
L2/03-294

Handling CJK compatibility characters with variation sequences

Ken Lunde, Adobe Systems Inc.
Eric Muller, Adobe Systems Inc.

August 24, 2003

Document History

1. Introduction

In L2/02-389, Ken Lunde shows that the canonical decomposition of CJK compatibility ideographs is
problematic, as it “erases” distinctions in source standards which need to be preserved for proper
rendering. This situation goes beyond the need for locale specific forms, as those distinctions are needed
within a single locale.

When the UTC reviewed L2/02-389, there was a general agreement on this problem, and the UTC
decided to investigate tailored normalizations as a solution. The investigation revealed that this approach
was problematic, and the UTC rejected that approach. The UTC also asked us to investigate the use of
variation sequences as a solution. This document presents various options.

Throughout this paper, the term “compatibility ideograph” refers to the canonical decomposable
characters encoded in the CJK Compatibility Ideographs block and the CJK Compatibility Ideographs
Supplement block. The twelve characters in those blocks which are not canonical decomposable are
covered by the term “unified ideographs”, along with the characters in the CJK Unified Ideographs
block, the CJK Unified Ideographs Extension A block and the CJK Unified Ideographs Extension B
block.

2. Some examples

Here are a couple of examples that will be used to illustrate the various situations.

Example 1: U+8612, and the compatibility ideograph that normalizes to it, U+FA42.

1. Introduction
2. Some examples
3. The problem
4. Proposal
5. A word of caution

code point Unicode 4.0 glyph Source ISO 10646-1:2000 or -2:2001 glyph

U+65E2 G0-3C48

J0-347B

Page 1 of 5Handling CJK compatibility characters with variation sequences

8/26/2003file://C:\L2-UTC\Incoming\03294\index.html

This is the simplest case: the same glyph shape is present in three of the source standards that contribute
to the URO, they are unified as U+65E2. Later, JIS 0213 is added; the glyph shape for J3-752B is
unified with the original one, but to provide round-tripping to JIS 0213, U+FA42 is encoded to maintain
the distinction between J3-752B and J0-347B.

Note that the fact that the two shapes are unified mean that in the absence of other information. either
shape is an appropriate rendering for either character,

Example 2: U+4FAE, and the two compatibility ideographs that normalize to it, U+FA30 and U+2F805:

T1-514D

U+FA42 J3-752B

code point Unicode 4.0 glyph Source ISO 10646-1:2000 or -2:2001 glyph

U+4FAE G0-4E6A

J0-496E

KP0-5932

K0-5932

T1-4F78

U+FA30 J3-2E38

Page 2 of 5Handling CJK compatibility characters with variation sequences

8/26/2003file://C:\L2-UTC\Incoming\03294\index.html

What we have here are two glyph shapes: let's call them the G shape (oblique strokes) and the J0 shape
(vertical stroke). According to the unification rules, those two shapes represent the same abstract
character.

Thus, when the URO was built, the source characters G0-4E6A, J0-496E, K0-5932 and T1-4F78 were
encoded as a single coded character, U+4FAE.

When Extension B was built, the T4 source was added. Because (T1, T4) is not subject to the source
separation rule, T4-253D did not result in a separately encoded character. But to maintain round-tripping
with the TCA-CNS 11643-1992 standard (the various planes of it are the T sources), the compatibility
ideograph U+2F805 was encoded. (Note that round-tripping with CNS 11643-1992 is actually not
provided in general; presumably, this is done one a character by character basis, and this case was
deemed worthy of a compatibility ideograph.)

Finally, with Unicode 3.2, the J3 and J4 sources were added. Again (J0, J3) is not subject to the source
separation rule, but round-tripping with the combined JIS 0208/0213 standard (the J0, J3 and J4
sources), the compatibility ideograph U+FA30 was encoded.

It is not known to the authors when the KP sources were added.

Note that it may have been nice to invert the J sources, that is to give J3-2E38 as the source for
U+4FAE, and J0-496E as the source for U+FA30. This would have made the preferred glyph shape for
U+4FAE the same in all locales. However, this was probably prevented by compatibility considerations.

3. The problem

Consider what happens for an implementation that consumes and produces JIS 0208/0213 characters,
and uses Unicode to represent characters internally. The input J0-347B is represented internally by
U+65E2; the input J3-752B is represented internally by U+FA42. Using a font appropriate for Japanese,
the correct glyphs can be displayed. On output, the appropriate JIS characters can be generated. So far so
good.

If normalization occurs at some point during processing, U+FA42 is normalized to U+65E2. From then
on, it is no longer possible to properly render or output in JIS. All the efforts by the Unicode standard
and by the application to ensure round-tripping with JIS 0208/0213 are simply negated.

The normalization may be performed by a component of the application over which the author of the
application has little or no control. In other words, “do not normalize” may not be a viable option. The
alternative “normalize carefully” (aka tailored normalization) was not considered viable either.

4. Proposal

To solve the problems above, the idea is to transform each compatibility ideograph into something that
is still distinct from the corresponding unified ideograph, yet is not reduced to it by normalization. A

U+2F805 KP1-3534

T4-253D

Page 3 of 5Handling CJK compatibility characters with variation sequences

8/26/2003file://C:\L2-UTC\Incoming\03294\index.html

possible choice would be a PUA code point. A better choice is a variation sequence involving the
unified ideograph, as the (Unicode) identity of the character is retained and is accessible to any
component or subprocess of the application, without the need for a private agreement.

Assuming that that transformation can be performed before any normalization occurs, may be as soon as
inputs are converted from JIS to Unicode, then the distinction is preserved. The inverse transformation
can be applied after any normalization may occur, may be as late as when the output is converted from
Unicode to JIS.

The proposal is actually to define one variation sequence for each compatibility ideograph, as well as
one for the corresponding unified ideographs, and to define the variation sequences by the source
characters. Using our first example:

The transformation mentioned earlier is simply:

Note that we do define a variation sequence for the unified ideograph. The motivation is this: it is
perfectly acceptable for a font to use the glyph shape of J3-752B to render U+65E2 alone; so when we
want the glyph shape of J0-347B, we cannot use U+65E2 alone.

Similarly, for our second example, we have:

with the transformation:

This is not entirely minimal; for example, there is no real need for the two variation sequences using
VS2 and VS3; one would be enough. In fact, there was no real need for two compatibility ideographs in
the first place (their sources are distinct), but it is not the goal of this solution to fix this situation.

sequence definition

U+65E2 VS1 representation of G0-3C48, J0-347B, T1-514D

U+65E2 VS2 representation of J3-752B

arbitrary input “normalization-safe” equivalent

U+65E2 U+65E2 VS1

U+FA42 U+65E2 VS2

sequence definition

U+4FAE VS1 representation of G0-4E6A, J0-496E, KP0-5932, K0-5932, T1-4F78

U+4FAE VS2 representation of J3-2E38

U+4FAE VS3 representation of KP1-3534, T4-253D

arbitrary input “normalization-safe” equivalent

U+4FAE U+4FAE VS1

U+FA30 U+4FAE VS2

U+2F805 U+4FAE VS3

Page 4 of 5Handling CJK compatibility characters with variation sequences

8/26/2003file://C:\L2-UTC\Incoming\03294\index.html

5. A word of caution

The solution presented here seems reasonable, and it solves the problem at hand fairly nicely. In fact,
one could imagine that had variation selectors been available from the start, they might have been used
instead of compatibility ideographs to enable round-tripping.

However, as currently defined, at most one variation selector can be applied to a base character. Other
uses of variation selectors on Han ideographs may be incompatible with the mechanism presented here.
It is almost necessary to understand all the anticipated uses of variation selectors on a given base
character before defining any variation sequence involving that character; otherwise, one could end up
with something very difficult to manage.

For example, one potential use of variation selectors on Han ideographs is to preserve structural
information about the visual representation, at a finer level than the unification rules allow. In the case
of U+4FAE, one may wish to have:

This would even work for our purpose, if we do the following transformations:

So VS1, VS2, and VS3 on the one hand and VS10, VS11 on the other are somewhat equivalent, yet they
are different. Dealing with both at the same time may prove overwhelming.

Document History

Authors: Ken Lunde, Eric Muller

sequence definition

U+4FAE VS10

oblique strokes, as in

U+4FAE VS11

vertical stroke, as in

input “normalization-safe” representation

G0-4E6A, KP0-5932, K0-5932, T1-4F78, J3-2E38 U+4FAE VS10

J0-496E, KP1-3534, T4-253D U+4FAE VS11

Revision Date Comments
1 August 24, 2003 First version

Page 5 of 5Handling CJK compatibility characters with variation sequences

8/26/2003file://C:\L2-UTC\Incoming\03294\index.html

