
Generative Arabic: implementation options
Jonathan Kew, SIL International
March 6, 2003

There appears to be broad agreement that we should encode a set (details still to be worked out) of
combining dot patterns and similar marks for productive use with Arabic base letters. The most
difficult issue to be settled is that of equivalence between the existing precomposed letters and the
decomposed representations that could then be encoded.

We have several options to consider, each with different strengths and weaknesses:

1. No equivalence is defined; there are simply multiple spellings that are indistinguishable on
the surface.

a. Lowest documentation burden and cost of implementation

b. Confusing/unhelpful for users, when search/sort/index/… operations don’t produce
expected results

c. Entire Arabic writing system becomes open to “character spoofing” on a massive scale,
with implications for security/fraud/deception

2. As (1), but some “weaker” equivalence is defined between decomposed and composed
representations (similar to the concept of compatibility decompositions; published stability
policy prohibits the addition of actual compatibility decompositions to the existing Arabic
characters).

a. Can be ignored by general processes; no cost burden in order to be conformant

b. Defines a standard basis for specialist processes to implement the behavior users would
expect

c. Does not solve spoofing issues, as generic processes would not recognize the two
representations as equivalent (e.g., in name/URL lookup or comparison)

3. No equivalence is defined, but the Standard prohibits the use of decomposed
representations where composed characters are available (at least specifies visibly
“broken” rendering; I don’t think we can claim the text is actually ill-formed and should be
rejected by other processes).

a. Attempts to spoof are thwarted

b. Fairly easy to document

c. Confusing for users in that combinations that “should” work don’t

d. Significant burden for rendering implementers to special-case all sequences that
correspond to existing composed letters

e. Hinders consistent use of “fully decomposed” text for specialist analytical purposes

f. Preserves an inconsistent “mixed model” forever as the only conformant way to handle
extended Arabic-script text

4. Decomposed representations are canonically equivalent to existing composed letters, with
the composed forms being the normal form (both NFC and NFD) to preserve stability of NFs.

a. Behaves in accordance with user expectations as to what is “the same”

b. Clean, consistent rendering model

rick@unicode.org
L2/03-116



c. Gives a single, consistent model based on the underlying structure of the writing
system, with the precomposed letters available (and normally used) simply as a more
convenient representation—much like Latin. Greek, etc.

d. Requires revision of normalization algorithm (preserving stability of results for all
existing text): implementation cost of updating to the new version of Unicode becomes
greater than simply loading new data tables

It seems to me that there is a cost to be paid for the new flexibility we gain; the different approaches
call for this cost to be borne by different people. Under option (1), it is an ongoing cost for users of the
standard (even users with no interest in Arabic, to the extent that the security issues of character
spoofing are a concern). Option (2) is essentially similar, as the new equivalence it defines would be
used only in specialist processes.

Under option (3), the cost is primarily borne by implementers of rendering systems (and fonts,
perhaps—the exact mechanisms used might be system-dependent); there is also an ongoing cost for
Arabic users in the requirement to work with a mixed model. Under option (4), the cost is borne by
implementers of processes that normalize, in that the engineering requirements to support the new
version of the standard are greater than otherwise (although not excessively so, in my judgment, given
that the NFC algorithm already implements a composition step; NFD would simply have to adopt an
equivalent step using a different data table).

There may be yet other solutions that could be considered, and that might offer different cost/benefit
tradeoffs; any suggestions that offer a productive way forward are welcomed.




