
N2352-F
2001-09-04 Page 1 of 3

Adition of six Number forms characters
Ricardo Cancho Niemietz

Individual contribution
2003-10-21

Yes

No

Yes
Number Forms

6
B.1
1

Yes

Yes
Yes

Ricardo Cancho Niemietz

Ricardo Cancho Niemietz (rcancho@tiscali.es)

Yes

No

Specifications enclosed

ISO/IEC JTC 1/SC 2/WG 2
PROPOSAL SUMMARY FORM TO ACCOMPANY SUBMISSIONS

FOR ADDITIONS TO THE REPERTOIRE OF ISO/IEC 106461

Please fill all the sections A, B and C below.
(Please read Principles and Procedures Document for guidelines and details before filling this form.)

See http://www.dkuug.dk/JTC1/SC2/WG2/docs/summaryform.html for latest Form.
See http://www.dkuug.dk/JTC1/SC2/WG2/docs/principles.html for latest Principles and Procedures document.

See http://www.dkuug.dk/JTC1/SC2/WG2/docs/roadmaps.html for latest roadmaps.
A. Administrative
1. Title: ___
2. Requester's name: ___
3. Requester type (Member body/Liaison/Individual contribution): ____________________________________
4. Submission date: _______________
5. Requester's reference (if applicable): ___
6. (Choose one of the following:)
This is a complete proposal: _______________
or, More information will be provided later: _______________
B. Technical - General
1. (Choose one of the following:)
 a. This proposal is for a new script (set of characters): ______________
 Proposed name of script: ___
. b. The proposal is for addition of character(s) to an existing block: ______________
 Name of the existing block: __
2. Number of characters in proposal: ______________
3. Proposed category (see section II, Character Categories): ______________
4. Proposed Level of Implementation (1, 2 or 3) (see clause 14, ISO/IEC 10646-1: 2000): ______________
 Is a rationale provided for the choice? ______________
 If Yes, reference: __
5. Is a repertoire including character names provided? ______________
 a. If YES, are the names in accordance with the 'character naming guidelines
 in Annex L of ISO/IEC 10646-1: 2000? ______________
 b. Are the character shapes attached in a legible form suitable for review? ______________
6. Who will provide the appropriate computerized font (ordered preference: True Type, or PostScript format) for
 publishing the standard? __
 If available now, identify source(s) for the font (include address, e-mail, ftp-site, etc.) and indicate the tools
 used:

7. References:
 a. Are references (to other character sets, dictionaries, descriptive texts etc.) provided?
 b. Are published examples of use (such as samples from newspapers, magazines, or other sources)
 of proposed characters attached? ______________
8. Special encoding issues:
 Does the proposal address other aspects of character data processing (if applicable) such as input,
 presentation, sorting, searching, indexing, transliteration etc. (if yes please enclose information)?

9. Additional Information:
Submitters are invited to provide any additional information about Properties of the proposed Character(s) or Script
that will assist in correct understanding of and correct linguistic processing of the proposed character(s) or script.
Examples of such properties are: Casing information, Numeric information, Currency information, Display behaviour
information such as line breaks, widths etc., Combining behaviour, Spacing behaviour, Directional behaviour, Default
Collation behaviour, relevance in Mark Up contexts, Compatibility equivalence and other Unicode normalization
related information. See the Unicode standard at http://www.unicode.org for such information on other scripts. Also
see http://www.unicode.org/Public/UNIDATA/UnicodeCharacterDatabase.html and associated Unicode Technical
Reports for information needed for consideration by the Unicode Technical Committee for inclusion in the Unicode
Standard.

ISO/IEC JTC1/SC2/WG2 N2677

Text Box
L2/03-386

N2352-F
2001-09-04 Page 2 of 3

No

No

No

Common
Publishers of specialized books about computer software and digital hardware

Yes
Editors thru workaround

Yes
Yes

Enclosed
Yes

Yes
Yes

Enclosed

No

Yes
Yes

Enclosed

No

No

No

C. Technical - Justification
1. Has this proposal for addition of character(s) been submitted before? ______________
 If YES explain ___
2. Has contact been made to members of the user community (for example: National Body,
 user groups of the script or characters, other experts, etc.)? ______________
 If YES, with whom? __
 If YES, available relevant documents: __
3. Information on the user community for the proposed characters (for example:
 size, demographics, information technology use, or publishing use) is included? ______________
 Reference: ___
4. The context of use for the proposed characters (type of use; common or rare) ______________
 Reference: ___
5. Are the proposed characters in current use by the user community? ______________
 If YES, where? Reference: __
6. After giving due considerations to the principles in Principles and Procedures document (a WG 2 standing
 document) must the proposed characters be entirely in the BMP? ______________
 If YES, is a rationale provided? ______________
 If YES, reference: __
7. Should the proposed characters be kept together in a contiguous range (rather than being scattered)? _______
8. Can any of the proposed characters be considered a presentation form of an existing
 character or character sequence? ______________
 If YES, is a rationale for its inclusion provided? ______________
 If YES, reference: __
9. Can any of the proposed characters be encoded using a composed character sequence of either
 existing characters or other proposed characters? ______________
 If YES, is a rationale for its inclusion provided? ______________
 If YES, reference: ______________
10. Can any of the proposed character(s) be considered to be similar (in appearance
 or function) to an existing character? ______________
 If YES, is a rationale for its inclusion provided? ______________
 If YES, reference: __
11. Does the proposal include use of combining characters and/or use of composite sequences
 (see clauses 4.12 and 4.14 in ISO/IEC 10646-1: 2000)? ______________
 If YES, is a rationale for such use provided? ______________
 If YES, reference: ___
 Is a list of composite sequences and their corresponding glyph images (graphic symbols)
 provided? ______________
 If YES, reference: ___
12. Does the proposal contain characters with any special properties such as
 control function or similar semantics? ______________
 If YES, describe in detail (include attachment if necessary) ______________
13. Does the proposal contain any Ideographic compatibility character(s)? ______________
 If YES, is the equivalent corresponding unified ideographic character(s) identified? ____________
 If YES, reference: __

1 Form number: N2352-F (Original 1994-10-14; Revised 1995-01, 1995-04, 1996-04, 1996-08, 1999-03, 2001-05, 2001-09)

N2352-F
2001-09-04 Page 3 of 3

Submitter's Responsibilities
The national body or liaison organization (or any other organization or an individual) proposing new
character(s) or a new script shall provide:
1. Proposed category for the script or character(s), character name(s), and description of usage.
2. Justification for the category and name(s).
3. A representative glyph(s) image on paper:

If the proposed glyph image is similar to a glyph image of a previously encoded ISO/IEC 10646
character, then additional justification for encoding the new character shall be provided.
Note: Any proposal that suggests that one or more of such variant forms is actually a distinct character
requiring separate encoding, should provide detailed, printed evidence that there is actual, contrastive use of
the variant form(s). It is insufficient for a proposal to claim a requirement to encode as characters in the
Standard, glyphic forms which happen to occur in another character encoding that did not follow the
Character-Glyph Model that guides the choice of appropriate characters for encoding in ISO/IEC 10646.
Note: WG 2 has resolved in Resolution M38.12 not to add any more Arabic presentation forms to the
standard and suggests users to employ appropriate input methods, rendering and font technologies to meet
the user requirements.

4. Mappings to accepted sources, for example, other standards, dictionaries, accessible published
materials

5. Computerized/camera-ready font:
Prior to the preparation of the final text of the next amendment or version of the standard a
suitable computerized font (camera-ready font) will be needed. Camera-ready copy is mandatory
for final text of any pDAMs before the next revision. Ordered preference of the fonts is True Type
or PostScript format. The minimum design resolution for the font is 96 by 96 dots matrix, for
presentation at or near 22 points in print size.

6. List of all the parties consulted.
7. Equivalent glyph images:

If the submission intends using composite sequences of proposed or existing combining and non-
combining characters, a list consisting of each composite sequence and its corresponding glyph
image shall be provided to better understand the intended use.

8. Compatibility equivalents:
If the submission includes compatibility ideographic characters, identify the equivalent unified CJK
Ideograph character(s).

9. Any additional information that will assist in correct understanding of the different characteristics
and linguistic processing of the proposed character(s) or script.

218FNumber Forms2150

215 216 217 218

⅓

⅔

�

�

�

�

�

�

⅛

�

�

Ⅰ

Ⅱ

Ⅲ

Ⅳ

Ⅴ

Ⅵ

Ⅶ

Ⅷ

Ⅸ

Ⅹ

Ⅺ

Ⅻ

�

�

�

�

ⅰ

ⅱ

ⅲ

ⅳ

ⅴ

ⅵ

ⅶ

ⅷ

ⅸ

ⅹ

ⅺ

ⅻ

*

+

,

-

.

/

0

1
2153

2154

2155

2156

2157

2158

2159

215A

215B

215C

215D

215E

215F

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

216A

216B

216C

216D

216E

216F

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

217A

217B

217C

217D

217E

217F

2180

2181

2182

2183

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

A

B

C

D

E

F

218A

218B

218C

218D

218E

218F

2183Number Forms2153

216B Ⅻ ROMAN NUMERAL TWELVE
� 0058 X 0049 I 0049 I

216C � ROMAN NUMERAL FIFTY
� 004C L latin capital letter l

216D � ROMAN NUMERAL ONE HUNDRED
� 0043 C latin capital letter c

216E 	 ROMAN NUMERAL FIVE HUNDRED
� 0044 D latin capital letter d

216F � ROMAN NUMERAL ONE THOUSAND
� 004D M latin capital letter m

2170 ⅰ SMALL ROMAN NUMERAL ONE
� 0069 i latin small letter i

2171 ⅱ SMALL ROMAN NUMERAL TWO
� 0069 i 0069 i

2172 ⅲ SMALL ROMAN NUMERAL THREE
� 0069 i 0069 i 0069 i

2173 ⅳ SMALL ROMAN NUMERAL FOUR
� 0069 i 0076 v

2174 ⅴ SMALL ROMAN NUMERAL FIVE
� 0076 v latin small letter v

2175 ⅵ SMALL ROMAN NUMERAL SIX
� 0076 v 0069 i

2176 ⅶ SMALL ROMAN NUMERAL SEVEN
� 0076 v 0069 i 0069 i

2177 ⅷ SMALL ROMAN NUMERAL EIGHT
� 0076 v 0069 i 0069 i 0069 i

2178 ⅸ SMALL ROMAN NUMERAL NINE
� 0069 i 0078 x

2179 ⅹ SMALL ROMAN NUMERAL TEN
� 0078 x latin small letter x

217A ⅺ SMALL ROMAN NUMERAL ELEVEN
� 0078 x 0069 i

217B ⅻ SMALL ROMAN NUMERAL TWELVE
� 0078 x 0069 i 0069 i

217C � SMALL ROMAN NUMERAL FIFTY
� 006C l latin small letter l

217D � SMALL ROMAN NUMERAL ONE
HUNDRED
� 0063 c latin small letter c

217E SMALL ROMAN NUMERAL FIVE
HUNDRED
� 0064 d latin small letter d

217F " SMALL ROMAN NUMERAL ONE
THOUSAND
� 006D m latin small letter m

2180 $ ROMAN NUMERAL ONE THOUSAND C
D

2181 % ROMAN NUMERAL FIVE THOUSAND

2182 & ROMAN NUMERAL TEN THOUSAND

2183 ' ROMAN NUMERAL REVERSED ONE
HUNDRED
= apostrophic C
• used in combination with C and I to form

large numbers

Fractions

Other fraction number forms are found in the Latin-1
Supplement block.

→ 00BC ¼ vulgar fraction one quarter
→ 00BD ½ vulgar fraction one half
→ 00BE ¾ vulgar fraction three quarters

2153 ⅓ VULGAR FRACTION ONE THIRD
� 0031 1 2044 ⁄ 0033 3

2154 ⅔ VULGAR FRACTION TWO THIRDS
� 0032 2 2044 ⁄ 0033 3

2155 3 VULGAR FRACTION ONE FIFTH
� 0031 1 2044 ⁄ 0035 5

2156 5 VULGAR FRACTION TWO FIFTHS
� 0032 2 2044 ⁄ 0035 5

2157 6 VULGAR FRACTION THREE FIFTHS
� 0033 3 2044 ⁄ 0035 5

2158 7 VULGAR FRACTION FOUR FIFTHS
� 0034 4 2044 ⁄ 0035 5

2159 9 VULGAR FRACTION ONE SIXTH
� 0031 1 2044 ⁄ 0036 6

215A ; VULGAR FRACTION FIVE SIXTHS
� 0035 5 2044 ⁄ 0036 6

215B ⅛ VULGAR FRACTION ONE EIGHTH
� 0031 1 2044 ⁄ 0038 8

215C > VULGAR FRACTION THREE EIGHTHS
� 0033 3 2044 ⁄ 0038 8

215D ? VULGAR FRACTION FIVE EIGHTHS
� 0035 5 2044 ⁄ 0038 8

215E @ VULGAR FRACTION SEVEN EIGHTHS
� 0037 7 2044 ⁄ 0038 8

215F B FRACTION NUMERATOR ONE
� 0031 1 2044 ⁄

Roman numerals

2160 Ⅰ ROMAN NUMERAL ONE
� 0049 I latin capital letter i

2161 Ⅱ ROMAN NUMERAL TWO
� 0049 I 0049 I

2162 Ⅲ ROMAN NUMERAL THREE
� 0049 I 0049 I 0049 I

2163 Ⅳ ROMAN NUMERAL FOUR
� 0049 I 0056 V

2164 Ⅴ ROMAN NUMERAL FIVE
� 0056 V latin capital letter v

2165 Ⅵ ROMAN NUMERAL SIX
� 0056 V 0049 I

2166 Ⅶ ROMAN NUMERAL SEVEN
� 0056 V 0049 I 0049 I

2167 Ⅷ ROMAN NUMERAL EIGHT
� 0056 V 0049 I 0049 I 0049 I

2168 Ⅸ ROMAN NUMERAL NINE
� 0049 I 0058 X

2169 Ⅹ ROMAN NUMERAL TEN
� 0058 X latin capital letter x

216A Ⅺ ROMAN NUMERAL ELEVEN
� 0058 X 0049 I

218FNumber Forms218A

Hexadecimal digits ten to fifteen
218A A HEXADECIMAL DIGIT TEN

� 0041 A latin capital letter a
218B B HEXADECIMAL DIGIT ELEVEN

� 0042 B latin capital letter b
218C C HEXADECIMAL DIGIT TWELVE

� 0043 C latin capital letter c
218D D HEXADECIMAL DIGIT THIRTEEN

� 0044 D latin capital letter d
218E E HEXADECIMAL DIGIT FOURTEEN

� 0045 E latin capital letter e
218F F HEXADECIMAL DIGIT FIFTEEN

� 0046 F latin capital letter f

Background

The hexadecimal-radix (base 16) numbering system is well-known and widely used in all fashion of
computer and microprocessor programming environments and languages. Every hexadecimal digit
ressembles a group of four contiguous bits, called a nibble, and thus is quite convenient to represent the
state of any grouping of adjacent bits: 8, 16, 24, 32, 64, etc, inside a computer’s memory, CPU ports and
integrated circuits (IC) pins.

The hexadecimal-radix numbering system intrinsically needs sixteen different digits with positional
values in a range from zero to fifteen. In a lack of historical tradition in precomputer ages, and due to
limitations of available characters in the primitive encoding scripts as ITA-2 (also known –incorrectly– as
baudot code), FIELDATA, EDBIC or ASCII, arised the solution to use the decimal digits zero to nine for
the first ten hexadecimal digits (those whose positional values are the same in decimal-radix numbering)
and the latin letters «a» to «f» for the last six hexadecimal digits with values ten to fifteen. The glyphs
usually used for that last hexadecimal digits are the upper case «A» to «F», due to primitive pre-ASCII
encoding charts have only uppercase form of latin letters—a telegraphic tradition. When a complete set of
both upper and lower case basic latin letters became available, the hexadecimal numbers could be
displayed with the lowercase glyphs «a» to «f» as an alternate presentation, but never appears mixed the
capital and small forms together in the same printed hexadecimal number.

To contextually distinguish hexadecimal numbers in a plain text stream, specially when the hexadecimal
number was formed exclusivally by “decimal” digits, various kind of notation arise, generally specific of
a given environment. For example, the number 33 in decimal is represented in hexadecimal (21) in the
following ways,

as... in...

$21 6502 assembler
021H 8086 assembler
0x21 ANSI C/C++ direct value
\x21 ANSI C/C++ direct character by code inside a string literal
H&21 Microsoft VisualBasic direct value
%21 URL direct character by code inside a calling parameter
=21 MIME quoted-printable character by code inside a text/plain MIME-part body
#000021 HTML RGB color code

This notations appears as-is in source code, following the specific sintax of every programming language
or encoding. But in books another conventions are in use, as 21h or 2116, meaning the same: “that number
is 16-radix”. In Unicode books, codepoints (which are hexadecimal numbers) are noted by U+0021
sintax.

About the need of new characters

Since programmers can directly write programs over a console (leaving away punched-cards), they use
fixed-pitch fonts to display source code and debugging output, either on screen and paper. At the
beginning this was not intentionally but by simply using the available hardware (80 column screens in
classical MDA video cards and compatibles, and teletype-like dolly printers). This implicit feature can
print either decimal (and other subdecimal numbering formats, as binary and octal) and hexadecimal
numbers in well tabulated columns.

Later, when high resolution raster devices became available, as EGA/VGA/SVGA video cards and 9- and
24-pin dot matrix/ink jetting/laser printers, graphical user interfaces (GUI) tends to be WYSIWYG
(“What-You-See-Is-What-You-Get”) capable. Among other things, this means the main use of
proportional fonts to display both plain and rich text, but programmers still prefer using fixed-pitch fonts
for source code and debugging output, just like memory dump. In some way, it emulates older console
devices.

This is also the common workaround when fragments of sample source code are printed in
documentation, as shown in the following figures.

But out of showing source code samples, text books generally prints hexadecimal numbers using the «A»
to «F» latin capital letters, which are proportional in most of fonts, mixed with «0» to «9» digits, which
generally have figure-space pitch. Then, when displaying hexadecimal numbers of the same number of
digits, they have different physical widths. This fact usually ruins the tabulated hexadecimal columns.

As said, the usual workaround is also to use a monospace or fixed-pitch font to print hexadecimal
numbers in tables. This is tolerable in technical programming and debugging environments, in which the
primary need is to monitorize memory binary data, but when printed, the tabulated hexadecimal values
looks clearly in a different font family than the rest of the table or page.

The next figure shows a display output that mixes well-formed and ill-formed tabulated hexadecimal
values.

Closing a window
You can close a window with the close method. You cannot close a frame without
closing the entire parent window.
Each of the following statements closes the current window:

window.close()
self.close()
// Do not use the following statement in an event handler
close()

The following statement closes a window called msgWindow:

msgWindow.close()

Taken from “JavaScript Guide for JavaScript 1.1” Copyright ©1995-1996 Netscape
Communications Corporation.

Creating a Foundation Project
You'll need to create a suitable Visual C++ project for this tour.
With no other workspace or project loaded in the Visual C++
integrated development environment (IDE), select New from the
File menu. Select the Files tab. Select C++ Source File, and enter
EC_Demo.cpp as the file name. You may enter a location of your
choice. Click OK to create the file. Type the following source code
into the empty source file:

#include <stdio.h>

int main()
{
 printf("Introducing Edit and Continue!\n");
 return 0;
}

Taken from “Juny 1999 release of the MSDN Library” Copyright ©1999 Microsoft Corporation.

Note that at the right side, in the upper and middle lists, the columns labeled “Entry Point” displays 32
bits hexadecimal values with a proportional font, and hexadecimal digits are not well aligned. But in the
lower list, in the column labeled “Base”, the 32 bit hexadecimal values are displayed with a monospaced
font and all the hexadecimal digits are well vertically aligned, although they do not share the same font
family than the rest of data.

Another example of ill-tabulated hexadecimal colums are taken directly from the Unicode book:

Note that items “U+10330” and “U+201DF” has the same number of hexadecimal digits (five), but
different widths: the «F» do not fall exactly below the «0».

In the last example, this fact has a relative relevance, but in other material with larger descripting tables
this could became a serious one. This could be avoided by introducing a set of «hexadecimal digits ten to
fifteen» characters, which have similar glyphs that latin letters «A» to «F» have, but share the same figure
space width that decimal digits. These are the basics of this proposal.

When referring to code points in the Unicode Standard, the usual practice is to refer
to them by their numeric value expressed in hexadecimal, with a “U+” prefix. (See
Section 0.3, Notational Conventions.) Encoded characters can also be referred to by
their code points only, but to prevent ambiguity, the official Unicode name of the
character is often also added; this clearly identifies the abstract character that is
encoded. For example:

U+0061 LATIN SMALL LETTER A
U+10330 GOTHIC LETTER AHSA
U+201DF CJK UNIFIED IDEOGRAPH-201DF

Such citations refer only to the encoded character per se, associating the code point
(as an integral value) with the abstract character that is encoded.

Taken from “The Unicode Standard, Version 4.0, Chapter 2, General Structure” Copyright
© 1991–2003 by Unicode, Inc.

Semantics and compatibility

• It is proposed to include this hexadecimal digits in the «number forms» script rather than others (like
«letterlike symbols» script or any mathematical blocks) due to the intrinsic numeric value of every
hexadecimal digit. These values must be reflected in the Unicode Character Database.

• The proposed code points U+218A..U+218F were selected due they terminate in the same
hexadecimal values that the proposed characters have, and could be used as nmenonics.

• The letter-like apparience of the hexadecimal digits ten to fifteen should be considered mere
coincidence, and thus no case pairs should be assigned in the Unicode Standard.

• As compatibility forms, this hexadecimal digits could to default to the latin capital letters «A» to «F».
This is for display purposes only because they can show the same shapes of the hexadecimal digits
ten to fifteen, and inform of the value of the hexadecimal numbers to the users, although tabulation
surely becomes visually corrupted.

• In any case it is not recommended to use greek capital letters or cyrillic capital letter as compatibility
forms. Latin capital letters «A» to «F» are the unique guaranteed to be present in any ASCII-based
font.

• Note that there is no proposal here to include hexadecimal digits zero to nine; they are supposed to be
unified with ASCII decimal digits, as in this sense the hypothaetical octal digits zero to seven and
binary digits zero and one are.

• The non-contiguous ranges to both ASCII decimal digits and proposed hexadecimal digits it is not an
issue: the range of the ASCII latin capital letters are non-contiguous with digits, too.

Typographical remarks

• When present in a font, it is mandatory that proposed characters HEXADECIMAL DIGIT TEN to
HEXADECIMAL DIGIT FIFTEEN have the same figure-space pitch than decimal digits DIGIT ZERO to
DIGIT NINE of the source font.

123456 Digit figures

ABCDEF Hexadecimal digit figures

ABCDEF Proportional latin capital letters «A» to «F»

• The glyphs for this hexadecimal digits should not to be the same than that mapped to LATIN CAPITAL
LETTER A to LATIN CAPITAL LETTER F when the font is proportionally spaced (the usual case), but they
should have their own specific glyphs.

When the font is monospaced, proposed code points HEXADECIMAL DIGIT TEN to HEXADECIMAL DIGIT
FIFTEEN may share the LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER F glyphs of the font, by
appropiate mapping.

When decimal digits on the font are proportional (i. e., the width of the DIGIT ONE is less than the
DIGIT FOUR, for example), the font should lack this proposed characters. Such family fonts will be
consider decorative fonts, not suitable for technical documentation.

• Hexadecimal digits should share the "personality" of the source font (same serifed or sans-serifed
look, same weight, escapement and orientation, etc.), and they should be affected in the same way

that decimal digits are when editing stylistic changes are made in a rich text document: sizing,
stretching, colouring, bolding, stroking, outlining, etc.

• No switching must ocurr between capital and small size, i. e., there is only one case for this digits,
not two. It is not mandatory than hexadecimal digits ten to fifteen resembles the latin capital letters
«A» to «F». It could be a font designers' choice to select the latin small letters «a» to «f» apparience,
although capital forms are preferred, or perhaps will be useful to standarize a variant selection of the
two options, being the capital form the default and small form the variation.

• Care should be taken in desinging the HEXADECIMAL DIGIT ELEVEN («B») and HEXADECIMAL DIGIT
THIRTEEN («D») glyphs, due to their similarity with decimal digits eigth «8» and zero «0»,
respectively. Generally this is not a trouble in serifed Times-like fonts, but in sans-serifed Helvetica-
like fonts could lead to confussion, specially at small points sizes or low resolution devices. It is
suggested that even in sans-serifed fonts, the HEXADECIMAL DIGIT ELEVEN («B») and HEXADECIMAL
DIGIT THIRTEEN («D») glyphs renders with discrete serifs too.

Inputting and editing proposed methods (for advanced desktop publishing software only)

• For keyboard interfaces, some kind of toggle-command should be implemented to switch between
write "hexadecimal numbers A-F" and "latin letters A-F", in the same fashion as the bold, italics,
underlined, etc. classical toggles. While in "hex" mode, the latin capital letters «A» to «F» stroked on
the keyboard (and even the latin small letters «a» to «f») would be stored with U+218A..U+218F
proposed internal codes in memory.

• For selected text, some kind of toggle-command should be implemented to switch between "to
hexadecimal digits A-F ↔ to latin letters A-F", in the same fashion as the "to uppercase ↔ to
lowercase" classical toggle. This toggle will affect only to the capital letters «A» to «F» presents in
the selected text, which becomes hexadecimal digits ten to fifteen, and these back to latin capital
letters when the toggle is executed again.

• When inserting fullwidth letter forms in a far east language text that use fullwidth forms,
hexadecimal digits should render to the fullwidth forms FULLWIDTH LATIN CAPITAL LETTER A
(U+FF21) to FULLWIDTH LATIN CAPITAL LETTER F (U+FF26), because all fullwidth latin letters and
digits have the same width, and the main goal with hexadecimal numbers is acomplished that way.
Thus, FULLWIDTH LATIN CAPITAL LETTER A to FULLWIDTH LATIN CAPITAL LETTER F characters could
be considered the "presentation forms" of the hexadecimal digits ten to fifteen when writting far east
languages fullwidth text.

Sample font provided

This PDF document has embebbed glyphs of a TrueType font made by me called “Hexadecimal Serif”,
based on popular “Times New Roman” regular font that came with standard installation of Microsoft
Windows 9x, copyrighted by The Monotype Corporation plc. The sample include only the original digits
zero to nine plus the latin capital letters «A» to «F» made in hexadecimal digits fashion (i.e., they have
figure space pitch), the last also mapped as the proposed hexadecimal digits ten to fifteen
U+218A..U+218F.

The glyphs are full camera-ready (in fact, they are just pure vectors), but the font lack on hinting
information—kerning is not needed in this case.

No copyright notice is supplied with this sample font; the goal is that at appropiate time the owner
(Monotype) implements their own glyphs, full with hinting info.

The sample Truetype font file will be send as separate file if requested.

Issues of the proposal

The main question is if this new proposed characters should be mere presentation forms or if they should
be pure number forms. Both are also cases of disunification from the latin capital letters «A» to «F», a
proccess that is discouraged by the Unicode Consortium.

It is true that, from an compositing point of view, proposed hexadecimal digits ten to fifteen are merely a
kind of alphabetic presentation forms of the latin capital letters «A» to «F», which shares the same
general visual apparience that the corresponding source font, but having a figure space pitch rather than
proportional pitch. If this was the case, it implies to consider the hexadecimal digits ten to fifteen as
alphabetic characters. We read in The Unicode Standard, Version 4.0, Chapter 4 “Character
propierties”:

4.9 Letters, Alphabetic, and Ideographic

The concept of letters is used in many contexts. Computer language standards often
characterize identifiers as consisting of letters, syllables, ideographs, and digits, but do not
specify exactly what a “letter,” “syllable,” “ideograph,” or “digit” is, leaving the definitions
implicitly either to a character encoding standard or to a locale specification. The large
scope of the Unicode Standard means that it includes many writing systems for which these
distinctions are not as self-evident as they may once have been for systems designed to
work primarily for Western European languages and Japanese. In particular, while the
Unicode Standard includes various “alphabets” and “syllabaries,” it also includes writing
systems that fall somewhere in between. As a result, no attempt is made to draw a sharp
property distinction between letters and syllables.

Alphabetic. The alphabetic property is an informative property of the primary units of
alphabets and/or syllabaries, whether combining or noncombining. Included in this group
would be composite characters that are canonical equivalents to a combining character
sequence of an alphabetic base character plus one or more combining characters; letter
digraphs; contextual variants of alphabetic characters; ligatures of alphabetic characters;
contextual variants of ligatures; modifier letters; letterlike symbols that are compatibility
equivalents of single alphabetic letters; and miscellaneous letter elements. Notably,
U+00AA FEMENINE ORDINAL INDICATOR and U+00BA MASCULINE ORDINAL INDICATOR are
simply abbreviatory forms involving a Latin letter and should be considered alphabetic
rather than nonalphabetic symbols.

We see that under this definition of “alphabetic” the proposed characters hexadecimal digits ten to fifteen
do not fit well, due they are not part of any alphabet nor syllabary per se, despite its shape of latin letters.
In other words, the hexadecimal digits have not any latin letter semantics, and thus, they cannot be
considered alphabetics in any way. Consecuently, they cannot be considered a mere presentation forms of
any true alphabetic latin letter character.

In the same sense, hexadecimal digits ten to fifteen cannot be considered letterlike symbols nor
mathematical symbols:

• hexadecimal digits ten to fifteen are not symbols anyway; they do not represent any abstract idea
individually but positional digits in a well defined numbering system, and

• hexadecimal digits ten to fifteen are not used in any mathematical nor physical ecuation; furthermore,
they are not operators anyway.

Finally, we can consider the hexadecimal digits ten to fifteen as a new Number Forms sub-block. We read
in The Unicode Standard, Version 4.0, Chapter 4 “Character propierties”:

4.6 Numeric Value—Normative

Numeric value is a normative property of characters that represent numbers. This group
includes characters such as fractions, subscripts, superscripts, Roman numerals, currency
numerators, encircled numbers, and script-specific digits. In many traditional numbering
systems, letters are used with a numeric value. Examples include Greek and Hebrew letters
as well as Latin letters used in outlines (II.A.1.b). These special cases are not included here
as numbers.

Decimal digits form a large subcategory of numbers consisting of those digits that can be
used to form decimal-radix numbers. They include script-specific digits, not characters such
as Roman numerals (<1, 5> = 15 = fifteen, but <I, V> = IV = four), subscripts, or
superscripts. Numbers other than decimal digits can be used in numerical expressions, but it
is up to the user to determine the specialized uses.

The Unicode Standard assigns distinct codes to the forms of digits that are specific to a
given script. Examples are the digits used with the Arabic script, Chinese numbers, or those
of the Indic languages. For naming conventions relevant to Arabic digits, see the
introduction to Section 8.2, Arabic.

The Unicode Character Database gives the numeric values of Unicode characters that can
represent numbers.

We see now that the proposed hexadecimal digits ten to fifteen fits well under this definition of numeric
characters, because they have a well defined semantic of numbers, but it is true that they are not decimal
digits:

• they have precisally known numeric values: A=10, B=11, C=12, D=13, E=14 and F=15, and the
Unicode Character Database can reflect that;

• the Roman numerals exists as a precedent, with its own associated numeric values and with the added
pseudorule to be mandatory serifed (for example, the text “Along 18th and 19th centuries...” should
be rendered in spanish as “Durante los siglos XVIII y XIX...”, not *“Durante los siglos XVIII y
XIX...” when using a sans serifed font);

• they can not to be considered any traditional numbering system like ancient greek and hebrew, in
which letters have numeric values, nor having the outline use of the latin letters. The hexadecimal
digits ten to fifteen are true numeric characters in their own right.

As they have no alphabetic semantics, they are not affected by casing: there is not “upper” nor “lower”
hexadecimal digits ten to fifteen, in the same way that there are not “upper” nor “lower” decimal digits
zero to nine. The option to present hexadecimal numbers with the small case of the latin letters «a» to «f»
will be considered a font’s designers choice (although discouraged, because then the hexadecimal
numbers can not be capitalized, which can be confuse), or perhaps to be a variant selection of the “basic”
capital form of the hexadecimal digits ten to fifteen.

On the other hand, there is the question of the disunification of these characters from its ASCII
counterparts. In a strict sense, this is a strong disunification, due that in up-to-date lack of specialized
hexadecimal digits ten to fifteen, the common practice is to use the ASCII latin capital letters «A» to «F».
Then, the main costs of the disunification would be:

• the cost of accidental confusion and mis-identification: the glyphs for the latin capital letters «A» to
«F» are almost the same except for the figure space pitch, and

• keyboards from which it is easy to type the existing and now-disunified characters are practically all
in the world.

But the proposed characters are not intended to be used while writting program code (as source code is
ever plain text), but to be used in all kind of documentation, on paper or on screen output, where
hexadecimal values often occurr—just like Unicode books. Then, the proposed hexadecimal digits ten to
fifteen acts as a kind of specialized presentation forms of the latin capital letters «A» to «F» for purposes
of desktop publishing of rich text.

The main goal is that allocating this proposed characters, the general purpose proportional, book-like and
Unicode compatible fonts have an explicit placeholder to this figure spaced “variations” of the latin letters
«A» to «F», with its own standard codepoints. In this sense, they suffer the same disunification costs than
the Roman numerals «I», «V», «X», «L», «C», «D» and «M» (and some less perhaps, because Roman
numerals include the small forms «i», «v», «x», «l», «c», «d» and «m» too, while the proposed
hexadecimal digits ten to fifteen does not).

Following the cost/benefits analysis criteria found in the Principles and Procedures for Allocation of New
Characters and Scripts and handling of Defect Reports on Character Names (ISO/IEC JTC 1/SC 2/WG 2
N2352R), every question is listed below with a proposed answer.

I. Costs

1. Is there a glyphic distinction? Yes in proportional fonts, although certainly slighty: the proposed
hexadecimal digits ten to fifteen have all a figure space pitch, the same that the decimal digits in the
same base font, while latin capital letters «A» to «F» are clearly proportional. In the case of
monospaced fonts, there is no difference in principle, unless ad hoc differences would be introduced
by font designers to distinguish more clearly latin capital letters «A» to «F» from hexadecimal digits
ten to fifteen. In proportional fonts, the proposed characters must be added to the glyph collection of
that fonts; in monospaced fonts, they can internally map to the basic latin capital letters «A» to «F».
Decorative fonts, that is, those not suitable for technical documentation, should explicitaly lack this
new characters, due to generally they have even proportional decimal digits zero to nine, that is, not
figure spaced ones.

2. Is there a behaviour difference? Yes in proportional fonts, because hexadecimal numbers written
with these new proposed characters perfectly aligns vertically to form true hexadecimal numeric
columns in tables. This difference do not affect to monospaced fonts, of course. Also, the
hexadecimal digits ten to fifteen are not affected by case changes (to upper, to lower) of selected text
that normally affects to latin letters «A» to «F» and «a» to «f». The first target is achieved by the own
glyph metrics of the new characters (all figure spaced pitch); the second, by asigning no alphabetic
property nor case mapping at all to these new characters in the Unicode Character Database.

3. Is the use of the new character restricted to a new context (for example, use with a novel
script)? No. The hexadecimal numbering system is widely used.

4. Is the use of the existing, ambiguous character instead of the proposed new character common,
prevalent or established practice? Yes, in lack of previous specialized and separate characters for
the hexadecimal digits ten to fifteen. But it is not the intended goal to substitute this common practice
but to add a new, best suited resource for future publications.

5. Does the character exist in ASCII (ISO 646 IRV)? They are the U+0041 “A” LATIN CAPITAL
LETTER A to U+0046 “F” LATIN CAPITAL LETTER F, which are the most commonly used to write
hexadecimal numbers, and alternatively the U+0061 “a” LATIN SMALL LETTER A to U+0066 “f”
LATIN SMALL LETTER F. In fact, the latin capital letters «A» to «F» should be the compatibility
characters of these new proposed characters.

II. Benefits

1. Appearance: does disunification help to allow multilingual monofont text in an environment
where this is commonly needed? Yes, in publications of specialized books of computers
programming and digital hardware. In what way? It allows to write true “pure” hexadecimal
numbers with the same font of the main running text, instead of use of two distinct fonts, both a
proportional and a monospaced depending of the context—running text or tabulated.

2. Layout: does disunification solve common layout differences (this would mostly be true for
punctuation)? Yes, as noted before, doing the case of columns of hexadecimal numbers in tabulated
material perfectly consistent with the rest of the hexadecimal and non-hexadecimal numbers of the
documents.

3. Searching/sorting: Is there a common case where disunification allows better support for
these? No. The proposed hexadecimal digits ten to fifteen can collate as regular latin letters «A» to
«F» (although in a more strict sense they should sort just after the decimal digit nine, and before than
the latin letter «A»—or the first letter in every alphabet available).

4. Mapping to another standard: Is there a widely used standard that disunifies the characters in
question? No known standard actually defines these characters. Are the characters in question the
only ones that prevent cross mapping? Actually there are not any cross mapping needs.

III. Alternatives

1. Can the desired effect be achieved by changes to the display layer? No, while using a single
proportional font.

2. Can the desired effect be achieved by changes to protocols? There are no current protocols for
acomplish that task.

3. Can the desired effect be achieved by processing algorithms? No.

Conclussion

The asserted main cost is the adding of the new six glyphs to a collection of widely used fonts for books
(those which are Times-like, Helvetica-like and Courier-like, principally). Font vendors should update its
main products. However, rich text documents made with this new characters generally can have
embebbed font subsets (EPS, PDF), so it is not necessary to update every font installation—a prepress
service bureau can generate correct plates without having the explicit font files installed. The worst case
is the same that for the Roman numerals: if a given font lack to have these, the text must to switch to its
compatibility forms: the latin capital letters «I», «V», «X», «L», «C», «D» and «M», in the case of the
Roman numerals, and the latin capital letters «A» to «F» in the case of the hexadecimal digits ten to
fifteen.

Another main cost is the adding of a new interface for inputting these new characters. In general desktop
publishing software, this could be acomplished thru some kind of specialized plug-in extension—just like
that to write mathematical formulae or musical scores—or by customization thru user’s scripting macros.
De facto standard word processors usually have an “insert character” input feature to arbitrary choose any
Unicode character, and they do not explicitly needs new inputs methods (but every implementation will
be welcome).

The only one asserted benefit is to raise hexadecimal digits ten to fifteen to the same numeric formal and
typographical range than decimal digits zero to nine have: to have all figure space pitch and case
preventing with the same fonts than the running text in technical specialized documents.

About the author

Ricardo Cancho Niemietz was born in Madrid, Spain, in may 9 of 1969. He begans to program with the
Sinclair ZX Spectrum BASIC when he was fifteen years old. Few years after, in 1988, he joined the
greatest spanish company of entertainment home software, ERBE Software, thru its seal Topo Soft.

Between 1989 and 1991 he left the “Z80 videogames-age” behind and evolved to professional digital
image processing, desktop publishing and PostScript printing PC software programming in both 8086
assembler and C. Since 1993 and up to 2002 he was one the software partners of the Agencia EFE, the
main spanish international press agency. Along this years digital photo capturing, retouching, transmitting
and receiving software, news client and word processor applications in both latin and arabic scripts, and
many communication I/O techniques and protocols developed and implemented for the central and
subsidiaries information-switching CPU systems of that agency, written in C/C++ under a variety of
Microsoft platforms (from DOS to Windows 3.x/9x/NT/2000), are his more remarkable works. Also, he
work closely with AT&T/Lucent Technologies factory in Tres Cantos, Madrid, in some production
improvement software for their clean-room, and even a new video digital format driver called
SuperAVI® was integrally developed by him under MS Windows 3.x for the main spanish CD factory,
Iberofon-Ibermemory (but this had no continuity in newer Win32 environments).

Also, he is a children books writer and illustrator. Now, he is trying to publish his work.

He still lives in Madrid, and his current electronic address is <rcancho@tiscali.es>. His mail address is:

José de Cadalso 75, bajo A
28044 Madrid – Spain

