JAaN 3708 B5:607 FR IBM CORF STL SAM JOSE B3 463 43393 TO 9161682755223 FP.B2

Unicode Character Mapping Formats file/iM:Mnicode Date/CharacterMappingFormar |

+

Unicode Character Mapping Formats
UTC/1999-034

Draft, 10-25 MED

This is a proposal for an XML format for exchanging character encoding specifications. The goal is to supply
complete information, so that solely on the basis of the information in the file an implementation could perform
accurate mappings between Unicode and the given character encoding.

Background
IHegal and Unassigned Codes

Client software may need to distinguish the different types of mismatches that can occur when transcoding data 1o and
from Unicode. These fall into the following categories:

1. The sequence is unassigned (aka undefined).
For example,
o 0xA3BF is vnassigned in CP950
o OxOEDD is unassigned in Unicode, V3.0
2. The sequence is incomplete (and thereby illegal):
For example,
¢ 0xA3 is incomplete in CP950.
B Unless followed by another byte of the right form, it is illegal.
o OxD800 is incomplete in Unicode.
M Unless followed by another value of the right form, it is illegal.
o 0xDCOO is incomplete in Unicode.
N Unless preceded by another value of the right form, it is illegal.
3. The sequence is simply illegal.
For example,
¢ OxFF is illegal in CP950

Unassigned characters are treated as a single code point: for example, OxA3BF is treated as a single code point when
mapping into Unicode from CP950Q. The actual conversion routines will typically handle an unassigned value in a
variety of ways (depending on the parameters passed in), such as:

* siop or throw an exception
© in particular, this is commonly used by higher level character encodings, such as ISO 2022 conversions,
to know when to stop converting into one encoding and pick another 1o convert io.
* map it to a sabstitution character
¢ such as the Unicode U+FFFD REPLACEMENT CHARACTER
* represent it by a hex escape sequence
o for example, when mapping from U+1234 to other code pages, it can be represented by "%12%34" in
URLs, "ሴ" in XML or HTML, "w1234" in Java or C++, or "x{1234}" in Perl.

Note: there is an important difference between the case where a Sequence represents a real
REPLACEMENT CHARACTER in a legacy encoding, as opposed to just being unassigned, and
thereby sometimes being mapped to REPLACEMENT CHARACTER for that reason.

Illegal values represent some corruption of the data stream. Conversion routines may be directed to handle this in a
different way than by replacement characters. For example, a routine might map unassigned characters to a
substimtion character, but throw an exception on illegal values.

In some cases, users have the option of using fallback characters, where an chacacter that is not represented in the
target code page is given a “best fit” mapping. For example, an encoding might not have corly quotes; the generic

JAN 3'@@ @5:@7 FR 1BM CORP STL SAN JOSE @8 463 4393 TO 916182755223 P.B3

Unicode Character Mapping Formars file:/D-UmicodeDaty/ClaracterMappingFormua,

quotes can be nsed as a fallhack,

Completeness

It is important that a mapping file be a complete description. From the data in the file, it should be possible to tell for
any sequence of bytes whether that sequence is assigned, unassigned, incomplete, or illegal. Tt shoald also be possible
to tell if characters need to be rearranged to be in Unicode standard order {visual order, combining marks after base
forms),

* Unless otherwise indicated in the data file, any sequences of bytes that are not mentioned are assumed to be
unassigned.

* All control values (CO, C1) should be explicitly mapped.

* All private use (e.g. user defined) characters should be explicitly mapped, either 1o the private nse zone in
Unicode, or to the correct characters outside of that zone.

* Only a real replacement character should be mapped to REPLACEMENT CHAR; unassigned characters
should not be mapped to it. Similarly, when mapping back from Unicode, only the REPLACEMENT CHAR
should map to SUB or other legacy equivalent.

* Incomplete and illegal sequences should be indicated.

* All fallback mappings must be clearly indicated. This is especially important for modern software that
guarantees round-tripping into and out of Unicode. When emitting XML, for example, fallbacks should not be
used; instead, escapes are used that preserve data integrity.

XML Format

The file starts with the following lines. The encoding can be any valid encoding: only the ASCH repertoire of
characiers is required, but comments may be in other character encodings..

<?¥ml version="1.0% encoding="UTF-8"7:
<!DOCTYPE characterMapping SYSTEM "CharacterMapping.dtd=x

Header

A mapping file begins with a cornment header. Here is an (artificial) example;

<characterMapping

name="Cpo38"

description="Sun variant of CP942 far Japanese”
unicodeVersion="3.0"

tableVersion="2"

contact="marké@unicode.org”

bidiorder="logical"

combiningOrder=*after®

-

The characterMapping element is the root. It contains a number of required attributes:

name is the IANA name. If none exists, use "X-name”. The name should be uigue; if two mapping tables differ in
any mapping, in specification of illegal characters, in their bidi ordering, in their combining character ordering, etc.
then they must have a different name (or different version: see below),

description shonld be complete enough 1o describe the code page, and distinguish # form other similar code pages. It
should include a rough characterization of the target locale, such as "for Tapanese™ or "for Westem Europe”, or "for
Greek".

unicodeVersion is the earliest version of the Unicode standard thar contains all of the characters mapped to. That is,
most of the ISO 8859 series will use Unicode 2.0; the new ones with Euro will use Unicode 2.1.

JAM 3'BE B%:E8 FR IBM CORFP STL SAM JOSE B8 463 4393 TO 9161B27SS223 F.B4
Unicode Character Mapping Formats filex//y:MUnicodeData/CharacterMappingFormat. |

tableVersion is the version of the data. Any time the data is modified, the value must be increased. It only additions
are made, then the same name can be retained; if not, then a new name must be nsed. Additions change mappings
from "unassigned™ to "assigned”. Any change in the validity of character SeqUenCes rEires a REW name.

coniact is the person to contact in case errors are found in the data.

bidiOrder specifies whether the character encoding is to be interpreted in visual or logical order. Unicode is sirictly
logical order. Application of the Unicode Bidirectional Algorithm 15 required to map to a visual-order character
encoding; application of a reverse bidirectional algorithm is required to map back to Unicode. The default value for
this attribute is "logical”. It is only relevant for character encodings for the Middle East (Ambic and Hebrew).

combiningOrder specifies the order of combining marks. Some character encodings, typically those for
bibliographic use, store combining marks before base characters. Unicode stores them uniformly after base characters.
The default value for this atribute is "after”. This is only relevant for character encodings with combining marks.

History

<history>

«modified version="2" date="1995-09-35">
Added Furo.

</modified>

<modified version="1" date="1997-01-01"x
Made out of whole cloth for illustration.
=/modified:>

</history>

“rnotes:
No notes here.
= /fotes>

The history element provide information about the changes to the file, coordinared with the version. The latest
version should be first. This is a required field. The subelements and artributes should be clear from their names.

The notes provide an opportunity to document special features of the mapping.

Naming Information

<gliaseg>
<!~=List of aliases, such as IANA namos-—>
=N N="MS5983" />
=n n="MacSunJIs"/=
</aliases>
<displayNames>
<!--List of display names for this encoding in Qifferent langauges=--»
<d l="en" n="3un Chinese"/=
<d 1="fr_ fr- n=*Chincis solar"/s
</displayNames>

The aliases element provides a list of possible aliases for this code page. It is optional. The names may not be unique,
becanse of the historic behind the development of names. The n attribute is used 1o supply the name.

The displayNames clement is optional, but strongly recommended. It provide user-level names that can he presented
in menus, such as in Netscape Navigator View>Character Set or the Microsoft Intermet Explorer View>Encoding.

The individual names are supplied with the d elements. The | attribute supplies the locale in the format "<ISO 2-letter
language> (*_" <ISO 2-letter country> (7’ variant)*)?", Tha attribute supplies the name. Both ammibutes are required.

Note: short attribute and element names are used just to conserve space where there may be a large
number of items, or for consistency across other elements that may have a large number of items.

JAW F'EE B5:6@28 FR OIBM CORP STL SAM JOSE B2 463 43593 TO 9161E2TSS2Z23 [
Unicode Charagter Mapping Formats file//D:UnicodeData/CharacterMappingionmat |

Delta Mappings
<import gource="ftp://frp.unicede.org/Public /MAPPINGS/VENDORS /MICSFT/CPRS2 . XML, />

It 15 possible to supply just the differences between one table and a base table. This is done with the import element,
which is optional. If this is used, then any further data simply overrides the data in the base table. The value of the
source attmbute is a valid URL pointing 10 a valid character encoding table.

Validity Specification

As discussed above, it is important to be able to distinguish when characters are unassigned vs. when they are invalid.
Valid and invalid sequences are specified by the validity element.

<validitgy=
<!--validity specification for SJIS-->
<illegal s5="FD" e="FF"/>

<legal s="81" &="SF" next="second" />
<legal s="E0" &="FC" next="gecond® /»

<legal type="second" =="40" e="7RE"/=
<legal type="second" g="80" g="FC"/>

</validity>
<validitys=

The subelement are fegal or illegal. Their attributes are:

* type the type of the given bytes; the defaunilt = “'start".
* s the start of the byte range
* e the end of the byte range: there is no default.
e If it is missing, it is interpreted as being the same as s (thus a range with one single value).
* mext the type that the following bytes are required to be in; the defanlt = "mone", which indicates completion

If we ook at the above table, the first line tells us that the single bytes FD throngh FF are illegal. The next two lines
say that the bytes in the ranges &1 through 9F and EQ through FC are legal, if they are followed by a byie of
type="second”. More detailed samples for a complex validity specifications are given in Samples.

If any bytes are not explicitly set fortype="start™, then they are assumed to be legal with next="done". Thus most
single-byte encodings do not need validity elements. Any string can be used for the value of type or next, as long as it
13 not subject 1o an error condition.

Error Conditions

* Two lines conflict if they assign the same byte to a different type, or the same byte 1o a different next, or if one
line makes the byie legal and the other makes it illegal.

* In the case of conflicts, if one of the conflicting lines is from an import then the byte ranges are adjusted to
exclude the conflicting bytes (possibly generating multiple lines). Otherwise the file is invalid.

= If there is a type value with no matching next value in another line, the line is incomplete.

» If there is a next value with no matching type value in another line, the line is incomplete.

* If an incomplete line is from an import then it is disregarded. Otherwise the Jile is invalid

Assignments

The last part of the table provides the assignments of byte sequences to Umcode characters, Here is an example:

<assignmentss

A nRFT

JaH 3'EAR BS:EA8 FROIBM CORF STL SAN JOSE B3 463 4393 TO 9161602755223 . B
Unicode Charagter Mapping Formars file-///D:/UnicodeData/CharacterMappingForveat,

!l —-Unassigmments—-->
<ua bh="AA"/>
<ua b="AR"/>

<!-—-Fallbacks—->
<f b="22% u="201C" n="LEFT DOUBLE QUOTATION MARK" /=
<f B="22" u="201D" n="RIGHT DOUBLE QUOTATION MARK" /=

<!--Main mappings=--»

<!--Map ASCII to the same range--»
<ar s="00"

e="7E" u="0000"/>

<!--Map user-defined area to private use--»
<ar s="F040" e="FO07E" u="E0Q0"/>

<!=--Map other characters specifically-->
b="Al" u="FF6l" n="HALFWIDTH IDEQGRAPHIC FULL STOP"/=>
b="A2" u="FF62" n="HALFWIDTH LEFT CORNER EBRACKET" /=

<a
<a
<&
<a
<a
<a
<a
<&
<a

b="81546"
b="8157"
b="8158"
b="8159"
b="815A"
b="815B"
b=rg815C"

u="3003" n="DITTO MARK"/>

u="4EDD" />

u="3005" n="IDEOGRAPHYC ITERATION MARK"/>

u=*300&6" n="IDEOGRAFHIC CLOSING MARK"/:»

u="3007" n="IDEQGRAPHIC NUMBER ZERO"/>

u="30FC" n="KATAKANA-HIRAGANA PROLONCED SOUND MARK" />
u=*2015" n="HORIZONTAL EBAR"/>

</assignmentss>

In all of the elements, the attributes have the following meanings:

* b asequence of bytes. Always 2 hex digits, unsigned. Multiple values should be separated by commas, but the
commas can also be omitted.
1 a sequence of Unicode code points. One or more hex digits; unsigned. Muluple values must be separated by

L 4

The elements are:

coInmas.

u the Unicode code point name. Optional, but useful for reading the file and performing consistency checks. In
the above example it is omitted for the CJK ideograph since the name adds little informarion.
x alternative mapping. The value is a label on assignment lines used to add alternate mappings o the same file.
Multiple labels can be attached 1o the same line, using commas between them. The choice of names is
arbirtrary, except in so far as they might be used in an API 10 specify a variant of the character encoding.
Examples are:

e "path" indicates that the mapping is for pathnames.

B For example, maps 5C to 005¢C "\" instead of 00AS "¥".

o "graphics1” indicates that control bytes in the source set are interpreted as graphic characters for old
PC sets,

B For example, maps 10 1o 2582 BLACK RIGHT-POINTING POTINTER.

o "graphics2" indicates that control bytes in the source sef, except for CR. and LF are interpreted as
graphic characters for old PC sets.

B For example, maps 10 t0 25BA BLACK RIGHT-BOINTING POINTER.

© "cdra" indicates that control bytes in the source set are interpreted according to IBM CDRA alternate
mappings.

B For example, maps 7F to 12 sUB.

¢ ua specifies thar a byte sequence is unmapped. Normally this is not needed, since any sequence

that s not assigned is assumed 1o be unassigned. The one exception is if there is an import statement,
where it may be necessary to override specific mappings.

* aspecifies an mapping from byte sequences 1o Unicode and back.

* fis the same as a, except that it specifies that z mapping is a fallback. This means that the mapping can be

Sl T

JAaM 3'0E B%:03 FR OIBM CORF STL SAM JOSE 83 463 4333 TO 916182755223 FP.av

Umcode Characier Mapping Formats file///Dx/UnicodeData/CharacterMapping Format |

used 1f fallbacks are murned on by API options.

* ar specifies that a range of byte sequences map to a range of Unicode values. This is a shorthand for a series of
a mappings--especiaily useful for private use zone assignments. It uses attribuess for the start of the SeUEnce;
¢ for the end of the sequence, and u for the staring Unicode value. All byte sequences berwesn s and e are
mapped to the range from u to (a+e-s).

© This element is present purely to reduce the number of lines in the file; in every respect (such as in error
conditions), it should be treated as if it were simply an expanded series of a elements.

Error Conditions

* All sequences of bytes must be valid according to the validity specification. Otherwise the filz is invalid.
* All sequences of bytes must map to legal Unicode code poims. Otherwise the file is invalid.
© The illegal code points are: out-of-range values (greater than 10FFFF), surrogate valnes (D800 1o
DFCQ), and excinded values (of the form :xFFFF or xxFFFE).

* A fallback line must have the same byte sequence as in some assignment line, or the same Unicode sequence
as in some assignment line (not necessarily the same assighment line), but not both. Otherwise the file is
invalid,

* Two assignment lines conflict if they have either the same byte sequence or the same Unicode sequence.

* An unassignment line conflicts if it has the same byte sequence as either an assigmment line.

* In the case of conflicts, if one of the conflicting lines is from an import then it is disregarded. If the conflicting
lines have different x (altemate) values, that does not cause a problem. Otherwise the file is invalid.

Samples
Full Sample
A full example is on CharacterMapping xml. It is not a real one since it tries to show all of the featares in ong file,

whereas in real life only a subset would be used. You can view it directly with Iternet Exploter, which will interprer
the XML—however, it doesn't appear to fetch the dtd properly, so youll need to access them without using a link.

UTF-8 Sample
Here is a simple version of the UTF-8 validity specification, with the shortest-form bounds checking and exact limnit

bounds checking omitted. While in practice a mapping file is never required for UTF-8 since it is algorithmically
derived, it is instructive to see the use of the validity element as a complicated example. As a reminder, first here are

the valid ranges for UTF-§:
Unicode Code Points | UTF-8 Code Units |
0 _lw)
7F | i 7F | |
80 {c280
7FF ! DFBF
800 1 B0 A0 80
FFFF | EFBFBF
010000 Il F0908080
| LOFFFF | F4 SF BF BF
<illegal 5="80" e = "BF"/»
<illegal s="F5" @ = *"FF*/»

JAM 3'8E B%:89 FR IBM CORP STL SAM JOSE B2 463 4393 TO 916182755223 P.ES
tmjcode Character Mapping Formats file//MDr-fUnicodeData/CharacterMappingFormar,

L3

<l== 2 byte form --»
<Jegal s==C0" &="DF" next="final" /»
<legal cype="final® s="80" e="BF" /-

<t—— 3 bvte form -->

<legal s="DF" e="EF' next=‘"prefinal® />

<legal type=*prefinal® 5="80" e="BF" next="final® J>
<!== 4 byte form -->

<legal s="F0" e="F4" next="preprefinal" /-
<legal type-"preprefinal" s="80" a=*RpF" next="prefinal* />

UTF-8 Full Sample
The following provides the full validity specification for UTF-8.

<validity=
«!==Validity specification for SJIS--=

<illegal 5="80" e = "Cl1l"/=>
<illegal g="F&" & = “FF"/s
<i-- 2 byte form -=-»

<legal =="C2" &="DF" next="final" /=
<legal type="final" s="80" e="BF"/>

<l== 3 byte form; Low range iz speciale-x
<legal s="EQ" next="prefinaltow" /=
<legal type=‘prefinalLow”® s="A0" e="BF" next="final® />

<!-~ 3 byte form, Normal -—-»

<legal s="El1" e-"EF" next="prefinal® /=

<legal type="prefinal™ s="80" ae=*"RF" next="final" />

<!-- 4 byte form, Low rangs is special --»

<legal s="FQ" next="preprefinalLow" /=

<legal type="preprefinallow® g="90" a="RE" next="prefinal~"/-
<l--~ 4 byte form, Normal --=

<legal s="F1" e="F3= next="preprefinal " /=

<legal type=*preprefinal” s=~80" a="gEF* next="prefinal* /»
<!-- 4 byte form, High range isspecial--»

<legal s="F4r next="preprefinalHigh" /»

<legal types'"preprefinalHigh® s="80" e="§F" next="prefinal" />

</validity=
DTD
A draft DTD is on ChamcterMapping did.

T sk TOTAL PAGE.BES

