

[^0]2. Has contact been made to members of the user community (for example: National Body,
user groups of the script or characters, other experts, etc.)? Yes
If YES, with whom? Scholars studying the history of Chinese mathematics
If YES, available relevant documents: N/A
3. Information on the user community for the proposed characters (for example:
size, demographics, information technology use, or publishing use) is included?
The user community is limited to scholars studying pre-modern Chinese mathematical texts
4. The context of use for the proposed characters (type of use; common or rare) Rare
5. Are the proposed characters in current use by the user community? No
6. After giving due considerations to the principles in the $\mathrm{P} \& \mathrm{P}$ document must the proposed characters be entirely in the BMP?
7. Should the proposed characters be kept together in a contiguous range (rather than being scattered)? Yes
8. Can any of the proposed characters be considered a presentation form of an existing character or character sequence?

Yes; some are similar to some of the "Hangzhou" numerals or Han numeric ideographs; but since this is a small set which is with overall distinct shapes and combining behavior, it would be best to encode them as a block
9. Can any of the proposed characters be encoded using a composed character sequence of either existing characters or other proposed characters?

No
10. Can any of the proposed character(s) be considered to be similar (in appearance or function) to an existing character?

Yes; some are similar to some of the "Hangzhou" numerals or Han numeric ideographs; but since this is a small set which is with overall distinct shapes and combining behavior, it would be best to encode them as a block
11. Does the proposal include use of combining characters and/or use of composite sequences?

$$
\text { If YES, is a rationale for such use provided? }
$$

Negative numbers were indicated by overlaying a diagonal slash

\[\)| Is a list of composite sequences and their corresponding glyph images (graphic symbols) No |
| :--- |
| provided? |

\]

12. Does the proposal contain characters with any special properties such as
control function or similar semantics?
13. Does the proposal contain any Ideographic compatibility character(s)? No

Chinese counting rod numerals were used in pre-modern Chinese mathematical texts in conjunction with counting rods used to represent and manipulate numbers. The counting rods were a set of small sticks, several centimeters long which were arranged in patterns on a counting board to represent numbers. Counting rods and the counting board provided a flexible system for mathematicians to manipulate numbers, allowing for considerable sophistication in mathematics.

The specifics of the patterns used to represent various numbers using counting rods varied, but there are a number of constants :

Two sets of numbers were used, for alternate columns (e.g., ones/hundreds/ten-thousands vs. tens/thousands)

Zero was indicated by a blank square on the counting board and avoided in written texts or represented with U+3007 IDEOGRAPHIC NUMBER ZERO. Written texts could also take advantage of the alternating shapes for the numerals to avoid having to explicitly represent zero.

Negative numbers could be indicated on the counting board by using rods of a different color. In written texts, a diagonal slash from lower-right to upper-left is overlaid upon the right-most digit.

The predominant use of counting-rod numerals in texts was as part of diagrams of counting boards. They are occasionally, however, used in other contexts, and are occasionally, even in modern texts, occasionally placed within the body of the text itself. Their current use is limited to discussions of the history of Chinese mathematics.

We propose encoding Chinese counting rod numerals using nineteen characters: nine even-column digits, nine odd-column digits, and one combining negation marker. There is no particular need for these characters to be in the BMP; however, because we anticipate proposing other pre-modern Chinese mathematical symbols for encoding at some future date, it may be best to encode them in a small block with some room after it for other symbols.

There is no need to account for the precise variations in shape of the counting rod numerals from time to time; this can be handled as a font difference.

Note from the figures that the precise layout of the numerals could be moderately complicated in actual texts. We consider that the default behavior would be to lay them out in a fashion similar to ideographs, and any complications for specific texts can be handled by higher-level protocols.

The nineteen characters requested are:

```
- CHINESE COUNTING ROD UNIT DIGIT ONE
= CHINESE COUNTING ROD UNIT DIGIT TWO
\equiv CHINESE COUNTING ROD UNIT DIGIT THREE
\equiv CHINESE COUNTING ROD UNIT DIGIT FOUR
    CHINESE COUNTING ROD UNIT DIGIT FIVE
    CHINESE COUNTING ROD UNIT DIGIT SIX
    CHINESE COUNTING ROD UNIT DIGIT SEVEN
    CHINESE COUNTING ROD UNIT DIGIT EIGHT
    CHINESE COUNTING ROD UNIT DIGIT NINE
    CHINESE COUNTING ROD TENS DIGIT ONE
    CHINESE COUNTING ROD TENS DIGIT TWO
    CHINESE COUNTING ROD TENS DIGIT THREE
    CHINESE COUNTING ROD TENS DIGIT FOUR
    CHINESE COUNTING ROD TENS DIGIT FIVE
    CHINESE COUNTING ROD TENS DIGIT SIX
# CHINESE COUNTING ROD TENS DIGIT SEVEN
|II CHINESE COUNTING ROD TENS DIGIT EIGHT
```


Examples：

Fig． 17 Using counting－rods to set up negative numbers．

Fig． 18 Using counting－rods to indicate the symbol of zero．
confusion，although in many cases－such as this one－one can easily make inference from the way the digits are written，as 678 is written as $L \| \triangleq$ and not $T \mathbb{\Longrightarrow}$ ．The first zero sign in a Chinese mathematical text appears in the work of Qin Jiushao 秦九韶 in the mid－thirteenth century AD．For example，he wrote the number 1，470，000 as $\mid \equiv \prod \bigcirc \bigcirc \bigcirc \bigcirc$ ．

From page 58 of Li，Qi，and Shu by Ho Peng Yoke（Hong Kong University Press：1985）．The discussion in the paragraph is of how 6078 and 678 could be distinguished without a sign for 0 ．

From the Ciyuan Haijing.

Fig. $7^{8 .}$ A page from Ting Chhid-Chung'sedition of the Sma Yuan Yas Chien of Cbu Shib-Chieb (+1303) showing the 'matricue' of the Thien Yuan alpebrnic nowion. The middle trane in the isse cosiumn on the right is anslogous to the example given on the opposice page (fight-hand diagram), showing $x y^{2}-120 y-2 x y+2 x^{2}+2 N$.

From Science and Civilisation in China, vol. 3.

From the Suanxue Qimeng.

沈钦裴的四元术补草

朱世杰的＂假令四草＂为四元术之范例，然约而不详。清代罗士琳，沈钦裴，陈棠等，都曾为其补草，他们的工作有利于读者理解朱世杰的思想。其中罗士琳草影响较大，但相比之下，笔者以为沈钦裴草更符合朱世杰原意。现根据北京图书馆藏抄本，将沈钦裴《四元玉鉴细草》中＂两仪化元＂，＂三才运元＂，＂四象会元＂三题的细草照录如下。为便于读者比较，将朱世杰的草一并给出。

一，两仪化元

今有股幂减弦较较与股乘勾等，只云勾幂加弦较和与勾乘弦同，问股几何？

答日：四步。
草日：立天元一为股，地元一为勾弦和，天地配合求之，得今式
＊O 太

[^0]: ${ }^{1}$ Form number: N2652-F (Original 1994-10-14; Revised 1995-01, 1995-04, 1996-04, 1996-08, 1999-03, 2001-05, 2001-09, 200311)

