: ; : 5 . . i e . s
Support for [mplementing Inline and Intralinear Annotations A LEIBB'GUE) Page | or :

- DRAFT - Fer UTC Consideratien Only -

. L2/98-055

February 22, 199§

Support for Implementing Inline and Interlinear

Annotations
Submitted by: Asmus Freviag,
Version 0.02
Introduction

This paper is in response to UTC action item 73-22 It is presented for discussion at UTC 7 75.

Background

Japanese uses several forms of inline and interlinear annotations. (Some of these are also used in other languages)

Ruby Horizontal
in Vertical

(Typically) 1/2 sized text above one or more base characters. Most commonly

used to indicate pronunciation. In Japanese the most common form is hiragana Short
. characters on top of ideographs, but this is not the only way Ruby are used. In (usuaily two

rich text, certain formatting information applies only to the Ruby as an 'object’ character

while other formatting information applies to the annotation or base text. long) runs of

Example formatting information includes the separation of base and annotation as digits or

well as the horizontal alignment mode. alpha- betics
laid out
horizontally
in an
otherwise
vertically
positioned
line of
ideographic
text. The
H.L.V. tends
to take up the
space of a
single
character in
the line, but
carries twice
the infor-
mation.
Some
formatting
applies to the
'‘object’ as a
whole, but in
more ways
than Ruby,
H.LV can be
considered
part of the
regular line.

There is no way to algorithmically determine or reconstitute ruby texts.

. Group ruby

HL I ;
A string of annotation characters is placed

E %& 5};‘3‘? @ relative to a string of base characters. Ifa

SHEHF LRI ™ G m e Y R 25

- . . . —_ . i - oL T S R R _ K TR, i P, , NSRS | - = 500

Support for Implementing Inline and Intralinear Annotations Page 2 of 3

Itis
e group ruby annotation string has) conceivable
: (invisible) separator characters in it (akin 7': to have an
?E }?_}3 u}%b - *-(': T‘J ~ 6 to optional hyphens) the choice of group o algorithm
ruby vs. mono ruby becomes a formatting detect H.LLY
choice, and no longer a content difference. opportunities,
but such an
algorithm
would almost
certainly
need
overrides
(similar to
hyphenation
overrides).
Mono ruby
ATA Each part of the annotation is placed
ﬁ{nTAI{ﬁEE o relative to the single base character it
]{E % %?‘é‘ relates to.
Warichu Kumimoji

Longer annotations inline. Usually of 1/2 or less the regular font size and laid out These are on the fly
like a short paragraph inline (typically two lines above each other for horizontal equivalents to the
text, with large brackets around the Warichu. Warichu imply complicated line squared Katakana

breaking logic and may need rich text formatting to select specific line breaking words in the Unicode
options. standard.

Proposal

Characters

The following is the smallest number of characters that would satisfy the implementation and interchange concerns
below.

+XX01 ANNOTATION ANCHOR

+XX02 BASE-ANNOTATION SEPARATOR

+XX03 ANNOTATION SEFARATOR

+XX04 ANNOTATION TERMINATOR

These are proposed for the specials block, failing that the CJK punctuation block.

Usage

XXO01 is intended to be used as an anchor character, preceding the annotation object.

X202 is intended to separate the base characters in the text stream from the annotation characters that follow.
XXO03 is used to segment the annotation for line breaking or splitting into mono ruby.

XX04 is used to terminate the object (and returns to the regular text siream)

2409

=R ¥ R S TR - YNNI [(US| & U, (5 SUN o ARG , JRNSIU U S SR R, , U Ry ey |

Support for Implementing Inline and Intralinear Annotations Page 3 of 3

ample. e mono ruby example from above would be encoded as:

XX01 IE é %ﬁ% XX02 WATA XX03 NABE XX03 KO XX03 JI XX04

Example: The first HIV example form above would be encoded as:

XX01 44 XX04

Discussion

The association of annotation segments to base characters is strictly on a per (base) character basis. It might make sense
to allow the separator to segment the base character stream as well, but that would likely be overkill.

It might be possible to overload existing Unicode characters for some of these purposes. However, a robust
implementation needs to avoid restrictions in the allowable characters for base or annotation.

Implementation

The entities in guestion are 'objects’ from the perspective of the line layout algorithm. For the same reason that FFFC was
added as an 'object replacement’ character, implementation for these objects can be regularized by the presence of a
dummy character. Unlike image or audio objects, these inline or interlinear objects carry textual information. Therefore
the line lavout algorithm, to make a complicated description simple, is applied recursively to these sublines.
Implementations are, again, simplified with the presence of separator and terminator characters. These character codes
need not all be distinct from each other, but for implementations that purport to support any Unicode character and (since
they are Far East implementations) also need to retain the Private Use Area for use as EUDC, it is important to have

reserved character codes to support these implementations.

Recall that the FFFC OBJECT REPLACEMENT CHARACTER was intended to act as an anchor point for non-textual
formatting information. The same would be true for the proposed characters.

Interchange

Like the use of FFFC the use of these characters does not by themselves make it possible to interchange final form
documents. That is, all the object and text specific formatting are gone. Unlike non-text objects, the legible information
in the annotation is retained and the content relation between characters (base and annotation) and line breaking

information (Warichu) can be maintained.

Fallback

Filtering the characters on input gives the same behavior as typical current plain text fallbacks. Especially for Ruby, these
fallbacks are not at all ‘readable’. Retaining the characters, but not being able to display them yields a text stream that is
more human-editable than existing minimal fallbacks. Therefore, adding these characters to the standard does not cause

harm to existing implementations.

To create 'clean’ plain text in the current situation, an application needs to treat ruby different from the other three
annotations. Since there is no fallback support, but the base characters are definitely part of the plain text content, an
implementation must actively extract the base characters from the ruby objects.

For Ruby, rendering the BASE-ANNOTATION SEPARATOR and ANNOTATION TERMINATOR as open and close
parens and the other two characters as zero width, will yield a standard fallback mechanism that is used in newspapers or

wherever ruby annotarions are needed, but interlinear space is at a premium.

Experience

Several implementations are known that use similar, but slightly different sets of characters for this purpose.

ftp://unicore:unicore(@ftp.unicode.org/WorkingGroups/EastAsia/Ruby/Ruby.html 272498

