MAY Z4 99 1@:@6AM SYBASE

UTC /1999-074

Title: Summary of Normative Changes to Conformance for Unicode 3.0
Date: May 21, 1999 o
Source: Editorial Committee '
Action: For Approval at June, 1999 UTC meeting

The following clauses, snipped from the working draft for the book, The Unicode Standard, Version 3.0,
constituts the normative clauses in Chapter 3, Conformance, which have been significantly altered or which
have been added to the standard since the publication of Version 2.0. (The Bidi section is omitted, since it
has been covered on separate agenda topics, with other committee documents.)

The main new material has to do with transformation formats, and has already been agreed to in principle
by UTC. However, for completeness sake, all new and modified clauses are repeated below, with changes
highlighted for those instances with just minor differences. This material is not presented to reopen
everything for discussion and debate, but rather to give the UTC one last look before we go to press, so that
we can get a definitive endorsement of the normative content in the standard regarding conformance,

DYa  deprecated character: a character whose use is strongly discouraged. Such characters
are retained in the standard, but should not be used.

» Deprecated characters are retained in the standard so that previously conform-
ing data stays conformant in future versions of the standard.

. Qbsolete characters are historical. They do not occur in modern text, but they
do not constitute deprecated characters.

D10a case property: a property of characters in certain alphabets whereby certain charac-
ters are considered variants of a single letter, (Sce Section 4.1, Case—Normative.) . -

D10b numeric value property: a property of characters used to represent numbers, (See
Section 4.6, Nutneric Value—Normative,)

Compatibility Decomposition

D20 compatibility decomposition: the decomposition of a character which results from
recursively applying both the compatibility mappings and the canonical mappings
found in the names ligt of Section 14.1, Character Names List and those deseribed in
Section 3.11, Conjoining Jamo Behavior until no characters can be further decom-
posed, and then reordering non-spacing marks according to Section 3.10, Canonical
Ordering Behavior.




MAY 24

99

10: BeAM SYBASE

Transformations

s

C11  When a process interprets a byte sequence in a Unicode Transformation Fornat, it shall
interpret that byte sequence in accordance with the character semantics established by
this standard for the corresponding Unicode character sequence.

C12 When g process generates data in a Unicode Transformation Format, it shall not emit

ill-formed byte sequences. When a process interprets data in a Unicode Transformation
format, it shall treat illegal byte sequences as an error condition.

3,8 Transformations

There is more than one representation of Unicode data that ¢an be conformant to the Uni-
code Standard, Chief among them is UTP-8, discussed in Section 2.3, Encoding Forms and
Appendix C.3, Transformation Formats. In addition, there are compression transformations
such as the one described in the Unicode Technical Report #6, “A Standard Compression
Scheme for Unicode” on the CD-ROM or the up-to-date version on the Unicode web site,

D29 A Unicode transformation format (UTF) is a mapping from each Unicode coded
character sequence to a unique sequence of code values.

* These code values are particular units of computer storage specified by the
transformation format, typically bytes. In that case, a code value sequence can
be referred to as a byte sequence.

Since every Unicode coded character sequence maps to a unique sequence of code values in
& given UTR, a reverse mapping can be detived. Thus every UTF supports lossless round-trip
transcoding: mapping from any Unicode coded character sequence S to a sequence of code
values and back will produce § again. To ensure round-trip transcoding, a UTF mapping
must also map the 16-bit codes that are nat valid Unicode scalar values to unique code
value sequences. These invalid 18-bit codes are FFFE 4, FFFF ¢, and unpaired surrogates.

D30 Foragiven UTE, a code value sequence that cannot be produced from any sequence
of 16-byte values is called an ill-formed code value sequence.

D31 For a given UTF, a code value sequence that cannot be mapped back to 2 sequence of
16-byte values is called an illegal code value sequence.

* For example, in UTF-8 every code value of the form 110x0cxx, must be fol-
lowed with & code value of the form 10%usxx;. A sequence such as 110xxxxx,
Oxxxxxx is illegal, and must never be generated, When Ffaced with this illegal
code value sequence while transforming or interpreting, = UTF-8 conformant
process must treat the first code value 110xxxxx, a2 an illegal termination error:
for example, either signaling an error, filtering the code value out, ot represent-
ing the code value with a marker such as U+FFFD mgpLACEMENT CHARAGTER.

In the latter two cases, it will continue processing at the second code value
Oxmxxz‘ '

D32 For a given UTE an il-formed code value sequence that is not illegal is called an
irregular code value sequence.




MAY 24

99  1@:87AM SYBRSE

* To make implementations simpler and faster, some transformation formats
may allow itregular code value sequences without requiring error handling. For
example, UTF-§ allows non-shortest coda value sequences to be interprated: a
UTF-8 conformant process may map the code value sequence CO 80
(11000000, 10000000,) to the Unicode value U+0000, even though a UTP-8
conformant process shall never generate that code value sequence—it shall gen- .
erate the sequenice 00 (00000000,) instead. A conformant process shall riot use
irregular code value sequences to encode out-of-band information,

D33 UTF-16BE is the Unicode Transformation Format that serializes a Unicode value as
a sequence of two bytes, in Big Endian format. An‘initial sequence corresponding to
U+BEFF is interpreted as & ZERO WIDTH NO-BREAK 8PACE,

» In UTF-16BE, <004D 0061 0072 006B> is serialized as <00 4D 00 61 00 72 00
6B>

D3¢ UTEF-16LE is the Unicode Transformation Format that serializes a Unicode value a3
2 sequence of two bytes, in Little Endian format, An initial sequence corresponding
to U+FEFF is interpreted as & ZERO WIDTH NO-BREAK sPACE. :

* In UTF-16LE, <004D 0061 0072 006B> is serialized as <4D 00 61 00 72 00 6B
00>

D35 UTF-16 is the Unicode Transformation Format that serializes a Unicode value as a
sequence of two bytes, in either Big Endian or Little Endian format, An initial
sequence corresponding to U+FEFF is interpreted as a byte order mark, and is used
to distinguish between the two endians for the rest of the text. It is not considered
part of the content of the text. A scrialization of Unicode values into UTF-16 may or
may not begin with a byte order mark. '

* In UTF-16, <004D 0061 0072 006B> is serialized as <FF FE 4D 0061007200
6B 00> or <FE FF 00 4D 00 61 00 72 00 6B or <00 4D 00 610072 00 6B>

D36 UTEF-8 is the Unicode Transformation Format that serializes a Unicode scalar value
as a sequence of one to four bytes, as specified in Table 3-1.

* In UTF-8, <004D 0061 0072 006B> is serialized as <4D 61 72 6B

Table 3-1 specifies the bit distribution from a Unicade character (or surrogate pair) into the
one- to four-byte values of the corresponding UTF-8 sequence. Note that the four-byte
form for surrogate pairs involves an addition of 10000, to account for the starting offset
to the encoded values referenced by surrogates, The definition of UTE-8 in Amendment 2
to ISO/IEC 10646 can also use five- and six-byte sequences to encode characters that are

outside the range of the Unicode character set; those five- and six-byte sequences are unde- -

fined for the use of UTF-8 ag a transformation of Unicode characters,

Table 3-1. UTF-8 Bit Distribution

Scalar Value UTF-16 lst Byte |2nd Byte | 3rd Byte | 4th Byte
0000000000000 0000000000000 { Daacoooo '
00000yyyyyxoooo 00000yyyyyooooe: L0Vyyyy | 10xs000x
LZEZYYYYYYXXO00 ZZRZYYYYYYXomom 1102722 |10yyyyyy | 10x00ox
LuBuuZZZTYyYyyyioooon | 1101 10wwwwezzzyy+ |11110uuu® | T0uuzzzz Wyyyyyy |10xococ
11011 1yyyymaoooo ‘

2. whete uuuuu = wwww + 1 (to aceount for addition of 10000, 45 in Section 3.7, Sur-
rogates) .

When converting a Unicode scalar value to UTF-8, the shortest form that can represent
those values shall be used, This prescrves uniqueness of encading. For example, the Unj-
¢ode binary value <0000000000000001> is encoded as <00000001>, not as 11000000
100000012, The latter is an example of an irregular UTP-8 byte sequence, Irregular UTF-§

sequences shall not be used for encoding any other information,

When converting from UTE-8 to a Unicode scalar value, implementations do not need to
check that the shortest encoding is being used, This simplifies the conversion algorithm.,

-




