
bhx080.doc
Printed at: 13:50 on Thursday, 8 June, 2000

Page 1 of 18

WG3: BHX-080

08 June 2000

Authoritative version: bhx080.pdf

ISO

International Organization for Standardization

ISO/IEC JTC 1/SC 32 Data
Management and Interchange WG3

Database Languages

Secretariat: USA (ANSI)

Project: 32.03.05.02.00

Title: A Review of Some Possible Problems with SQL character features

Author: J M Sykes (United Kingdom)

Source: UK Expert

Status: Discussion paper

Abstract: A study of SQL Features F451, "Character set definition", F461, "Named character sets"
and F691, "Collation and translation" has revealed several problems which cannot be
resolved without discussion.

References:

[Framework-99] ISO/IEC 9075-2:1999, Information technology — Database languages — SQL — Part 1:
Framework (SQL/Framework)

[Found-99] ISO/IEC 9075-2:1999, Information technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation).

[FrameworkWD] (ISO Working Draft) Database Language SQL - Part 1: Framework (SQL/Framework),
March, 2000

[FoundWD] (ISO Working Draft) Database Language SQL - Part 2: Foundation (SQL/Foundation),
March, 2000

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 2 of 18 08 June 2000

[SchemataWD] (ISO Working Draft) Database Language SQL - Part 10: Schemata (SQL/Schemata),
March, 2000

[MAD-145] SQL standard character set names, L Gallagher, November 1996

[CWB-051] Character set internationalization revisited, J Melton, January 1998. (Note: this paper
contains references to ten papers on the subject considered by the Florence meeting of ISO
DBL in October, 1989)

[BHX-049] On Three Different Kinds of Sameness, JM Sykes, April 2000, (WG3: BHX-049)

[BHX-053] A Compendium of Possible Problems in SQL: 1999, Hugh Darwen (Ed.), May 2000
(WG3:BHX-053)

[ISO10646] ISO/IEC 10646-1:2000, Information technology — Universal Multi-Octet Coded Character
Set(UCS) — Part 1: Architecture and Multilingual Plane

 [ISO14651] ISO/IEC DIS 14651 – International string ordering and comparison – Method for
comparing character strings and description of the common template tailorable ordering,
April 2000

[Unicode] The Unicode Standard, Version 3.0, The Unicode Consortium, Feb 2000

[UnicodeGlossary] http://www.unicode.org/glossary

[UnicodeTechIntro] http://www.unicode.org/unicode/standard/principles.html

[UnicodeFAQ] http://www.unicode.org/unicode/faq

[UnicodeTR#10] Unicode Collation Algorithm, (Unicode Technical Report #10), Revision 5.0, November
1999

[UnicodeTR#15] Unicode Normalization Forms (Unicode Technical Report #15), Revision 18.0, November
1999

[UnicodeTR#17] Character Encoding Model (Unicode Technical Report #17), Revision 3.0, November 1999

1 Introduction
In the course of drafting [BHX-049], the search for a satisfactory definition of identical in the case of character
strings revealed some curious inconsistencies in the SQL standard, some of which are editorial and not difficult
to correct, while others seem to be more fundamental. Some of these are documented in [BHX-053]. Further
investigation has led us to review the whole treatment of character data and to question whether SQL's facilities
for defining and manipulating such data are either necessary or sufficient.

The body of this paper consists of an overview of the history of SQL's treament of character data, followed by
our view of the present situation and what should be done about it. There follow annexes giving respectively: a
review of the views and stated intentions of CWB-051, with our views thereon; a selection of definitions from
sources other than SQL; a review of character-related definitions in [Found99]; and an attempt to answer CWB-
051's question 'What is a character?' according to Unicode.

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 3 of 18 08 June 2000

2 A brief history of characters in SQL

2.1 SQL-87 and SQL-89
The only character type was CHARACTER. Neither specified either NATIONAL CHARACTER or VARYING
CHARACTER.

2.2 SQL-92
SQL-92 introduced data types that had been implemented by some vendors, such as NCHAR and VARCHAR,
and some additional features such as concatenation and substring.

It also introduced character sets, collations and translations, mostly in a number of papers processed at the
Florence meeting in October 1989. Much, but by no means all, of the resulting language was published in SQL-
92, though none in Entry level, and not a lot in Intermediate level. The remainder was carried over into SQL3.

2.3 SQL-99
Two important papers were processed before SQL-99 was published:

2.3.1MAD-145
In January 1997, MAD-145 introduced the names of standard character sets, as specified in the U.S. FIPS
publication for SQL. These were: SQL_CHARACTER, GRAPHIC_IRV (or ASCII_GRAPHIC), LATIN1 and
ISO8BIT (or ASCII_FULL).

2.3.2CWB-051
In January 1998, CWB-051 made a serious attempt to simplify what had become a somewhat untidy and possibly
unimplementable specification. The discussion section of CWB-051 contained much factual background material
that is still relevant, and we refer the reader particularly to the first three subsections:

1.1 A brief history of SQL-92 character internationalization,

1.2 Motivation for SQL-92 character internationalization, and

1.3 An outline of SQL-92 character internationalization

The following sections are considered in more detail in Annex A.

The proposal in Section 2 of CWB-051 also made some changes that are not mentioned in Section 1. For
example, it introduced two subclauses listing a number of terms defined in ISO/IEC 10646 and Unicode
respectively, each of which asserts that "This part of ISO/IEC 9075 makes use of the following terms ...", when in
fact it uses hardly any of them. Since the proposal was large and the meeting that processed it had a heavy
agenda, it would not be surprising if there were more such cases.

Clearly, CWB-051 set out to be a bold step in the right direction, but it failed to deliver on some of its promises,
and, in our view, was not bold enough.

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 4 of 18 08 June 2000

2.4 Since SQL-99

2.4.1BHX-049 On Three Kinds of Sameness
This paper needed to specify how to determine whether two character values were identical. The first approach to
be considered, and actually adopted in the first version, was based on comparing the results of casting the two
character strings to bit strings, as being simpler than getting involved with collations and other details of Features
451, 461 and 491. Following further discussion, it was decided to discard this approach and face up to collations.
However, the authors became increasingly concerned with the specification of these features, and found a number
of problems, varying in severity from minor editorial to apparently more severe ('apparently' because of lack of
clarity). It was decided to document these problems as formal comments, and to include all that were found in
time in the UK's comments on the SQL DCOR. However, because they all relate to problems in [Found99], we
have not assumed that any consequent changes to the SQL specification will necessarily be reflected in the
Corrigendum when published. So, to make this expectation a little more clear, the title of [BHX-053] was
changed.

2.4.2BHX-053 A Compendium of Possible Problems in SQL: 1999
Of the 43 comments listed, about half have been generated as a result of our researching aspects of character sets.
More have been found since.

3 Overview of the present situation

3.1 Summary of the facts
o As we have noted above, CWB-051, having reviewed the situation as it was in early 1998, expressed the

intention to make certain changes, but didn't do all it intended;

o A number of possible problems have been found in the specification of Features 451, 461 and 691;

o As far as we know, in the eight years since these features have been in the SQL standard (in one form or
another), no one has yet claimed to have implemented any of them. However, at least one implementor is
understood to have provided support for Unicode (by hiding it behind NATIONAL CHARACTER), while
another is known to be uncomfortable with at least certain aspects of collations.

o Acceptance of Unicode has increased in the two years since CWB-051: version 3.0 was published in
February 2000, and, to quote the Unicode FAQ Web page:

The industry is converging on Unicode for all internationalization. For example, Microsoft NT is
built on a base of Unicode; AIX, Sun, HP/UX all offer Unicode support. All the new web
standards; HTML, XML, etc. are supporting or requiring Unicode. The latest versions of Netscape
Navigator and Internet Explorer both support Unicode. Sybase, Oracle, DB2 all offer or are
developing Unicode support. [emphasis added]

o The issue of alternative Unicode representations (mentioned in CWB-051, section 1.9.3 "OK, what is a
character?") is now more comprehensively addressed in [Unicode TR15], "Unicode Normalization
Forms" and in [UnicodeTR17] "Character Encoding Model".

Moreover, the former includes the statement:

The Unicode Standard provides a recommended syntax for identifiers for programming languages
that allow the use of non-ASCII languages in code. It is a natural extension of the identifier syntax
used in C and other programming languages.

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 5 of 18 08 June 2000

o SC22 (Programming languages, their environments and system software interfaces) /WG22
(Internationalization) has recently produced [ISO14651] (ISO/IEC DIS 14651 – "International string
ordering and comparison – Method for comparing character strings and description of the common
template tailorable ordering"). CWB-051 expressed reservations about this work in section 1.7 "Some
caveats"; whether these reservations have been withdrawn we have not yet discovered. However,
[UnicodeTR10] " Unicode Collation Algorithm" also exists, and includes the statement:

 The Unicode Collation Algorithm assumes multiple-level key weighting, ... as described in ... the
proposed International String Ordering standard (ISO/IEC 14651).

3.2 Proposed action
o Features 451, 461 and 691 should be notionally removed from the SQL standard;

o The situation should then be reviewed, much as was done by CWB-051, to determine the requirements for
an SQL-implementation to be able to deal with:

- character data encoded in more than one way. In this review, both SQL/MED and SQL/OLB must
be considered, as well as data transfer to and from host languages;

- identifiers containing characters not in the repertoire of <sql language character>.

o If and only if necessary (bearing in mind that NCHAR &c. are already there) an SQL feature should be
specified to satisfy those, and only those, requirements.

3.3 Guidelines
o In whatever is specified, terms defined in other standards (including The Unicode Standard) shall be used

with the meanings defined in those other standards, except in the case that the definition in another
standard is inadequate.

o Specifications from other standards shall be referenced wherever possible.

o Text from other standards shall not be repeated in the SQL-standard.

o Nothing should be specified in the SQL standard that is or ought to be in some other standard.

o At least informal liaison should be established with: SC 2, SC 22/WG20 and the Unicode Consortium.

o What implementors have already done or are planning to do must be considered.

3.4 Issues needing to be addressed

3.4.1How many named character sets?
o Which does the SQL database designer need to be able to specify, out of: UTF8, UTF16, UTF16LE,

UTF16BE, UTF32, UTF32LE, UTF32BE?

(Note. [CWB-051] proposed to insert a paragraph into SQL/Foundation that said:

– UNICODE and ISO10646 specify the name of a character repertoire that consists of every
character represented by The Unicode Standard Version 2.0 and ISO/IEC 10646 UTF-16, where
each character is encoded using exactly 16 bits.

In [Found99] this has been amended to:

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 6 of 18 08 June 2000

- UTF16 and ISO10646 specify the name of a character repertoire that consists of every character
represented by The Unicode Standard Version 2.0 and by ISO/IEC 10646 UTF-16, where each
character is encoded using the UTF-16 encoding, occupying either 1 (one) or 2 octets.

The statement appears still to be incorrect, because [UTR#17], section 4 "Character Encoding Form
(CEF)", says:

o UTF-16 [is] used only with Unicode/10646: a mix of one to two 16 bit code units.

o Where and how should the syntax allow such character set names to be specified?

3.4.2Normalization

From [UnicodeTR#5]:

Note: Text containing only ASCII characters (U+0000 to U+007F) is left unaffected by all
of the normalization forms. This is particularly important for programming languages.

Sigh of relief for SQL code!

o There are four forms of normalization. How many should SQL recognise? Which should they be?

o What data can an SQL-implementation ever, sometimes or never assume to be normalized? SQL-data,
character literals, character values passed as parameters or received as results? If unnormalized data is
found, should an exception be raised, or the data be normalized forthwith, or only if necessary?

o Should 'normalized' be specifiable as a constraint?

o Should a NORMALIZE function be specified?

o What should be done about concatenation, in view of "None of the normalization forms are closed under
string concatenation." ([UnicodeTR#5], Introduction)

3.4.2Collation
o How should collations be made available?

o How shall the collation to be used be specified, taking into account current implementations.

3.4.3Counting characters
o How should characters (particularly composite characters) be counted, for the purposes of

- the results of CHAR_LENGTH, POSITION and OVERLAY

- the parameters of SUBSTRING, OVERLAY, LIKE and SIMILAR?

3.4.4Parameter and result passing
o How should Unicode strings be passed as parameters to (or received as results from) host languages that

are not 'Unicode-aware'?

3.5 Possible outcomes (not exclusive)
o An implementor might allow a user to specify that NCHAR is to mean Unicode (or, presumably,

something else).

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 7 of 18 08 June 2000

o A new data type, UCHAR, might be introduced, meaning Unicode.

o A means might be provided to specify a constraint that a Unicode character column contain only some
subset of Unicode, for example Sanskrit or Cyrillic.

o Names might be defined for standard functions to convert from one character set to another, for example
CHAR_TO_NCHAR(), ASCII_TO_EBCDIC().

o Names might be defined for standard collations, for example ISO8BIT_CASEBLIND, and a method
provided for specifying their use, possibly at the time of their use only.

o A means might be provided of designating a (user-defined) function as a collation, in much the same way
as a udt ordering function.

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 8 of 18 08 June 2000

Annex A: Detailed review of CWB-051
Note: Heading numbers are taken from [CWB051]

ORIGINAL TEXT Our comment

1.4 What’s right and what’s wrong with SQL-92 character
internationalization

In spite of the problems and complexity of SQL-92’s character
internationalization facilities, some things were done in a reasonable way; these
things will require few (if any) changes. Other things were done in ways that
have proved to be naïve, unusable, or unpopular; these will be changed
significantly or eliminated entirely.

To the 'Other things', we
would add
'unimplementable'. Sadly, we
believe not enough was
changed or removed.

1.4.1 What’s right

• The ability to specify a character set for a given column in a table is
needed and should be retained.

Indisputable.

• The ability to specify different character sets for different columns in a
table is required and should be retained.

Indisputable.

• The ability to specify a default character set for all columns in all tables
in a single schema is clearly appropriate and should be retained.

Debatable, but not
objectionable.

• The ability to express the names of schemas, tables, column, and other
objects in the character set of a user’s choice is required and should be
retained.

Debatable, and removed by
the time ISO saw this paper.

• The ability to specify a default collation for a column, parameter, or
other character string object that is different from the default collation of
the object’s character set is needed and should be retained.

Debatable. The need for this
is not clear.

• The rules for determining the collation to be used for a given operation
or applied to the result of an operation are demonstrably correct and
should be retained.

Debatable. It would suffice
to specify a collation only on
an operation.

• The need for a “union” character set (SQL_TEXT) that represents all
characters in all supported character sets is obvious and should be
retained for use in the Information Schema and in various descriptors.

Probably.

1.4.2 What’s wrong

• The attempt to allow an application writer to specify a (different)
character set for a specific identifier or character string literal has been
widely derided and is obviously unsuccessful; it should be eliminated in
favor of requiring a single — but specifiable — character set to be used
for any single entity such as an SQL-client module or “standalone”
schema definition.

Indisputable, except that the
proposal to retain the module
character set could be
debated.

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 9 of 18 08 June 2000

ORIGINAL TEXT Our comment

• The ability to define new character sets using SQL language is clearly
over-kill; furthermore, it is no longer desirable or necessary, since there
are widely-accepted conventions (if not actual de jure standards) for
associating programming language identifiers with character sets.

Indisputable.

• The ability to define collations using SQL language is clearly over-kill;
furthermore, it is no longer desirable or necessary, since there is now a
de jure standard for defining custom collations and there are at least a
small number of de jure standards for collations.

Indisputable.

• The ability to define translations using SQL language is clearly over-kill;
regrettably, there is nothing appropriate to replace it, so solutions are
likely to be awkward at best.

Indisputable that there was
over-kill, and something is
probably needed.

• The definition of SQL_TEXT is unnecessarily cumbersome; its
implementation-defined characteristic doesn’t help application
portability. It is more appropriate to select a specific character set — for
which the present paper will select UCS/UTF-16 (a/k/a Unicode) — for
this purpose.

We are sympathetic to this;
but it's not clear that the
proposal achieves the stated
objective.

• There is not a unifying principle for character sets; specification of such
a principle would greatly simplify efforts to explain what SQL supports
in this area.

We have not noticed such a
unifying principle.

• The alignment of SQL with host languages is inadequate and should be
enhanced.

Indisputable.

1.5 Motivation for the approach taken by this proposal
The approach taken by the present proposal is driven by several factors:

• The commercial influence and success of Unicode (used, for example,
by HTML, Java, and Windows NT), along with the congruence between
that specification and the international standard ISO/IEC 10646.

Indisputable

• The (fairly) recent publication of an international standard that provides
the ability to define (customize) collations for any language and any
script, along with the publication of a few national standards (at least
Canada and Germany — possible more) for specific collations.

Indisputable

• Firm, even resolute, input from database system vendors that the SQL-92
character internationalization specifications are too complex and not
nearly relevant enough for their products and customers.

Indisputable

1.6 Outline of the present proposal
The present proposal offers changes to several parts of SQL3 related to
character internationalization. Of course, the most pressing changes are those
proposed to the Final Committee Draft documents, for which the present
proposal offers solutions to one or more National Body comments on the FCD
ballots for those documents. In the spirit of keeping the future aligned with the

No comment called for.

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 10 of 18 08 June 2000

ORIGINAL TEXT Our comment
present, corresponding changes are offered for the Working Draft documents of
the same parts for which FCD ballots were taken; similarly, changes are offered
for the WD documents of any other parts that are affected by the subject being
proposed.

The changes can be summarized thus:

• In SQL/Framework, modify and significantly enhance the Concepts
related to character internationalization — both aligning with the new
specifications proposed for other parts and increasing the coverage and
understandability of the presentation.

While we agree something
has to go in
SQL/Framework, we seem to
have achieved
fragmentation, possibly with
some undesirable
duplication.

• In SQL/Foundation:

– Eliminate the ability to prefix identifiers with
<underscore><character set specification>

Clearly done.

– Eliminate the ability to define new character sets “from scratch”,
but retain the ability to define a new character set identical to
another character set (thus providing compatibility for
applications already using one character set name in spite of
standards assigning a different identifier to the same character
set); do the same for collations. For translations, make the
existing description in SQL/Framework accurate by restricting its
capabilities to either specification of a named translation or of an
SQL-invoked function used to perform the translation.

Done, but the value of
having what is essentially
only an aliasing facility of
debatable value.

The ability to designate an
SQL-invoked function as a
translation might be useful.

– Add ISO/IEC 10646 UTF-16 (a/k/a Unicode) as a defined
character set to the list already in SQL/Foundation.

Done, but the definitions are
not sufficiently precise.

– Ensure that Unicode is the “canonical form” for specifying
character sets (that is, every character in every character set must
be “mappable” to a Unicode character) without including
language requiring that Unicode actually be mandated for user
data or for metadata other than in the Information Schema. (I
have looked to HTML for guidance here.) Note that Unicode
accomodates “private use characters”, which allow
implementation-defined character sets containing characters not
published in the Unicode standard to be supported without
violating this requirement.

Reasonable, but needs
discussion. The use of
quotes suggests some lack of
precision.

– Put into place SQL specifications (syntax where appropriate,
rules elsewhere) supporting the referencing of registries of
character sets, etc., for use in specifying identifiers for character
sets, etc.

Reasonable. But we have
been unable to discover how
this is achieved.

– Modify the specification of identifiers to use Unicode-like
language to describe permitted characters.

If Unicode-like language
means Unicode notation,
then: yes.

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 11 of 18 08 June 2000

ORIGINAL TEXT Our comment

– Modify the Information Schema views (and the corresponding
Definition Schema tables) related to character sets, collations, and
translations to match the new specifications.

Done.

• In SQL/PSM:

– Make minor changes to keep aligned with SQL/Foundation.

• In SQL/Bindings:

– Make minor changes to keep aligned with SQL/Foundation.

– Make changes to the host language bindings to take advantage of
the new character model.

The changes were "To be
supplied", and appear not to
have been.

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 12 of 18 08 June 2000

Annex B: ISO/IEC 10646 and Unicode definitions

B.1 Source text
Study of the Unicode Web pages (on the web site) has narrowed this issue down to the following (lightly edited)
definitions taken from the Glossary, and presented here in logical, rather than alphabetical, order, where each
term is defined as late as possible before use.

Italic is original, bold has been added in the hope of helping the reader.

From Unicode Glossary From Unicode Technical Introduction
(except <JMS> and <UTR#17>)

Character. (1) The smallest component of written
language that has semantic value; refers to the abstract
meaning and/or shape, rather than a specific shape
(see also glyph), though in code tables some form of
visual representation is essential for the reader's
understanding. (2) Synonym for abstract character. (3)
The basic unit of encoding for the Unicode character
encoding.

<JMS> (1) and (2) are consistent with each
other, and with the view that characters are analogous
to numbers, in being abstract, and that EBCDIC and
ASCII, as representations of characters, are analogus
to binary and decimal, or half and full words, as
representations of numbers.

Character Set. A collection of elements used to
represent textual information.

Character Repertoire. The collection of characters
included in a character set.

<UTR#17> Abstract Character Repertoire (ACR).
The set of characters to be encoded, e.g., some
alphabet or symbol set

UCS. Abbreviation for Universal Character Set,
which is specified by International Standard ISO/IEC
10646.

Code Element: (no definition in Glossary) To avoid deciding what is and is not a text element in
different processes, the Unicode Standard defines
code elements (commonly called "characters"). A
code element is fundamental and useful for computer
text processing.

Code Value. The minimal bit combination that can
represent a unit of encoded text for processing or
interchange.

A single 16-bit number is assigned to each code
element defined by the Unicode Standard.

Each of these 16-bit numbers is called a code value
and, when referred to in text, is listed in hexadecimal
form following the prefix "U".

Coded Character Set. A character set in which each
character is assigned a numeric code value. Frequently
abbreviated as character set, charset, or code set.

Coded Character Set (CCS). a mapping from an
abstract character repertoire to a set of non-
negative integers

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 13 of 18 08 June 2000

From Unicode Glossary From Unicode Technical Introduction
(except <JMS> and <UTR#17>)

(Code Page. A coded character set, often referring to
a coded character set used by a personal computer--for
example, PC code page 437, the default coded
character set used by the U.S. English version of the
DOS operating system.)

Form of use: (no definition in Glossary) The international standard ISO/IEC 10646 allows for
two forms of use, a two-octet (=byte) form known as
UCS-2 and a four-octet form known as UCS-4. The
Unicode Standard, as a profile of ISO/IEC 10646,
chooses the two-octet form, which is equivalent to
saying that characters are represented in 16-bits per
character. When extended characters are used,
Unicode is equivalent to UTF-16.

(Character) Encoding Form. Mapping from a
character set definition to the actual bits used to
represent the data.

<UTR#17> Character Encoding Form (CEF). A
mapping from a set of non-negative integers (from a
CCS) to a set of sequences of particular code units of
some specified width, such as bytes

<JMS> Unicode Character Encoding Form
appears to be synonymous with ISO form of use.

UCS-2. ISO/IEC 10646 encoding form (form of use):
Universal Character Set coded in 2 octets.

(UCS-4. ISO/IEC 10646 encoding form: Universal
Character Set coded in 4 octets.)

Abstract Character. A unit of information used for the
organization, control, or representation of textual data.

Coded Character Representation. An ordered
sequence of one or more code values that is associated
with an abstract character in a given character
repertoire.

Coded Character Sequence. An ordered sequence of
coded character representations.

Transformation Format. A mapping from a coded
character sequence to a unique sequence of code
values (typically bytes).

The Unicode Standard endorses two forms that
correspond to ISO 10646 transformation formats,
UTF-8 and UTF-16.

The ISO/IEC 10646 transformation formats UTF-8
and UTF-16 are essentially ways of turning the
encoding into the actual bits that are used in
implementation.

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 14 of 18 08 June 2000

From Unicode Glossary From Unicode Technical Introduction
(except <JMS> and <UTR#17>)

<UTR#17> Character Encoding Scheme (CES). a
mapping from a set of sequences of codes units
(from one or more CEFs) to a serialized
sequence of bytes.

UTF-8. Unicode (or UCS) Transformation Format, 8-
bit encoding form. UTF-8 is the Unicode
Transformation Format that serializes a Unicode
scalar value as a sequence of one to four bytes, ...

UTF-8 is a way of transforming all Unicode
characters into a variable length encoding of bytes. It
has the advantages that the Unicode characters
corresponding to the familiar ASCII set end up having
the same byte values as ASCII, and that Unicode
characters transformed into UTF-8 can be used with
much existing software without extensive software
rewrites.

Big/little-endian. A computer architecture that stores
multiple-byte numerical values with the most/least
significant byte (MSB/LSB) values first. (It's not clear
how important this is, being a rather low level
hardware issue.)

UTF-16. Unicode (or UCS) Transformation Format,
16-bit encoding form. The UTF-16 is the Unicode
Transformation Format that serializes a Unicode value
as a sequence of two bytes, in either big-endian or
little-endian format.

UTF-16 assumes 16-bit characters and allows for a
certain range of characters to be used as an extension
mechanism in order to access an additional million
characters using 16-bit character pairs. The Unicode
Standard, Version 2.0, has adopted this transformation
format as defined in ISO/IEC 10646.

Any Unicode character expressed in the 16-bit
UTF-16 form can be converted to the UTF-8 form
and back without loss of information.

The Unicode standard and ISO 10646 provide an
extension mechanism called UTF-16 that allows for
encoding as many as a million more characters,
without use of escape codes.

UTF-16BE/LE. The Unicode Transformation
Format that serializes a Unicode value as a sequence
of two bytes, in big/little-endian format. ...

Collation. The process of ordering units of textual
information. Collation is usually specific to a
particular language. Also known as alphabetizing or
alphabetic sorting. Unicode Technical Report #10,
"Unicode Collation Algorithm," defines a complete,
unambiguous, specified ordering for all characters in
the Unicode Standard.

<JMS> Defined in [ISO14651] as:

equivalent to the term “ordering”,

which in turn is defined, as one would expect, as:

a process by which two strings are
determined to be in exactly one of the
relationships of less than, greater than, or
equal to one another

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 15 of 18 08 June 2000

Annex C: Review of character-related definitions in [Found-99]

C.1 Subclause 3.1.1 "Definitions taken from ISO/IEC 10646"
(BHX-053, Comment GBR-STC-006)

This subclause states that "this part of ISO/IEC 9075 makes use of" six terms, but in actual fact uses only two,
character, and repertoire. However, it redefines the latter, without explicitly stating whether it is unnecessarily
repeating the definition in ISO/IEC 10646, or replacing it.

It (Part 2, Foundation) does not make use of the terms coded character, coded character set, control function, or
private use plane.

C.2 Subclause 3.1.2 "Definitions taken from Unicode"
(BHX-053, Comment GBR-STC-007)

This subclause states that "this part of ISO/IEC 9075 makes use of" six terms, but uses only one: control
character (in the context of ISO8BIT); another, code value, occurs only in Clause 22.1 "SQLSTATE", Table
27-"SQLSTATE class and subclass values".

C.3 Subclause 3.1.5 "Definitions provided in Part 2"
Curiously, but perhaps wisely, no claim is made that the terms defined here are made use of. The following are
all the terms relevant to the subject of character sets.

SQL Definition Our comment

character repertoire; repertoire: A
set of characters used for a
specific purpose or
application. Each character
repertoire has an implied
default collating sequence.

Defined externally, with, as far as we can tell, the same meaning, so
ought not to be repeated.

In any case, A set of characters looks suspiciously like the term
character set used elsewhere, the nearest thing to a definition being in
SQL/Framework. The word implied is either a pleonasm (i.e.
unnecessary) or its effect is unclear - could a character repertoire have an
other-than-implicit default collating sequence? (The only use of explicit
default that we can find is in connection with columns &c that have one
as a result of being defined with a <default clause>.)

coercibility: A characteristic of a
character string value that
governs how a collating
sequence for the value is
determined.

This definition disregards the fact that it takes two values to be collated.
In effect, the <collate clause> in, for example, a <column definition>
says "When you compare me, please use this collation". Coercibility
indicates the degree of insistence in the case where two values have
different (preferred) collations. Hence it is more strictly a characteristic
of a declared type.

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 16 of 18 08 June 2000

SQL Definition Our comment

collation; collating sequence: A
method of ordering two
comparable character
strings. Every character set
has a default collation.

Defined externally, with same meaning.

One is left wondering whether this is intended to repeat the statement in
the definition of character repertoire, above, i.e. whether character set
and character repertoire are different terms for the same concept - a
view encouraged by the unnecessary variation from collating sequence to
collation.

form-of-use: A convention (or
encoding) for representing
characters (in character
strings). Some forms-of-use
are fixed-length codings and
others are variable-length
codings.

Defined externally, with essentially the same meaning; but Unicode
seems to prefer transformation format for this meaning.

Nothing is said (here) about the relationship of a form-of-use to other
concepts. For example, can a form-of-use be associated with more than
on character repertoire/set? It looks as though it might be algorithmic, but
evidence elsewhere suggests otherwise.

form-of-use conversion: A method
of converting character
strings from one form-of-use
to another form-of-use.

Looks like what Unicode would call Transcoding. (Conversion of
character data between different character sets.)

repertoire: See character repertoire. Unnecessary. The term is allegedly defined in [ISO/IEC 10646], is
defined with character repertoire, but in any case is used only a few
times.

translation: A method of
translating characters in one
character repertoire into
characters of the same or a
different character
repertoire.

Looks more like what the dictionary calls transliteration. Why do
functions of this class need a special name?

In any case, it is inconsistent to define a translation as translating
characters, while a form-of-use conversion converts character strings.
Subclause 11.34 "<translation definition>", is expressed in terms of
character sets.

C.4 Character set and character repertoire
[Found99] contains no explicit definition of character set. The definition is in [Frame99] Subclause 4.6.2.1
"Character sets", where it says:

A character set is a named set of characters (character repertoire) that may be used for forming values of
the character data type.

...

This International Standard uses the phrases "character set" and "character repertoire" interchangeably
except when referring to data exchanged outside the SQL-implementation, when "character set" is
understood to include an encoding and a form-of-use in addition to a character repertoire.

This is not clear, and is arguably in the wrong place.

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 17 of 18 08 June 2000

Annex D: What is a character?
The following definitions are from [UnicodeGlossary]

Abstract Character. A unit of information used for the organization, control, or representation of textual data.

Encoded Character. An abstract character together with its associated Unicode scalar value. By itself, an
abstract character has no numerical value, but the process of "encoding a character" associates a particular
Unicode scalar value with a particular abstract character, thereby resulting in an "encoded character." Assigned
Character is a synonym for encoded character.

Base Character. A character that does not graphically combine with preceding characters, and that is neither a
control nor a format character.

Combining Character. A character that graphically combines with a preceding base character. The combining
character is said to apply to that base character.

Coded Character Representation. An ordered sequence of one or more code values that is associated with an
abstract character in a given character repertoire.

Compatibility Character. (1) A character encoded only for compatibility with preexisting character encoding
standards to support transcoding. (2) A character that has a compatibility decomposition.

Control Codes. The 65 characters in the ranges U+0000..U+001F and U+007F..U+009F. Also known as control
characters.

Decomposable Character. A character that is equivalent to a sequence of one or more other characters, according
to the decomposition mappings found in the names list of Section 14.1, Character Names List . It may also be
known as a precomposed character or a composite character.

Formatting Codes. Characters that are inherently invisible but that have an effect on the surrounding characters.

Graphic Character. (1) A character typically associated with a visible display representation. (See also glyph.)
(2) Any character that is not primarily associated with a control or formatting function.

From the above, one might infer that every Unicode code value is in one of four categories, being one of:

Base character. A (coded) character that does not graphically combine with preceding characters.

Combining Character. A (coded) character that graphically combines with a preceding base character.
Also called 'non-spacing mark'. The combining character is said to apply to that base character.

Control Code. The 65 characters (codes?) in the ranges U+0000..U+001F and U+007F..U+009F. Also
known as control character.

Formatting Code. A Character (code?) that is inherently invisible but that has an effect on the surrounding
characters.

However, it is difficult to be sure these categories are exhaustive, partly because it is not always clear when
'character' means 'abstract character' and when it means 'coded character', or even 'code value'.

A composite character is an abstract character that can be represented by a composed character sequence
consisting of a base character and one or more combining characters.

A composite character that can be represented by a single base character is called a precomposed
character.

A Review of Some Possible Problems with SQL character features ISO/IEC JTC 1/SC 32/WG 3: BHX-080

bhx080.doc Page 18 of 18 08 June 2000

A precomposed character can be decomposed (hence is sometimes called a decomposable character) into
a sequence of one or more other characters, according to the decomposition mappings found in the names
list of Section 14.1, Character Names List.

It seems to follow that there can be composite (abstract) characters that are not precomposed, and hence cannot
be represented by a single base character. There appears to be no term to denote such an abstract character. More
importantly, it needs to be decided whether SQL counts each such composite characters as one abstract character,
or counts each separate element.

However,

Compatibility Character is (1) A character encoded only for compatibility with preexisting character
encoding standards to support transcoding. (2) A character that has a compatibility decomposition.

A precomposed character appears to be a compatibility character in sense (1), but not (necessarily?) in sense (2),
because compatibility decomposition is different from 'ordinary' decomposition.

