
EF-UTF / V.S. Umamaheswaran Page 1 of 22

NCITS L2/98-257
1998-07-20

Title: EBCDIC-Friendly UCS Transformation Format -- EF-UTF
Source: V.S. UMAmaheswaran, IBM National Language Technical Centre,

umavs@ca.ibm.com
Status: For consideration and acceptance by NCITS-L2 and UTC for further

processing as a new UTF into Unicode and ISO/IEC 10646; (part of a
paper that has been submitted for presentation at IUC-13, San Jose,
in September 1998).

1 Background
UCS Transformation Format UTF-8 (defined in Amendment No. 2 to ISO/IEC 10646-1), is a transform
for UCS data that preserves the subset of 128 ISO-646-IRV (ASCII) characters of UCS as single octets
in the range X'00' to X'7F', with all the remaining UCS values converted to multiple-octet sequences
containing only octets greater than X'7F'. This permits existing systems that have hard-coded
dependency on the encoding of these characters to 'safely' process UCS characters in the UTF-8
transformed form.

There is a similar requirement to transform a UCS-encoded data to a form that is 'safe' for EBCDIC
systems for the control characters and invariant characters. This document defines a transformation
format for use in applications written for EBCDIC systems deriving benefits similar to what UTF-8
delivers to applications written for ASCII-based or ISO-8-based systems.

A pre-condition for any method that transforms UCS data to be processed in the EBCDIC environment,
is that each EBCDIC control character must be kept as a single octet. This cannot be achieved by
applying the ISO-8 to EBCDIC transform to the standard UTF-8 transformed data. Data conversions
between ISO-8-bit and SBCS EBCDIC coded character sets, typically map the EBCDIC control zone into
the ISO-8 control zone(s), and EBCDIC graphic character zone into the ISO-8 graphic character zone(s),
and vice versa. These character-zone correspondences are respected also in mixed ISO-8-bit and
mixed-byte-EBCDIC coded character sets. The standard UTF-8 converts the ISO-8 C1 zone into two-
octet sequences, and hence is not usable when there is a requirement to preserve the ISO-8 C1 control
characters, and the corresponding EBCDIC control characters, as single octets.

Eight-bit coded character sets based on ISO/IEC 4873 standard, or IBM's EBCDIC standard, have 65
control character positions and 191 graphic character positions (see Figure 1 on page 9). ISO/IEC 4873
defines the structure for use in ISO-8 codes such as ISO/IEC 8859-1, Latin Alphabet No. 1, and others
(see Figure 2 on page 9).

The 65 control character positions are in the range X'00' to X'1F' (C0 set), at X'7F' (DELETE), and in the
range X'80' to X'9F' (C1 set), for the ISO standard, and in the range X'00' to X'3F' and at X'FF' (Eight
Ones) for the EBCDIC standard. A standard set of control functions are assigned to these control
character positions in EBCDIC (see Figure 10 on page 17).

X'20' (SPACE), the range X'21' to X'7E' (G0 set), and the range X'A0' to X'FF' (G1 set) -- a total of 191
octets -- can be assigned graphic characters in ISO-8 single-octet codes. In the corresponding Single-
Byte EBCDIC codes graphic characters may be assigned to X'40' (SPACE) and the range X'41' to X'FE' -
- a total of 191 octets.

EF-UTF / V.S. Umamaheswaran Page 2 of 22

2 Criteria used for defining EF-UTF
The following criteria are used in defining the EF-UTF:

I. Respect the invariance assumptions for characters used by file-management and other
subsystems on EBCDIC platforms.

Traditional EBCDIC-based file systems assume a core set of graphic characters for entities such
as file names, attributes and others. These are SPACE, uppercase letters A to Z, numeric digits
0 to 9, '-' (hyphen), '_' (underscore), and in POSIX environments '.'(period).

When lower case letters a to z are permitted, they are often equated to their corresponding upper
case letters, in entities such as file names, file attributes and other parameters passed across
APIs for file management sub-systems or other similar modules.

Characters such as #, @, and $, are also allowed in file names. While the invariance of the 81
characters of the IBM Syntactic Character Set (with IBM Graphic Character Set Global Identifier
- GCSGID 640) is assumed (with some known exceptions), characters such as #, @, and $, are
known to be variant among existing EBCDIC coded character sets. Irrespective of whether a
larger character set is permitted in file management related entities, the core set of characters
are hard coded in traditional file systems and many applications -- see Figure 3 on page 10.

II. Respect the invariance of EBCDIC control code positions.

Code positions of X'00' to X'3F' and X'FF', are reserved exclusively for Control Characters in the
IBM EBCDIC Standard -- see Figure 3 on page 10 and Figure 10 on page 17. An exception to
this is the EBCDIC-presentation code page(s) primarily used in printers and printer data streams.
Some products such as GDDM are known to deviate by assigning graphic characters to the
EBCDIC control zone in their internal coded character sets.

III. Respect the invariance assumptions of EBCDIC-based software.

Most core modules in operating systems such as MVS, VM, AS/400, are hardcoded with the
assumed invariance of code positions for characters in GCSGID 640 (see Figure 3 on page 10
and Figure 11 on page 18).
Following this criterion also will satisfy criterion number 1 above.

IV. Invariance assumptions regarding the character set of ASCII:

Operating systems such as OS/390 UNIX Services, and the C/370 and C++ run time libraries
(and compiler) have internal assumptions for the ASCII character set (IBM GCSGID 103, the
portable character set of POSIX) which is syntactically significant for the UNIX operating system
and in POSIX environments. They have hardcoded the code position assignments from IBM
coded character set with IBM Code Page Global Identifier - CPGID 1047 (the 'EBCDIC Latin-1
Open Systems' code page) as invariant. CPGID 1047 was also the preferred choice of the
SHARE - ASCII-EBCDIC White Paper based on the customer usage of Left and Right Square
Bracket code positions (taken from the MVS programmer's reference card showing the IBM 1403
printer positions for the square brackets, and hardcoded into several user-written applications).

Similar invariance assumptions have been made in traditional VM, MVS and AS/400 systems,
and IBM data stream and object content architectures assuming other EBCDIC default CPGIDs.
The significant ones among these are CPGID 500 - the Multilingual Code page and CPGID
00037 - the US EBCDIC Latin-1 code page. IBM Character Data Representation Architecture
(CDRA) recommends CPGID 500 as the convergence target for all the CECP Latin-1 EBCDIC
sets. CPGID 290 - the Katakana Extended code page poses an additional challenge in that the
lower case letters a-z are allocated positions differing from their EBCDIC standard invariant

EF-UTF / V.S. Umamaheswaran Page 3 of 22

positions. Consideration must be given to the invariance of the ASCII set of characters in these
CPGIDs.

Note: There may be other EBCDIC coded character sets also needing such consideration.
However, due to the prominence of OS/390 UNIX Services and the customer hardcoded
applications using CPGID 1047, this proposal is based on CPGID 1047 hardcoding assumptions
for the POSIX portable character set.

V. The following properties of the standard UTF-8 are preserved:

A. Ease of conversion from and to UCS
B. The lexicographic sorting order of UCS-4 strings
C. The entire range of 2**31 UCS-4 code positions can be encoded (though in practice only

UCS-2 form -- including the S-zone of BMP -- will be sufficient)
D. Easy re-synchronization in a multiple-octet sequence (ability to find the start of a valid

sequence with a minimum of scanning in either direction)
E. Stateless encoding which is robust against missing octets
F. Ability to identify the number of following octets in a sequence of a variable number of

octets
G. Minimum number of octets in the sequence.

3 EF-UTF transform

The proposed EF-UTF transform consists of two parts (see Figure 4 on page 11):

1) The first part is called herein UTF-8M (modified UTF-8), (and its reverse rUTF-8M), and is
described in section "First part: UTF-8M and rUTF-8M" on page 3. It is a modified form of UTF-8.
This part converts between UCS-4 or UCS-2 string (called the U-string -- see section "The U-
string" on page 3) and an intermediate ISO-8-compatible string (called the I8-string -- see section
"The I8-string" on page 4), and

2) The second part is called herein I8-To-E (and its reverse E-To-I8) and is described in section "The
Second Part: I8ToE and EToI8" on page 6. It is a single-octet to single-octet reversible
conversion. This part converts between the ISO-8 compatible string (I8-string) and the EBCDIC-
Friendly-UCS-transformed string, or EBCDIC-compatible string (called E-string in this document)

These parts are detailed in the following sections.

3.1 First part: UTF-8M and rUTF-8M
The proposed UTF-8M transform is modeled after the UTF-8 definition in Amendment No. 2 of ISO/IEC
10646-1 and in the Unicode standard. UTF-8M is similar to UTF-8 but preserves the C0, G0, DEL and
C1 as single octets.

UTF-8M transforms the U-string, either in UCS-2 form or in UCS-4 form (see Figure 4 on page 11), into a
sequence of 1 to 7 octets of the I8-string, the intermediate form. The rUTF-8M is the reverse transform.
The generic term UTF-8M is used for both the forward and reverse transforms in the description below.

3.1.1 The U-string
The U-string is a string of UCS characters. The UCS character can be either in UCS-4 form or the UCS-
2 form. In the UCS-4 form, it consist of 4 octets representing the value from X'00000000' to
X'7FFFFFFF'. For the Basic Multi-Lingual Plane - BMP (plane 0, group 0) and the subsequent 16
planes in group 0, the range of values will be X'00000000' to X'0010FFFF'. In the UCS-2 form (including
the S-zone elements, or surrogates) the values can range from X'0000' to X'FFFF'. For the purposes of
this paper, byte-reversed form is considered to have been converted to non-byte-reversed form.

EF-UTF / V.S. Umamaheswaran Page 4 of 22

In practice, most of the world's widely used scripts have been allocated code positions in the BMP.
Additionally the road map document adopted by ISO/IEC JTC 1/SC 2/WG 2 and the Unicode Technical
Committee shows that all the known anticipated scripts can be accommodated in supplementary planes
1 and 2 of group 0 in UCS-4. Planes 15 and 16 are reserved for private use. There is a proposal for use
of plane 14 to meet the Internet protocol requirements for different types of tags.

UCS-2 is a subset of UCS-4 representing the octet pairs (called the Row/Column Element - RC Element
in ISO/IEC 10646-1) of the Basic Multilingual Plane (BMP) (or plane 0 of group 0). Using the S-zone
RC-elements, called the surrogates in the Unicode standard, (in the range X'D800' to X'DBFF'), an
additional 16 planes (planes 1 to 16, of group 0) can be represented using the UTF-16 defined in
Amendment No. 1 of ISO/IEC 10646-1 (and in Unicode). Figure 5 on page 11 (top half) illustrates how
UTF-16 assembles the 10 bits from each of the S-HI and S-LO pairs into the UCS-4 form (to be padded
with 11 leading 0-s).

UTF-8 as defined in Amendment No. 2 of ISO/IEC 10646 refers only to the UCS-4 form as input to the
transform. Amendment No. 1 on UTF-16 states that the S-zone elements are for exclusive use by UTF-
16 transform. The expectation is that the UTF-16 encoded data (using the high order and low order pairs
of S-zone RC elements) will be transformed into their canonical UCS-4 form before applying the UTF-8
transform. The Unicode standard definition of UTF-16 respects this expectation.

UTF-8M defined in this proposal tolerates the U-strings that include elements from S-zone (as valid high
order and low order pairs) in both the UCS-2 form and UCS-4 form. Valid pairs of S-zone elements will
be converted to their UCS-4 equivalent (using UTF-16), before transforming to I8-string. However, pairs
of S-zone elements are not valid as canonical UCS-4 representation of planes 1 to 16 of group 0.

3.1.2 The I8-string
The I8-string is a sequence of 1 to 7 octets.

For all I8-strings consisting of two or more octets, the number of octets in the string is indicated by the
number of high order 1-bits followed by a 0-bit in the lead octet (B'110vvvvv', B'1110vvvv', B'11110vvv',
B'111110vv', B'1111110v', and B'11111110', where v can be either 0 or 1), and each trailing octet always
begins with the bit sequence 101 as the high-order three bits (B'101vvvvv'). In addition, an I8-string
having the first octet as B'11111111' will have six trailing octets (each of the form B'101vvvvv').

When the I8-string has only one octet, its value will be between X'00' (B'00000000') and X'9F'
(B'10011111').

The I8-string's octets are listed below under different categories reflecting the zones in the ISO-8
encoding structure (see the groupings shown in Figure 6 on page 12).

1) X'00' to X'9F' (B'00000000' to B'10011111') are single-octet I8-strings
2) X'A0' to X'BF' (B'10100000' to B'10111111') are trailing octets in multiple-octet I8-strings
3) X'C0' to X'DF' (B'11000000' to B'11011111') are the lead or first octet of a two-octet I8-string

Note: Applying the 'shortest string' rule (see page 5), X'C0' to X'C4' will not be generated by the UTF-
8M transform. If they appear in the I8-string, the octet sequences with them as lead bytes, will
correspond to U-string values less than X'A0'.

4) X'E0' to X'EF' (B'11100000' to B'11101111') are the first octet of a three-octet I8-string
Note: Applying the 'shortest string' rule (see page 5) , X'E0' will not be generated by the UTF-8M
transform. If they appear in the I8-string, the octet sequences with them as lead bytes, will
correspond to U-string values less than X'400'.

5) X'F0' to X'F7' (B'11110000' to B'11110111') are the first octet of a four-octet I8-string
6) X'F8' to X'FB' (B'11111000' to B'11111011') are the first octet of a five-octet I8-string
7) X'FC' to X'FD' (B'11111100' and B'11111101') are the first octet of a six-octet I8-string
8) X'FE' and X'FF' (B'11111110' and B'11111111') are the first octet of a seven-octet I8-string.

EF-UTF / V.S. Umamaheswaran Page 5 of 22

3.1.3 Correspondence between U-string and I8-string
The I8-strings corresponding to the different U-string value ranges are shown in Figure 7 on page 13 for
the UCS-2 form and Figure 9 on page 15 for the UCS-4 form.

The U-string is obtained from the I8-string by concatenating all the v-bits together, stripping out the
appropriate high order 1s and 0s of the lead and trailing octets, and filling with the appropriate number of
leading 0 bits to get a two-octet or four-octet form. Note the exception for the I8-strings of 7 octets (in
the correspondence tables) where there are no 0 bits in the lead octet, and the least significant 1 bit of
the lead octet is kept as the most significant bit of the U-string.

The correspondence between the bits in a UCS-4 element (of the form
B'0sssttttuuuuvvvvwwwwxxxxyyyyzzzz') and the bits in its corresponding UTF-8M transformed string is
shown In a summary form in the table below.

0 s s sttt t uuuu v vvvw w wwxx x xyyy y zzzz
1 0yyy zzzz
1 100y zzzz
2 110x xyyy 101y zzzz
3 1110 wwxx 101x xyyy 101y zzzz
4 1111 0vvw 101w wwxx 101x xyyy 101y zzzz
5 1111 10uu 101v vvvw 101w wwxx 101x xyyy 101y zzzz
6 1111 110t 101t uuuu 101v vvvw 101w wwxx 101x xyyy 101y zzzz
7 1111 111s 101s sttt 101t uuuu 101v vvvw 101w wwxx 101x xyyy 101y zzzz

The corresponding standard UTF-8 transformation is shown in the following table to facilitate a
comparison between UTF-8 and UTF-8M.

0 s ss tttt uu uuvv vv wwww xx xxyy yy zzzz
1 0yyy zzzz
2 110x xxyy 10yy zzzz
3 1110 wwww 10xx xxyy 10yy zzzz
4 1111 0uvv 10vv wwww 10xx xxyy 10yy zzzz
5 1111 10tt 10uu uuvv 10vv wwww 10xx xxyy 10yy zzzz
6 1111 110s 10ss tttt 10uu uuvv 10vv wwww 10xx xxyy 10yy zzzz

Shortest-String Rule:
In UTF-8 (as originally defined by XPG-4, UTF-FSS), when there are multiple ways to encode a value,
for example UCS value X'00000000', only the shortest encoding - X'00' in the UTF-8 form - is legal.
(Note: implementations of UTF-8 can represent U-string X'0000' as multiple octet sequence such as
B'11000000 10000000' (X'A0 80'), to prevent B'00000000' (X'00') from possibly ending string in some
programming language libraries, when UCS-2 value X'0000' -- NUL -- was NOT meant to be a string
terminator.)

This 'shortest string rule' is kept in UTF-8M definition. In the reverse direction (I8-string to U-string) the
transform will be tolerant - it will recognize the longer strings and strip off the excess leading zeroes.

Of these (from Figure 7 on page 13 and Figure 9 on page 16):

1) the limit of the Basic Multilingual Plane, BMP is reached with the I8-string having the sequence
of four octets:

B'11110001 10111111 10111111 10111111' (X'F1 BF BF BF')
2) the limit of three additional supplementary planes (plane 3 of group 0) is reached with the I8-

string having the sequence of four octets:
B'11110111 10111111 10111111 10111111' (X'F7 BF BF BF'), and,

EF-UTF / V.S. Umamaheswaran Page 6 of 22

3) the limit of sixteen additional supplementary planes (the maximum UCS-4 value that can be
represented using UTF-16) is reached with the I8-string having the sequence of five octets:

B'11111001 10100001 10111111 10111111 10111111' (X'F9 A1 BF BF BF')

3.1.4 UTF-16 and UTF-8M
UTF-16 defines the transformation of UCS values X'10000' to X'10FFFF' (in planes 1 to 16 of group 0 of
UCS) to and from a pair of S-zone RC-elements in the BMP ('surrogates' of Unicode standard) that are
reserved exclusively for use in UTF-16. UTF-16 can be defined (from the Unicode standard V2.0
publication) as follows:

C = B for non-S-zone elements
C = (HI-X'D800')*X'400' + (LO-X'DC00') + X'10000',

where,
C is the canonical value in the range X'000000' to X'10FFFF';
B is a non-S-zone BMP value in the range X'0000' to X'FFFF'
(HI, LO) pair is the UTF-16 representation of C

HI - S zone value is in the range X'D800' to X'DBFF', and,
LO - S zone value is in the range X'DC00' to X'DFFF', in the S-zone of BMP.

Figure 5 on page 11 shows the UTF-16 transform from the (HI, LO) pair to the UCS-4 canonical form and
to UTF-8M octet sequence. For comparison, the resultant standard UTF-8 form is also shown. The 'v'
bits shown in Figures 7, 8 and 9 are shown as 'p', 'q', 'r', 's', 't', 'u' and 'w' to better illustrate the
correspondences between the different forms (following the description of UTF-16 in the Unicode
Standard Version 2.0).

In UTF-8M, valid pairs of S-zone elements will be converted to their UCS-4 equivalent (using UTF-16),
before converting to I8-string octets. If the U-string consists of invalid pairs with one or both elements of
the pair from the S-zone, the values from the S-zone are treated as single values and are transformed as
shown (in Figure 7 on page 13) for the range X'4000' to X'FFFF'. When the U-string is in the UCS-2
form, UTF-8M always converts I8-string sequences in the ranges X'F2 A0 A0 A0' to X'F7 BF BF BF' and
X'F8 A8 A0 A0 A0' to X'F9 A1 BF BF BF' (corresponding to the U-string values in the ranges X'010000' to
X'03FFFF' -- planes 1 to 3, and X'04000' to X'10FFFF' -- planes 4 to 16) to and from valid S-zone (HI,
LO) pairs. This makes UTF-8M analogous to combining UTF-8 and UTF-16.

3.2 The Second Part: I8ToE and EToI8
The second part of EF-UTF (see Figure 4 on page 11) consists of using a single-octet to single-octet
conversion between the octets of the ISO-8 compatible I8-string and the octets of the EBCDIC-
compatible E-string (defined below).

3.2.1 The E-string
The E-string, like the I8-string, is a multiple-octet transformed representation of the U-string. The
selected I8-string to/from E-string conversion table has a unique one to one mapping between the input
octets and output octets, and is symmetrical. While the graphic character preservation principle is used
for the octets X'00' to X'9F' of the I8-string, the principle of octet preservation is applied for the range
X'A0' to X'FF.'

3.2.2 I8ToE Octet Pairing
The I8ToE octet-pairing chosen:

1. preserves the single octet representation for all the EBCDIC controls, mapping the I8-string
octets in the range X'00' to X'1F', X'7F', and X'80' to X'9F', to E-string octets in the range
X'00' to X'3F' and X'FF'. Figure 10 on page 17 shows the default pairings for control

EF-UTF / V.S. Umamaheswaran Page 7 of 22

characters used in the industry between several EBCDIC code pages and ISO-8 code pages,
including the conversion between ISO 8859-1 (CPGID 819) and CPGID 1047.

2. preserves the single octet representation for the set of 95 (including SPACE) graphic
characters of the ISO-646 IRV (IBM GCSGID 103, the ASCII character set), at their
allocated positions in the target EBCDIC code page 1047. Figure 11 on page 18 shows the
mapping between G0 set of ISO 8859-1 and some EBCDIC CPGIDs including CPGID 1047.

3. preserves the leading octets and the trailing octets from the I8-string as their corresponding
single octets in the E-string, and,

4. maintains the symmetry between the forward and reverse pairings.

It is important to note that, besides the octets of C0 set, C1 set, and DEL, only the octet values (code
points) that correspond to the G0 set of ISO 8859-1 (and not the entire Latin-1 repertoire) are relevant to
be preserved as single octets in the E-string. Octets of the I8-string are converted to/from octets of the
E-string using the octet conversion tables shown in Figure 12 on page 19.

Figure 13 on page 20 shows the octet distribution of E-string among single octet stings -- shown
subdivided among control characters, invariant and variant graphic characters of ISO 646-IRV, and the
leading or trailing octets of multiple-octet E-strings. To facilitate checking whether the E-string sequence
is a multiple-octet sequence, or whether one of its octets is a leading octet or trailing octet, a shadow
vector can be constructed from Figure 13 on page 20. Figure 14 on page 21 shows such a table
containing values from 0 to 9 indicating the different E-string octet types.

4 Special nature of UCS values X'FFFE' and X'FFFF'
X'FFFE' and X'FFFF' are not used for character allocation in any plane of UCS. X'FFFE' is used as a
Signature. X'FFFF' is used to represent a numeric value that is guaranteed not to be a character, for
uses such as the final value at the end of an index. UTF-8 also avoids use of X'FF' and X'FE' as octets
in its sequences. In UTF-8M, however, X'FE' and X'FF' are used. The following paragraphs expand on
which combinations of X'FF' and X'FE' may occur in an I8-string or an E-string.

• X'FFFE' and X'FFFF' in the I8-string:

The X'FE' and X'FF' are lead octets of seven-octet I8-strings. They will be surrounded (in a
properly formed UTF-8M transformed string) by a value less than X'C0'. Neither X'FFFF' nor
X'FFFE' sequences are valid in a properly formed I8-string sequence. The I8-E octet pairings
are: X'FE' to X'4A', and X'FF' to X'E1'

• • X'FFFE' and X'FFFF' in The E-string:

The values X'FE' and X'FF' are generated in an E-string by converting I8-string using X'BF' to
X'FE' and X'9F' to X'FF' (from Figure 12 on page 19).

X'BF' is the last element of the set of trailing octets possible in a multiple-octet I8-string and must
be preceded by a lead octet and zero or more trailing octets (all within the range X'A0' to X'FF').
An X'9F' cannot precede it in a properly formed I8-string, and hence the sequence X'FFFE'
should not appear in an E-string.

The X'9F' is assigned to the control character - Application Program Command (APC) - in ISO-8
C1. According to ISO/IEC 6429, APC is followed by a parameter string using bit combinations
from 0/8 to 0/13 (X'08' to X'0D') and 2/0 to 7/14 (X'20' to X'7E' and terminated by the control
function String Terminator (ST) (coded at X'9C' in C1). So the sequence X'FFFF' (equivalent of
two APC controls without intervening parameters or STs) also should not appear in an E-string.

EF-UTF / V.S. Umamaheswaran Page 8 of 22

5 Normalization
Dealing with a variable number of octets may not be possible or desirable in some processing situations
(even though proper handling of UCS text strings will require ability to correctly deal with combining
sequences). Normalization into a form with a fixed number of bits is needed for such cases. It would be
always desirable to revert to the original UCS-2 (16-bit form) or UCS-4 (32-bit form) as a normalization to
fixed-width data. However, this would be possible only if processing is possible with native UCS
encoding. If transparency to EBCDIC invariance and controls is needed also in the normalized form,
then UCS cannot be directly used for normalization. It can be seen from Figure 7 on page 13 that the
last code position in the BMP -- X'FFFF' -- of UCS, requires a four-octet sequence in the I8-string and in
the corresponding E-string. A 32-bit integer can be used for normalization of up to four-octet sequences.

The maximum value of UCS-4 that a four octet sequence of I8-string can represent is:

B'11110111 10111111 10111111 10111111' (X'3FFFF')

corresponding to end of plane 3 in group 0 of UCS-4. Using UTF-16 to represent planes 1 to 16 of UCS-
4, the S-zone RC-elements in the BMP can be used. By treating the S-zone elements as any other BMP
value, up to plane 16 can be encoded using the UCS-2 form, and hence can be contained within the 32-
bit normalized form of E-string. Care has to be taken to correctly process the corresponding E-string
octet sequences corresponding to the S-zone pairs, similar to dealing with combination sequences.
When it is desirable to convert valid pairs of S-zone elements into corresponding canonical form and
then apply UTF-8M, only up to plane 3 can be contained within the 32-bit normalized value. For all
values beyond group 0, plane 3, of UCS, the UTF-8M will generate sequences of more than 4 octets
The normalization for these cases will need 64-bits (assuming nothing between 32 and 64 bits is
practical).

6 Bibliography
ISO/IEC 10646-1: 1993(E): Information Processing - Universal Coded Character Set (UCS):Part
1, Basic Multilingual Plane
Amendment 1 to ISO/IEC 10646-1: Transformation Format for 16 Planes of Group 00 (UTF-
16); 1996
Amendment 2 to ISO/IEC 10646-1: Transformation Format 8 (UTF-8)
ISO/IEC 646: Information Processing - 7-Bit Coded Character Set for Information Interchange
ISO/IEC 2022: Information Processing - 7-Bit and 8-Bit Coded Character Sets - Code Extension
Techniques
ISO/IEC 4873: Information Processing - 8 Bit Code for Information Interchange -Structure and
Rules for implementation
ISO/IEC 6429: Information Processing - 7-Bit and 8-Bit Coded Character Sets -Control Functions
for Coded Character Sets
ISO/IEC 8859-xx: Information Processing - 8-Bit Single-Byte Coded Graphic Character Sets
ISO/IEC-IR: International Register of Coded Character Sets to be Used with Escape Sequences
- Registration Authority: ITSCJ, Japan
The Unicode Standard Version 2.0: The Unicode Consortium ISBN 0-201-48345-9, Addison
Wesley Developers Press, July 1996.
SHARE Report SSD No. 366: ASCII and EBCDIC Character Set and Code Issues in Systems
Application Architecture, The ASCII/EBCDIC Character Set Task Force. Edited by Edwin Hart,
The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland, USA Published by
Share Inc., 111 East Wacker Drive, Chicago, Illinois, USA 60601; June 1989
CDRA: IBM - Character Data Representation Architecture - Reference and Registry, SC09-2190-
00, December 1996.

EF-UTF / V.S. Umamaheswaran Page 9 of 22

7 Figures

Figure 1 Graphic and Control Zones in EBCDIC Encoding

⇓⇓ High nibble Low Nibble ⇒⇒
-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0-
1-
2-
3-

C zone

4-
5-
6-
7-
8-
9-
A-
B-
C-
D-
E-

SP

G zone

F- EO

Figure 2 Graphic and Control Zones in ISO-8 Encoding

⇓⇓ High nibble Low Nibble ⇒⇒
-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0-
1- C zone

2-
3-
4-
5-
6-

SP

G0 zone

7- DEL
8-
9- C1 zone

A-
B-
C-
D-
E-
F-

G1 zone

EF-UTF / V.S. Umamaheswaran Page 10 of 22

Figure 3 Distribution of EBCDIC Invariants, Variants and Controls

Legend:
cc = control character (see Figure 10 on page 17);
ii = invariant - part of IBM syntactic character set, which is a subset of ISO/IEC 646 (IRV) (ASCII) and is
invariant among most primary EBCDIC code page definitions (see Figure 11 page 18);
vv = variant - part of ISO/IEC 646 (IRV) (ASCII) but varies among EBCDIC code page definitions (see
Figure 11 on page 18);
... = characters outside ASCII set, and are variant.
The letters a-z, A-Z and digits 0-9 are shown in their invariant positions. All letters, digits and octets
marked as cc, ii and vv are single octets in the E-string.

⇓⇓ High nibble Low Nibble ⇒⇒

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0- cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc

1- cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc

2- cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc

3- cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc

4- II II II II II vv

5- II vv vv II II II vv

6- II II II II II II II

7- vv II vv vv II II II

8- ... a b c d e f g h i

9- ... j k l m n o p q r

A- ... vv s t u v w x y z vv

B- vv

C- vv A B C D E F G H II

D- vv J K L M N O P Q R

E- vv ... S T U V W X Y Z

F- 0 1 2 3 4 5 6 7 8 9 cc

EF-UTF / V.S. Umamaheswaran Page 11 of 22

Figure 4 The two parts of EF-UTF Transform

FIRST PART ¦ SECOND PART

→→
UTF-8M

¦

→→
¦
¦

I8-TO-E
→→

U String I8 String E String

←←
rUTF-8M

¦
¦

←←
¦
¦

E-TO-I8
←←

Figure 5 Transforming S-zone pairs in U-string to I8-string octet sequence

UTF-16
X'D800' -- X'DBFF' X'DC00' -- X'DFFF'

S-HI S-LO
11 01 10 pp pp qq qq rr →→ + ←← 11 01 11 rr ss ss tt tt

(wuuuu = pppp + 1) 
↓↓

w uu uu qq qq rr rr ss ss tt tt

↓↓

For Planes 1 to 3 (4 octets)
11 11 0u uq 10 1q qq rr 10 1r rs ss 10 1s tt tt UTF-8M

For Planes 4 to 16 (5 octets)
11 11 10 0w 10 1u uu uq 10 1q qq rr 10 1 r rs ss 10 1s tt tt UTF-8M

Comparison with standard UTF-8 for Planes 1 to 16 (4 octets)
11 11 0w uu 10 uu qq qq 10 rr rr ss 10 ss tt tt UTF-8

EF-UTF / V.S. Umamaheswaran Page 12 of 22

Figure 6 Distribution of I8-string octets from UTF-8M in an ISO-8 structure

⇓⇓ High nibble Low Nibble ⇒⇒
-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0-
1- C zone

2-
3-
4-
5-
6-

SP

G0 zone

7- DEL
8-
9- C1 zone

A-
B- 32 Trailing Octets

C-
D- 32 Lead Octets of 2-Octet Sequence

E- 16 Lead Octets of 3-Octet Sequence

F-

8 Lead Octets of 4-Octet Sequence 4 Lead Octets of 5-
Octet Sequence

2 Lead
Octets of 6-

Octet
Sequence

2 Lead
Octets of 7-

Octet
Sequence

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
⇑⇑ High nibble Low Nibble ⇒⇒

EF-UTF / V.S. Umamaheswaran Page 13 of 22

Figure 7 Correspondence between U-string (UCS-2 form) and I8-string in UTF-8M

From (Hex) To (Hex) No. of Octets No. of bits
(v)

Octet Sequence

bits (v=0 or 1) Hex
⇒⇒ UTF-8M ⇒⇒

U-string (UCS-2 form,
including the S-zone)

I8-string

⇐⇐ rUTF-8M ⇐⇐
00 1F

(C0 zone)
1 8 (5) 00000000

<= 000vvvvv
<= 00011111

00
<= hh
<= 1F

20 7F
(G0 zone
+ DEL)

1 8 (7) 00100000
<= 0vvvvvvv
<= 01111111

20
<= hh
<= 7F

80 9F
(C1 zone)

1 8 (5) 10000000
<= 100vvvvv
<= 10011111

80
<= hh
<= 9F

A0 3FF 2 10 (10) 11000101 10100000
<= 110vvvvv 101vvvvv
<= 11011111 10111111

C5 A0
<= hh hh
<= DF BF

400 3FFF 3 14 (14) 11100001 10100000
10100000
<= 1110vvvv 101vvvvv
101vvvvv
<= 11101111 10111111
10111111

E1 A0 A0
<= hh hh hh
<= EF BF BF

Note: See section "UTF-16 and UTF-8M" on page 6 on transforming valid pairs of HI and LO S-zone RC-
elements. A breakdown of the S-zone range of octets is shown in Figure 7. Single or malformed pairs are treated
as single values and are transformed as shown next for the range X'4000' to X'FFFF'.

4000 FFFF
(BMP limit)

4 18 (16) 11110000 10110000
10100000 10100000
<= 1111000v 101vvvvv
101vvvvv 101vvvvv
<= 11110001 10111111
10111111 10111111

F0 B0 A0 A0
<= hh hh hh hh
<= F1 BF BF BF

LEGEND for entries above and for Figures 8 and 9 below:
The following describes how to read the content of the correspondence tables in Figures 7 to 9 below:
The information in the U-string to I8-string correspondence tables is arranged in six columns. The first two
columns are the From and To values for the U-string in hex. The last four columns show the following information
about the I8-string:

• the number of octets in the I-8 string
• the number of bits from the U-string that are contained in the I8-string -- indicated by 'v'. It is of the form M

(n) -- where M is the maximum number of bits that can be carried in the number of octets assigned to I8-
string, of which 'n' bits are varied to represent the 'From' to 'To' range in the first two columns.

• the octet sequence for the I8-string is shown in 'bits' form and 'hex' form in the next two columns. Each of
these columns has three values shown in the form (First Value <= range <= Last Value)

• The first value shows the sequence corresponding to the 'From' value for the U-string.
• The second value shows the intermediate values; the 'bits' column showing the bits from the U-string

distributed among the I8-string octets.
• The third value shows the sequence corresponding to the 'To' value for the U-string.

EF-UTF / V.S. Umamaheswaran Page 14 of 22

Figure 8 Correspondence for S-zone elements X'4000' to X'FFFF' in UTF-8M

From (Hex) To (Hex) No. of Octets No. of bits
(v)

Octet Sequence

bits (v=0 or 1) Hex
⇒⇒ UTF-8M ⇒⇒

U-string (UCS-2 form,
including the S-zone)

I8-string

⇐⇐ rUTF-8M ⇐⇐
See LEGEND for Figure 7 above on reading the contents of this table. Values shown in From-To columns will
appear as 16-bit entities (or as Row and Column octet sequences in interchange) in a UCS-2 string.
Valid Pairs of (HI, LO) S-zone RC-elements - used to transform planes 1 to 3 in UTF-16, are shown next.

HI=D800,
LO=DC00
(=10000)

HI=D8BF,
LO=DFFF
(=3FFFF)

4 18 (18) 11110010 10100000
10100000 10100000
<= 11110vvv 101vvvvv
101vvvvv 101vvvvv
<= 11110111 10111111
10111111 10111111

F2 A0 A0 A0
<= hh hh hh hh
<= F7 BF BF BF

Valid Pairs of (HI, LO) S-zone RC-elements - used in UTF-16 to transform planes 4 to 16, are shown next.
HI=D8C0,
LO=DC00
(=40000)

HI=DBFF,
LO=DFFF
(=10FFFF)

5 22 (21) 11111000 10101000
10100000 10100000
10100000
<= 1111100v 101vvvvv
101vvvvv 101vvvvv
101vvvvv
<= 11111001 10100001
10111111 10111111
10111111

F8 A8 A0 A0 A0
<= F8 hh hh hh hh
<= F9 A1 BF BF BF

HI - S-zone RC-elements that are used for planes 1 to 3 in UTF-16, but are not part of valid (HI, LO) pairs are
shown next.

D800 D8BF
S-zone HI (for
first 3 planes)

4 18 (16) 11110001 10110110
10100000 10100000
<= 1111000v 101vvvvv
101vvvvv 101vvvvv
<= 11110001 10110110
10100101 10111111

F1 B6 A0 A0
<= hh hh hh hh
<= F1 B6 A5 BF

HI - S-zone RC elements that are used for planes 4 to 16 in UTF-16, but are not part of valid (HI, LO) pairs are
shown next.

D8C0 DBFF
S-zone HI (for

4 to 16
planes)

4 18 (16) 11110001 10110110
10100110 10100000
<= 1111000v 101vvvvv
101vvvvv 101vvvvv
<= 11110001 10110110
10111111 10111111

F1 B6 A6 A0
<= hh hh hh hh
<= F1 B6 BF BF

LO - S-zone RC elements that are not part of a valid (HI, LO) pair are shown next.
DC00 DFFF

S-zone LO
(for 1 to 16
planes)

4 18 (16) 11110001 10110111
10100000 10100000
<= 1111000v 101vvvvv
101vvvvv 101vvvvv
<= 11110001 10110111
10111111 10111111

F1 B7 A0 A0
<= hh hh hh hh
<= F1 B7 BF BF

EF-UTF / V.S. Umamaheswaran Page 15 of 22

Figure 9 Correspondence between U-string (UCS-4 form) and I8-string in UTF-8M

From (Hex) To (Hex) No. of Octets No. of bits
(v)

Octet Sequence

bits (v=0 or 1) Hex
⇒⇒ UTF-8M ⇒⇒

U-string (UCS-2 form, including
the S-zone)

I8-string

⇐⇐ rUTF-8M ⇐⇐
See LEGEND for Figure 7 above on reading the contents of this table. Values shown in From-To columns will
appear as 16-bit entities (or as Row and Column octet sequences in interchange) in a UCS-2 string.

00 1F
(C0 zone)

1 8 (5) 00000000
<= 000vvvvv
<= 00011111

00
<= hh
<= 1F

20 7F
(G0 zone
+ DEL)

1 8 (7) 00100000
<= 0vvvvvvv
<= 01111111

20
<= hh
<= 7F

80 9F
(C1 zone)

1 8 (5) 10000000
<= 100vvvvv
<= 10011111

80
<= hh
<= 9F

A0 3FF 2 10 (10) 11000101 10100000
<= 110vvvvv 101vvvvv
<= 11011111 10111111

C5 A0
<= hh hh
<= DF BF

400 3FFF 3 14 (14) 11100001 10100000
10100000
<= 1110vvvv 101vvvvv
101vvvvv
<= 11101111 10111111
10111111

E1 A0 A0
<= hh hh hh
<= EF BF BF

Note: See section "UTF-16 and UTF-8M" on page 6 on transforming valid pairs of HI and LO S-zone RC-
elements. Single or malformed pairs are treated as single values and are transformed as shown next for
the range X'4000' to X'FFFF'.

4000 FFFF
(BMP limit)

4 18 (16) 11110000 10110000
10100000 10100000
<= 1111000v 101vvvvv
101vvvvv 101vvvvv
<= 11110001 10111111
10111111 10111111

F0 B0 A0 A0
<= hh hh hh hh
<= F1 BF BF BF

10000 3FFFF
(Planes 1 to

3)

4 18 (18) 11110010 10100000
10100000 10100000
<= 11110vvv 101vvvvv
101vvvvv 101vvvvv
<= 11110111 10111111
10111111 10111111

F2 A0 A0 A0
<= hh hh hh hh
<= F7 BF BF BF

40000 10FFFF
(Planes 4 to

16)

5 22 (21) 11111000 10101000
10100000 10100000
10100000
<= 1111100v 101vvvvv
101vvvvv 101vvvvv
101vvvvv
<= 11111001 10100001
10111111 10111111
10111111

F8 A8 A0 A0 A0
<= F8 hh hh hh hh
<= F9 A1 BF BF BF

EF-UTF / V.S. Umamaheswaran Page 16 of 22

From (Hex) To (Hex) No. of Octets No. of bits
(v)

Octet Sequence

bits (v=0 or 1) Hex
⇒⇒ UTF-8M ⇒⇒

U-string (UCS-2 form, including
the S-zone)

I8-string

⇐⇐ rUTF-8M ⇐⇐
See LEGEND for Figure 7 above on reading the contents of this table. Values shown in From-To columns will
appear as 16-bit entities (or as Row and Column octet sequences in interchange) in a UCS-2 string.

110000 3FFFFF 5 22 (22) 11111001 10100010
10100000 10100000
10100000
<= 111110vv 101vvvvv
101vvvvv 101vvvvv
101vvvvv
<= 11111011 10111111
10111111 10111111
10111111

F9 A2 A0 A0 A0
<= hh hh hh hh hh
<= FB BF BF BF BF

400000 3FFFFFF 6 26 (26) 11111100 10100100
10100000 10100000
10100000 10100000
<= 1111110v 101vvvvv
101vvvvv 101vvvvv
101vvvvv 101vvvvv
<= 11111101 10111111
10111111 10111111
10111111 10111111

FC A4 A0 A0 A0 A0
<= hh hh hh hh hh hh
<= FD BF BF BF BF
BF

4000000 3FFFFFFF 7 30 (30) 11111110 10100010
10100000 10100000
10100000 10100000
10100000
<= 11111110 101vvvvv
101vvvvv 101vvvvv
101vvvvv 101vvvvv
101vvvvv
<= 11111110 10111111
10111111 10111111
10111111 10111111
10111111

FE A2 A0 A0 A0 A0
A0
<= FE hh hh hh hh hh
hh
<= FE BF BF BF BF
BF BF

40000000 7FFFFFFF 7 (Special
Lead Byte)

31 (31) 11111111 10100000
10100000 10100000
10100000 10100000
10100000
<= 11111111 101vvvvv
101vvvvv 101vvvvv
101vvvvv 101vvvvv
101vvvvv
<= 11111111 10111111
10111111 10111111
10111111 10111111
10111111

FF A0 A0 A0 A0 A0 A0
<= hh hh hh hh hh hh
hh
<= FF BF BF BF BF
BF BF

EF-UTF / V.S. Umamaheswaran Page 17 of 22

Figure 10 ISO-8 Controls (C0, C1, DEL) to/from EBCDIC controls (incl. EO)

ISO/IEC 6429 NAME Hex Hex EBCDIC Name
NULL NUL 00 00 NUL NULL
START OF HEADER SOH 01 01 SOH START OF HEADING
START OF TEXT STX 02 02 STX START OF TEXT
END OF TEXT ETX 03 03 ETX END OF TEXT
END OF TRANSMISSION EOT 04 37 EOT END OF TRANSMISSION
ENQUIRY ENQ 05 2D ENQ ENQUIRY
ACKNOWLEDGE ACK 06 2E ACK ACKNOWLEDGE
BELL BEL 07 2F BEL BELL
BACKSPACE BS 08 16 BS BACKSPACE
CHARACTER TABULATION HT 09 05 HT HORIZONTAL TABULATION
LINE FEED LF 0A 25 LF LINE FEED
LINE TABULATION VT 0B 0B VT VERTICAL TABULATION
FORM FEED FF 0C 0C FF FORM FEED
CARRIER RETURN CR 0D 0D CR CARRIAGE RETURN
SHIFT-OUT SO 0E 0E SO SHIFT OUT
LOCKING-SHIFT ONE LS1 0E 0E SO SHIFT OUT
SHIFT-IN SI 0F 0F SI SHIFT IN
LOCKING-SHIFT ZERO LS0 0F 0F SI SHIFT IN
DATA LINK ESCAPE DLE 10 10 DLE DATA LINK ESCAPE
DEVICE CONTROL ONE DC1 11 11 DC1 DEVICE CONTROL ONE
DEVICE CONTROL TWO DC2 12 12 DC2 DEVICE CONTROL TWO
DEVICE CONTROL THREE DC3 13 13 DC3 DEVICE CONTROL THREE
DEVICE CONTROL FOUR DC4 14 3C DC4 DEVICE CONTROL FOUR
NEGATIVE ACKNOWLEDGE NAK 15 3D NAK NEGATIVE ACKNOWLEDGE
SYNCHRONOUS IDLE SYN 16 32 SYN SYNCHRONOUS IDLE
END OF TRANSMISSION BLOCK ETB 17 26 ETB END OF TRANSMISSION BLOCK
CANCEL CAN 18 18 CAN CANCEL
END OF MEDIA EM 19 19 EM END OF MEDIUM
SUBSTITUTE SUB 1A 3F SUB SUBSTITUTE
ESCAPE CHARACTER ESC 1B 27 ESC ESCAPE
INFORMATION SEPARATOR FOUR IS4 1C 1C IFS INFORMATION FILE SEPARATOR
INFORMATION SEPARATOR THREE IS3 1D 1D IGS INFORMATION GROUP SEPARATOR
INFORMATION SEPARATOR TWO IS2 1E 1E IRS INFORMATION RECORD SEPARATOR
INFORMATION SEPARATOR ONE IS1 1F 1F IUS/

ITB
INFORMATION UNIT SEPARATOR

DELETE DEL 7F 07 DEL DELETE
RESERVED xxx 80 20 DS DIGIT SELECT
RESERVED xxx 81 21 SOS START OF SIGNIFICANCE
BREAK PERMITTED HERE BPH 82 22 FS FIELD SEPARATOR
NO BREAK HERE NBH 83 23 WUS WORD UNDERSCORE
INDEX IND 84 24 BYP/

INP
BYPASS OR INHIBIT PRESENTATION

NEXT LINE NEL 85 15 NL NEW LINE
START OF SELECTED AREA SSA 86 06 RNL REQUIRED NEW LINE
END OF SELECTED AREA ESA 87 17 POC PROGRAM OPERATOR COMMUNICATION
CHARACTER TABULATION SET HTS 88 28 SA SET ATTRIBUTE
CHARACTER TABULATION WITH
JUSTIFICATION

HTJ 89 29 SFE START FIELD EXTENDED

LINE TABULATION SET VTS 8A 2A SM/
SW

SET MODE OR SWITCH

PARTIAL LINE DOWN PLD 8B 2B CSP CONTROL SEQUENCE PREFIX
PARTIAL LINE UP PLU 8C 2C MFA MODIFY FIELD ATTRIBUTE
REVERSE LINE FEED (OR REVERSE INDEX) RI 8D 09 SPS SUPERSCRIPT
SINGLE SHIFT TWO SS2 8E 0A RPT REPEAT
SINGLE SHIFT THREE SS3 8F 1B CU1 CUSTOMER USE ONE
DEVICE CONTROL STRING DCS 90 30 xxx RESERVED
PRIVATE USE ONE PU1 91 31 xxx RESERVED
PRIVATE USE TWO PU2 92 1A UBS UNIT BACK SPACE
SET TRANSMIT STATE STS 93 33 IR INDEX RETURN
CANCEL CHARACTER CCH 94 34 PP PRESENTATION POSITION
MESSAGE WAITING MW 95 35 TRN TRANSPARENT
START OF GUARDED AREA SPA 96 36 NBS NUMERIC BACKSPACE
END OF GUARDED AREA EPA 97 08 GE GRAPHIC ESCAPE

EF-UTF / V.S. Umamaheswaran Page 18 of 22

ISO/IEC 6429 NAME Hex Hex EBCDIC Name
START OF STRING SOS 98 38 SBS SUBSCRIPT
RESERVED xxx 99 39 IT INDENT TABULATION
SINGLE CHARACTER INTRODUCER SCI 9A 3A RFF REVERSE FORM FEED
CONTROL SEQUENCE INTRODUCER CSI 9B 3B CU3 CUSTOMER USE THREE
STRING TERMINATOR ST 9C 04 SEL SELECT
OPERATING SYSTEM COMMAND OSC 9D 14 RES/

ENP
RESTORE / ENABLE PRESENTATION

PRIVACY MESSAGE PM 9E 3E xxx RESERVED
APPLICATION PROGRAM COMMAND APC 9F FF EO EIGHT ONES

Figure 11 Character correspondences for G0 set (X'20'--X'7E')

Hex Glyph GCGID UCS Name Hex Var Hex =/# Hex =/# Hex =/#
ISO/IEC
8859-1
(CPGID

819)

1047 500 37 290

Note: The I / V in the Var(iant)column indicates if the character is part of GCSGID 640 (I, Invariant) or not (V,
Variant); '=' sign in the '=/#' column indicates the code point under the Hex column equals the code point under the
Hex column for CPGID 1047, and a '#' sign indicates inequality. GCGID is the IBM Graphic Character Global
Identifier assigned to the character in an IBM Registry (published in IBM CDRA).
Digits 0 to 9, letters 'a' to 'z' , and 'A' to 'Z' are NOT included in the table below. The =/# column for CPGID 290
would have been marked with '#' for the set of letters 'a' to 'z' (lowercase only), if these characters were included in
this table. See Figure 3 on page 10 or Figure 13 on page 20 for their EBCDIC code positions.

20 SPACE SP01 SPACE 40 I 40 = 40 = 40 =
21 ! SP02 EXCLAMATION MARK 5A V 4F # 5A = 5A =
22 " SP04 QUOTATION MARK 7F I 7F = 7F = 7F =
23 # SM01 NUMBER SIGN 7B V 7B = 7B = 7B =
24 $ SC03 DOLLAR SIGN 5B V 5B = 5B = E0 #
25 % SM02 PERCENT SIGN 6C I 6C = 6C = 6C =
26 & SM03 AMPERSAND 50 I 50 = 50 = 50 =
27 ' SP05 APOSTROPHE 7D I 7D = 7D = 7D =
28 (SP06 LEFT PARENTHESIS 4D I 4D = 4D = 4D =
29) SP07 RIGHT PARENTHESIS 5D I 5D = 5D = 5D =
2A * SM04 ASTERISK 5C I 5C = 5C = 5C =
2B + SA01 PLUS SIGN 4E I 4E = 4E = 4E =
2C , SP08 COMMA 6B I 6B = 6B = 6B =
2D - SP10 HYPHEN-MINUS 60 I 60 = 60 = 60 =
2E . SP11 FULL STOP 4B I 4B = 4B = 4B =
2F / SP12 SOLIDUS 61 I 61 = 61 = 61 =
3A : SP13 COLON 7A I 7A = 7A = 7A =
3B ; SP14 SEMICOLON 5E I 5E = 5E = 5E =
3C < SA03 LESS-THAN SIGN 4C I 4C = 4C = 4C =
3D = SA04 EQUALS SIGN 7E I 7E = 7E = 7E =
3E > SA05 GREATER-THAN SIGN 6E I 6E = 6E = 6E =
3F ? SP15 QUESTION MARK 6F I 6F = 6F = 6F =
40 @ SM05 COMMERCIAL AT 7C V 7C = 7C = 7C =
5B [SM06 LEFT SQUARE BRACKET AD V 4A # BA # 70 #
5C \ SM07 REVERSE SOLIDUS E0 V E0 = E0 = B2 #
5D] SM08 RIGHT SQUARE BRACKET BD V 5A # BB # 80 #
5E ^ SD15 CIRCUMFLEX ACCENT 5F V 5F = B0 # B0 #
5F _ SP09 LOW LINE 6D I 6D = 6D = 6D =
60 ` SD13 GRAVE ACCENT 79 V 79 = 79 = 79 =
7B { SM11 LEFT CURLY BRACKET C0 V C0 = C0 = C0 =
7C | SM13 VERTICAL LINE 4F V BB # 4F = 4F =
7D } SM14 RIGHT CURLY BRACKET D0 V D0 = D0 = D0 =
7E ~ SD19 TILDE A1 V A1 = A1 = A0 #

EF-UTF / V.S. Umamaheswaran Page 19 of 22

Figure 12 I8-string to/from E-string octet conversion tables

From I8-string to E-string
⇓⇓ High nibble Low Nibble ⇒⇒

 -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
0- 00 01 02 03 37 2D 2E 2F 16 05 25 0B 0C 0D 0E 0F
1- 10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F
2- 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61
3- F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F
4- 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6
5- D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D
6- 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96
7- 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 07
8- 20 21 22 23 24 15 06 17 28 29 2A 2B 2C 09 0A 1B
9- 30 31 1A 33 34 35 36 08 38 39 3A 3B 04 14 3E FF
A- 80 8C 8D 8E 8F 90 9C 9D 9E 9F A0 AC AE AF BC BE
B- BF CC CD CE CF DC DD DE DF EC ED EE EF FC FD FE
C- 42 43 44 45 46 47 48 49 52 53 54 55 56 57 58 59
D- 62 63 64 65 66 67 68 69 71 72 73 74 75 76 77 78
E- 8A 9A AA BA CA DA EA FA 8B 9B AB BB CB DB EB FB
F- B2 B3 B4 B5 B6 B7 B8 B9 6A 70 B0 B1 41 51 4A E1

From E-string to I8-string
⇓⇓ High nibble Low Nibble ⇒⇒

 -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
0- 00 01 02 03 9C 09 86 7F 97 8D 8E 0B 0C 0D 0E 0F
1- 10 11 12 13 9D 85 08 87 18 19 92 8F 1C 1D 1E 1F
2- 80 81 82 83 84 0A 17 1B 88 89 8A 8B 8C 05 06 07
3- 90 91 16 93 94 95 96 04 98 99 9A 9B 14 15 9E 1A
4- 20 FC C0 C1 C2 C3 C4 C5 C6 C7 FE 2E 3C 28 2B 7C
5- 26 FD C8 C9 CA CB CC CD CE CF 21 24 2A 29 3B 5E
6- 2D 2F D0 D1 D2 D3 D4 D5 D6 D7 F8 2C 25 5F 3E 3F
7- F9 D8 D9 DA DB DC DD DE DF 60 3A 23 40 27 3D 22
8- A0 61 62 63 64 65 66 67 68 69 E0 E8 A1 A2 A3 A4
9- A5 6A 6B 6C 6D 6E 6F 70 71 72 E1 E9 A6 A7 A8 A9
A- AA 7E 73 74 75 76 77 78 79 7A E2 EA AB 5B AC AD
B- FA FB F0 F1 F2 F3 F4 F5 F6 F7 E3 EB AE 5D AF B0
C- 7B 41 42 43 44 45 46 47 48 49 E4 EC B1 B2 B3 B4
D- 7D 4A 4B 4C 4D 4E 4F 50 51 52 E5 ED B5 B6 B7 B8
E- 5C FF 53 54 55 56 57 58 59 5A E6 EE B9 BA BB BC
F- 30 31 32 33 34 35 36 37 38 39 E7 EF BD BE BF 9F

EF-UTF / V.S. Umamaheswaran Page 20 of 22

Figure 13 Categories of octets in E-string converted from I8-string

LEGEND:

mmm
MMM

Control characters
(immm = ISO 646
MMM = EBCDIC

mnemonic)

Variant characters
from IRV of ISO 646

Invariant characters
from IRV of ISO 646

tt =- trailing octet; 22, 33, 44, 55, 66, 77
= First of 2-octet, first of 3-octet, .. , or
first of 7-octet sequence

⇓⇓ High nibble Low Nibble ⇒⇒

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0- nul
NUL

soh
SOH

stx
STX

etx
ETX

st
SEL

ht
HT

ssa
RNL

del
DEL

epa
GE

ri
SPS

ss2
RPT

vt
VT

ff
FF

cr
CR

so/
ls1
SO

si/
ls0
SI

1- dle
DLE

dc1
DC1

dc2
DC2

dc3
DC3

osc
RES/
ENP

nel
NL

bs
BS

esa
POC

can
CAN

em
EM

pu2
UBS

ss3
CU1

is4
IFS

is3
IGS

is2
IRS

is1
IUS/
ITB

2- xxx
DS

xxx
SOS

bph
FS

nbh
WUS

ind
BYP/
INP

lf
LF

etb
ETB

esc
ESC

hts
SA

htj
SFE

vts
SM/
SW

pld
CSP

plu
MFA

enq
ENQ

ack
ACK

bel
BEL

3- dcs
XXX

pu1
XXX

syn
SYN

sts
IR

cch
PP

mw
TRN

spa
NBS

eot
EOT

sos
SBS

xxx
IT

sci
RFF

csi
CU3

dc4
DC4

nak
NAK

pm
XXX

sub
SUB

4- SP 66 22 22 22 22 22 22 22 22 77 . < (+ |

5- & 66 22 22 22 22 22 22 22 22 ! $ *) ; ^

6- - / 22 22 22 22 22 22 22 22 55 , % _ > ?

7- 55 22 22 22 22 22 22 22 22 ` : # @ ' = "

8- tt a b c d e f g h i 33 33 tt tt tt tt

9- tt j k l m n o p q r 33 33 tt tt tt tt

A- tt ~ s t u v w x y z 33 33 tt [tt tt

 B- 55 55 44 44 44 44 44 44 44 44 33 33 tt] tt tt

C- { A B C D E F G H I 33 33 tt tt tt tt

D- } J K L M N O P Q R 33 33 tt tt tt tt

E- \ 77 S T U V W X Y Z 33 33 tt tt tt tt

F- 0 1 2 3 4 5 6 7 8 9 33 33 tt tt tt apc
EO

EF-UTF / V.S. Umamaheswaran Page 21 of 22

Figure 14 Shadow flags associated with E-string octets

LEGEND:
0 = Single octet Control character 1 = Single octet Graphic character
2 = Lead octet of a 2-octet string 3 = Lead octet of a 3-octet string
4 = Lead octet of a 4-octet string 5 = Lead octet of a 5-octet string
6 = Lead octet of a 6-octet string 7 = Lead octet of a 7-octet string
9 = A trailing octet of a multi-octet string

⇓⇓ High nibble Low Nibble ⇒⇒
-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4- 1 6 2 2 2 2 2 2 2 2 7 1 1 1 1 1
5- 1 6 2 2 2 2 2 2 2 2 1 1 1 1 1 1
6- 1 1 2 2 2 2 2 2 2 2 5 1 1 1 1 1
7- 5 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
8- 9 1 1 1 1 1 1 1 1 1 3 3 9 9 9 9
9- 9 1 1 1 1 1 1 1 1 1 3 3 9 9 9 9
A- 9 1 1 1 1 1 1 1 1 1 3 3 9 1 9 9
B- 5 5 4 4 4 4 4 4 4 4 3 3 9 1 9 9
C- 1 1 1 1 1 1 1 1 1 1 3 3 9 9 9 9
D- 1 1 1 1 1 1 1 1 1 1 3 3 9 9 9 9
E- 1 7 1 1 1 1 1 1 1 1 3 3 9 9 9 9
F- 1 1 1 1 1 1 1 1 1 1 3 3 9 9 9 0

EF-UTF / V.S. Umamaheswaran Page 22 of 22

ANNEX - Intellectual Property Related

Transcript of Letter
regarding Disclosure of IBM Technology - EF-UTF

(Hard copy available on request from V.S. Umamaheswaran, umavs@ca.ibm.com)
Transcribed on 1998-07-11

======================================

IBM LOGO
International Business Machines Corporation Route 100

Somers, NY 10589

June 2, 1998

The Chair, Unicode Technical Committee

Subject: Disclosure of IBM Technology - EBCDIC-Friendly UCS Transformation Format (EF-UTF)

The attached document entitled "EBCDIC-Friendly UCS Transformation Format (EF-UTF)" contains IBM
technology that has been filed for application for Canadian Patent. However, IBM believes that the
technology could be beneficial to the EBCDIC community at large; allowing the community to derive the
enormous benefits provided by UCS (ISO/IEC 10646 and Unicode).

This letter is to inform you that IBM is pleased to make the attached documentation, and the associated
technology that has been filed for patent, freely available to anyone concerned towards making the
transformation format as part of the UCS standards.

Sincerely

SIGNED

Elizabeth G. Nichols
Director of National Language Support
and Information Development

EGN:ghs
Attachment

======================================

=========== END OF DOCUMENT ===========

