, Jiruhe, Viacheslav Zaytsev, Andrew West,
and Michael Everson. Final proposal to encode the Khitan Small Script in the SMP of the
UCS. ISO/IEC JTC1/SC2/WG2 N4738R2 (L2/16-245R). 2016-09-17.
http://www.unicode.org/wg2/docs/n4738r2-khitan-small.pdf

N4768. Lisa Moore, Unicode Consortium. Summary of Ad Hoc Meeting on Khitan Small
Script, 28 September 2016. ISO/IEC JTC1/SC2/WG2 N4768 (L2/16-338). 2016-09-28.
http://www.unicode.org/wg2/docs/n4768-KhitanSmallScriptAdhoc.pdf

N4775. Andrew West, Michael Everson, Viacheslav Zaytsev. Discussion of Cluster
Formation in Khitan Small Script. ISO/IEC JTC1/SC2/WG2 N4775 (L2/16-296). 2016-
10-27. http://www.unicode.org/wg2/docs/n4775-khitan-small-model.pdf

Aisin Gioro 2006. Aishingyoro Uruhichun 愛新覚羅 烏拉熙春 [Aisin Gioro Ulhicun].

Kittanbun boshi yori mita ryōshi 契丹文墓誌より見た遼史 [History of the Liao as

seen from Khitan Epitaphs]. Kyōto 京都: Shōkadō shoten 松香堂書店, 2006. ISBN 4-

87974-601-0

Bao 2002. Bāo Liánqún 包联群. “«Nánshànbùzhōu Dà Liáo guó Gù Díliè wáng mùzhìwén»

de bǔchōng kǎoshì” 《南赡部洲大辽国故迪烈王墓志文》的补充考释 [A

Supplementary Study of the “Epitaph of the Late Prince Dilie of the Great Liao in the
Southern Continent of Jambudvīpa”]; Nèiménggǔ dàxué xuébào (rénwén shèhuì kēxué

bǎn) 内蒙古大学学报 (人文社会科学版) [Journal of Inner Mongolia University

(Humanities and Social Sciences)] vol. 34 no. 3 (May 2002): 15–19.

Kane 2009. Kane, Daniel. The Kitan Language and Script. Leiden ; Boston: Brill, 2009.
(Handbook of Oriental Studies = Handbuch der Orientalistik. Section 8: Central Asia;
Volume 19). ISBN 978-90-04-16829-9

Wu & Janhunen 2010. Wu Yingzhe [Wú Yīngzhé 吴英喆] and Juha Janhunen. New

Materials on the Khitan Small Script: A Critical Edition of Xiao Dilu and Yelü Xiangwen.

JTC1/SC2/WG2 N4943 Page 20

Folkestone: Global Oriental, 2010. (Corpus Scriptorum Chitanorum; I). (Languages
of Asia Series; Volume 9). ISBN 978-1-906876-50-0

Zaytsev 2011. Zaytsev, Viacheslav (Зайцев, Вячеслав Петрович). “Рукописная книга
большого киданьского письма из коллекции Института восточных рукописей
РАН” [A manuscript codex written in the Khitan Large script from the collection of
the Institute of Oriental Manuscripts, Russian Academy of Sciences]; Письменные
памятники Востока [Written Monuments of the Orient] no. 2(15) (autumn–winter
2011): 130–150. ISSN 1811-8062 http://www.orientalstudies.ru/eng/images/pdf/
a_zaytsev_2011.pdf

Zheng 2002. Zhèng Xiǎoguāng 郑晓光. “Qìdān xiǎozì «Yēlǜ Yǒngníng lángjūn mùzhìmíng»

kǎoshì” 契丹小字《耶律永宁郎君墓志铭》考释 [A Study of the “Epitaph for Court

Attendant Yelü Yongning” in the Khitan Small Script]; Mínzú yǔwén 民族语文 no. 2

(2002): 63–69.

JTC1/SC2/WG2 N4943 Page 21

8. Appendix 1: Examples of KSS Text Input Sequences

Examples of text input using the precomposed OpenType implementation for the Khitan
Small Rotated font are shown below. Table 3 and Table 4 show input of cluster sequences
that are supported in the font, whereas Table 5 and Table 6 show input of unsupported
cluster sequences. The unsupported clusters are not rendered correctly, but they do
provide a reasonable fallback that should be understandable to a user who is familiar with
the Khitan Small Script.

Table 3: Text Input for Type A Cluster

Step Enter Backing Store Display

1
18C31

�

18C31

� �

2
18BFA

�

18C31 18BFA

�� �

3
18C02

�

18C31 18BFA 18C02

��� �

4
18C34

�

18C31 18BFA 18C02 18C34

���� �

5
18C44

�

18C31 18BFA 18C02 18C34 18C44

����� �

6
18B42

�

18C31 18BFA 18C02 18C34 18C44 18B42

������ �

7
18BFA

�

18C31 18BFA 18C02 18C34 18C44 18B42 18BFA

������� �

8
18BA2

�

18C31 18BFA 18C02 18C34 18C44 18B42 18BFA 18BA2

�������� �

JTC1/SC2/WG2 N4943 Page 22

Table 4: Text Input for Type B Cluster

Step Enter Backing Store Display

1
18BA6

�

18BA6

� �

2
034F

¤

18BA6 034F

�¤ �

3
18B42

�

18BA6 034F 18B42

�¤� �

4
18B85

�

18BA6 034F 18B42 18B85

�¤�� �

5
18B42

�

18BA6 034F 18B42 18B85 18CB2

�¤��� �

Note that under Microsoft Windows an unused CGJ is stripped out of the rendering stream,
and so in Step 2 the CGJ is invisible even when the font has a visible glyph mapped to
U+034F. This is the same behaviour that would be seen for any formatting character.

Table 5: Text Input for an Unsupported Cluster

Step Enter Backing Store Display

1
18C3A

�

18C3A

� �

2
18C17

�

18C3A 18C17

�� ��

3
18C34

�

18C3A 18C17 18C34

��� ���

4
18B5E

�

18C3A 18C17 18C34 18B5E

���� ����

In this example, neither the final cluster nor the intermediate clusters are supported in the
font, so no substitutions are applied, and the cluster is rendered as a sequence of separate
glyphs.

JTC1/SC2/WG2 N4943 Page 23

Table 6: Text Input for an Unsupported Cluster

Step Enter Backing Store Display

1
18B42

�

18B42

� �

2
18B78

�

18B42 18B7B

�� ��

3
18B1D

�

18B42 18B7B 18B1D

��� ���

4
18C66

�

18B42 18B7B 18B1D 18C66

���� ���

In this example, the complete cluster is not supported in the font, but a cluster for the last
two characters in the sequence is supported, so the first two characters are rendered as
separate glyphs and the last two characters are rendered as a cluster.

JTC1/SC2/WG2 N4943 Page 24

9. Appendix 2: Samples for Prototype Font

This appendix shows two examples of well-known Khitan Small Script texts coded in an
HTML page, and rendered using the Khitan Small Rotated font in the Edge browser on
Microsoft Windows 10 (see http://www.babelstone.co.uk/Fonts/KSS_Test.html). A CSS
stylesheet is used to rotate the paragraphs containing each line of KSS text, so that the KSS
text is displayed in vertical columns running from right to left on the web page. All clusters
in these two texts are supported in the prototype font, so the result should closely reflect
the source texts.

Fig. 10: Bronze mirror with KSS inscription found in Kaesŏng, Korea

[https://commons.wikimedia.org/wiki/File:Khitan_mirror_from_Korea.jpg cc-by-sa-2.0 John S Y Lee]

JTC1/SC2/WG2 N4943 Page 25

Fig. 11: Display on Microsoft Windows 10 with Edge browser

Encoding Stream:

<18B54 034F 18B62 0020 18CBD 18C78>

<18C37 18B74 0020 18C1D 18C9A 18CA6 0020 18CB2 18BF4 18C46 0020 18CCD 18C04
0020 18C34 18CCD 18C04>

<18B1C 18B5E 18C37 0020 18B1C 18B5E 18C37 0020 18C80 18B5E 18B5F 0020 18C80
18B5E 18B5F 0020 18C53 18BAF 18BA1>

<18B39 18BFA 18BA2 0020 18B25 18CCD 18C04 0020 18CBD 18C9C 0020 18CAB 18C6E
0020 18BA1 18C46>

<18C3A 18C02 18B85 18C9A 18CB4 0020 18B25 18C5B 0020 18C2D 18CA3 18C25 0020
18B50 18C31 0020 18C3A 18BDC 18BFA>

<18BA0 034F 18C64 0020 18C3A 18BA2 18C86 18B62 0020 18BFA 18B85 18B42 18BE2
0020 18C9C 18C64 18B1A>

<18C2D 18C40 0020 18B1C 18CCD 18C04>

JTC1/SC2/WG2 N4943 Page 26

Fig. 12: Record of the Journey of the Younger Brother of the Emperor of the Great Jin
Dynasty (1134)

JTC1/SC2/WG2 N4943 Page 27

Fig. 13: Display on Microsoft Windows 10 with Edge browser

Note that the HTML for this page has six paragraphs of KSS text, but as the lines are very
long the browser has automatically broken the 2nd, 3rd, 4th and 6th lines. This automatic line
breaking could be inhibited by using No-Break Space instead of ordinary spae.

Encoding Stream:

<18C87 0020 18B9D 0020 18C5A 18B92 18CA6 0020 18B45 18B42 18B10 0020 18B89
0020 18B1E 18C5E 0020 18B13 18C2B 0020 18C5A 18BB0 0020 18C44 18C79
18C9A 0020 18C56 18BFA 18B57 0020 18CBD 18C91 0020 18BF4 18C37 0020
18C85 18BFA 18B10 0020 18C46 0020 18B55 18C15 0020 18C44 18B4F>

<18B25 18BFA 18B10 0020 18CB1 18C76 18C64 0020 18C9C 18BA2 18CAB 0020 18C37
18C17 18C64 0020 18C1D 18C06 18CA6 0020 18CBE 18B5B 0020 18C44 18BB0
18C0D 0020 18C65 18C46 18CBD 0020 18C5A 18B1B 18C6B 0020 18C3A 18C53

JTC1/SC2/WG2 N4943 Page 28

18B5B 0020 18C65 18BA1 18C31 0020 18BA7 18B72 18C46 18C64 0020 18C65
18C15 0020 18CAD>

<18B5E 18C44 18CB2 18C66 0020 18C44 18C64 0020 18CBD 18B55 18CA6 0020 18C58
18C34 18C66 0020 18BBD 18B98 18CB2 18C90 0020 18B25 18C0D 18C9A 18C5E
18C34 0020 18C1B 0020 18C37 18BDC 18BF9 18C44 18B42 18B85 18CAB 0020
18CAB 18C6E 0020 18B1D 18C39 18C46 0020 18C65 18C46 18BE5 18C37 18B62
0020 18CAB 18BCC 0020 18C9D 18C78 0020 18B25 18B5B 0020 18BA7 18BF6
18C80 18B62>

<18C44 18C06 18BC6 18CBD 0020 18BE5 18C6A 18C86 18C46 0020 18C1D 18C78 18C66
0020 18C65 18C64 18C31 0020 18B3F 18CAB 0020 18C40 18CA6 0020 18C58
18C34 0020 18B89 18B92 0020 18C68 18BBD 18C9D 18CBD 0020 18C65 18C64
18B2A 18C86 18C46 0020 18BA7 18B17 18C44 18CAB 18BCF 0020 18B97 0020
18C32 0020 18C3A 18B1B 18C66 0020 18C2F 0020 18C9D>

<18C37 18C79 18C53 0020 18B45 18B42 18C66 0020 18C90 0020 18C8C 18B92 18CAB
0020 18C9A 18C80 0020 18C2F 0020 18C82 0020 18CBA 0020 18BA7 18BF6
18BCE>

<18B1C 18CBC 0020 18C5A 18C55 0020 18C29 18B37 18C65 18C66 0020 18CBD 18C79
0020 18B84 18C46 0020 18C64 18C23 0020 18B59 0020 18C5A 18C46 3000
18B18 18C3D 18CBD 18C66 3000 18CBD 18C79 0020 18B84 18C46 0020 18B56
18C5A 0020 18CBD 18C06 0020 18B25 18BA1 0020 18B6F 0020 18C77 0020
18C44 18C06 0020 18CB0 18C6B 0020 18B5D 0020 18BB0 0020 18C65 18C64
0020 18CBD 18C66>

