
DR
AF

T
The Unicode Standard 5.0 DRAFT 4 Oct 05 57

Chapter 3

Conformance 3

This chapter defines conformance to the Unicode Standard in terms of the principles and
encoding architecture it embodies. The first section defines the format for referencing the
Unicode Standard and Unicode properties. The second section consists of the conformance
clauses, followed by sections that define more precisely the technical terms used in those
clauses. The remaining sections contain the formal algorithms that are part of conform-
ance and referenced by the conformance clause. Additional definitions and algorithms that
are part of this standard can be found in the Unicode Standard Annexes listed at the end of
Section 3.2, Conformance Requirements.

In this chapter, conformance clauses are identified with the letter C. Definitions are identi-
fied with the letter D. Bulleted items are explanatory comments regarding definitions or
subclauses.

The numbering of clauses and definitions matches that of prior versions of The Unicode
Standard where possible. Where new clauses and definitions were added, letters are used
with numbers—for example, D7a. In a few cases, numbers have been reused for defini-
tions.

For information on implementing best practices, see Chapter 5, Implementation Guidelines.

3.1 Versions of the Unicode Standard
For most character encodings, the character repertoire is fixed (and often small). Once the
repertoire is decided upon, it is never changed. Addition of a new abstract character to a
given repertoire creates a new repertoire, which will be treated either as an update of the
existing character encoding or as a completely new character encoding.

For the Unicode Standard, on the other hand, the repertoire is inherently open. Because
Unicode is a universal encoding, any abstract character that could ever be encoded is a
potential candidate to be encoded, regardless of whether the character is currently known.

Each new version of the Unicode Standard supersedes the previous one, but implementa-
tions—and more significantly, data—are not updated instantly. In general, major and
minor version changes include new characters, which do not create particular problems
with old data. The Unicode Technical Committee will neither remove nor move characters.
Characters may be deprecated, but this does not remove them from the standard or from
existing data. The code point for a deprecated character will never be reassigned to a differ-
ent character, but the use of a deprecated character is strongly discouraged. Generally these
rules make the encoded characters of a new version backward-compatible with previous
versions.

Implementations should be prepared to be forward-compatible with respect to Unicode
versions. That is, they should accept text that may be expressed in future versions of this
standard, recognizing that new characters may be assigned in those versions. Thus, they

rick@unicode.org
Text Box
L2/05-290

rick@unicode.org
Draft

DR
AF

T

3.1 Versions of the Unicode Standard Conformance

58 4 Oct 05 The Unicode Standard 5.0 DRAFT

should handle incoming unassigned code points as they do unsupported characters. (See
Section 5.3, Unknown and Missing Characters.)

A version change may also involve changes to the properties of existing characters. When
this situation occurs, modifications are made to the Unicode Character Database, and a
new update version is issued for the standard. Changes to the data files may alter program
behavior that depends on them. However, such changes to properties and to data files are
never made lightly. They are made only after careful deliberation by the Unicode Technical
Committee has determined that there is an error, inconsistency, or other serious problem
in the property assignments.

Stability

Each version of the Unicode Standard, once published, is absolutely stable and will never
change. Implementations or specifications that refer to a specific version of the Unicode
Standard can rely upon this stability. When implementations or specifications are
upgraded to a future version of the Unicode Standard, then changes to them may be neces-
sary. Note that even errata and corrigenda do not formally change the text of a published
version; see “Errata and Corrigenda,” later in this section.

Some features of the Unicode Standard are guaranteed to be stable across versions. These
include the names and code positions of characters, or their decompositions as well as sev-
eral other character properties for which stability is important to implementations. See also
“Stability of Properties” in Section 3.5, Properties. The details of such stability guarantees
are contained in the policies on character encoding stability found on the Unicode Web
site. See the subsection “Policies” in Section B.4, Other Unicode References. See also the dis-
cussion of backward compatibility in Unicode Standard Annex #31, “Identifier and Pattern
Syntax,” and the subsection “Interacting with Downlevel Systems” in Section 5.3, Unknown
and Missing Characters.

Version Numbering

Version numbers for the Unicode Standard consist of three fields, denoting the major ver-
sion, the minor version, and the update version, respectively. For example, “Unicode 3.1.1”
indicates major version 3 of the Unicode Standard, minor version 1 of Unicode 3, and
update version 1 of minor version Unicode 3.1.

Formally, each new version of the Unicode Standard supersedes all earlier versions. How-
ever, because of the differences in the ways major, minor, and update versions are docu-
mented, minor and update versions generally do not obsolete all of the documentation of
the immediately prior versions of the standard.

Additional information on the current and past versions of the Unicode Standard can be
found on the Unicode Web site. See the subsection “Versions” in Section B.4, Other Unicode
References. The online document contains the precise list of contributing files from the
Unicode Character Database and the Unicode Standard Annexes, which are formally part
of each version of the Unicode Standard.

The differences between major, minor, and update versions are as follows:

Major Version. A major version represents significant additions to the standard, including
but not limited to major additions to the repertoire of encoded characters. A major version
is published as a book, together with associated updates to Unicode Standard Annexes and
the Unicode Character Database.

A major version consolidates all errata and corrigenda to data. The publication of the book
for a major version supersedes any prior documentation for major, minor, and update ver-
sions.

DR
AF

T

Conformance 3.1 Versions of the Unicode Standard

The Unicode Standard 5.0 DRAFT 4 Oct 05 59

Minor Version. A minor version also represents significant additions to the standard. It
may include small or large additions to the repertoire of encoded characters or other signif-
icant normative changes. A minor version is only published online, and is not published as
a book. Prior to Unicode 4.1, a minor version was published as a Unicode Standard Annex
(or as a Unicode Technical Report for the very earliest minor versions). Starting with Uni-
code 4.1, minor versions are published as stable version pages online. A minor version is
also associated with an update to the Unicode Character Database, and updates to the
UAXes.

A minor version incorporates selected errata as appropriate. The documentation for a
minor version does not stand alone, but rather amends the documentation of the prior ver-
sion.

Update Version. An update version represents relatively small changes to the standard,
focusing on updates to the data files of the Unicode Character Database. An update version
never involves any additions to character repertoire. It is only published online. Starting
with Unicode 3.0.1, update versions are published as stable version pages online. Prior to
that version, update versions were simply documented with the list of relevant data file
changes to the Unicode Character Database.

An update version incorporates selected errata, primarily for the data files. The documen-
tation for an update version does not stand alone, but rather amends the prior version.

Errata and Corrigenda

From time to time it may be necessary to publish errata or corrigenda to the Unicode Stan-
dard. Such errata and corrigenda will be published on the Unicode Web site. See
Section 0.6, Updates and Errata for information on how to report errors in the standard.

Errata. Errata correct errors in the text or other informative material, such as the represen-
tative glyphs in the code charts. See the subsection “Updates and Errata” in Section B.4,
Other Unicode References. Whenever a new major version of the standard is published, all
errata up to that point are incorporated into the text.

Corrigenda. Occasionally there are errors that are important enough that a corrigendum is
issued prior to the next version of the Unicode Standard. Such a corrigendum does not
change the contents of the previous version. Instead, it provides a mechanism for an imple-
mentation, protocol or other standard to cite the previous version of the Unicode Standard
with the corrigendum applied. If a citation does not specifically mention the corrigendum,
the corrigendum does not apply. For more information on citing corrigenda, see “Ver-
sions” in Section B.4, Other Unicode References.

References to the Unicode Standard

The documents associated with the major, minor, and update versions are called the major
reference, minor reference, and update reference, respectively. For example, consider Uni-
code Version 3.1.1. The major reference for that version is The Unicode Standard, Version
3.0 (ISBN 0-201-61633-5). The minor reference is Unicode Standard Annex #27, “The Uni-
code Standard, Version 3.1.” The update reference is Unicode Version 3.1.1. The exact list of
contributory files, Unicode Standard Annexes, and the Unicode Character Database can be
found at Enumerated Version 3.1.1.

The reference for this version, Version 5.0.0, of the Unicode Standard, is:

The Unicode Consortium. The Unicode Standard, Version 5.0.0, defined
by: The Unicode Standard, Version 5.0 (Boston, MA, Addison-Wesley,
2006. ISBN 0-NNN-NNNNN-N)

DR
AF

T

3.1 Versions of the Unicode Standard Conformance

60 4 Oct 05 The Unicode Standard 5.0 DRAFT

[Check 2006 and add in ISBN.]

References to an update or minor version include a reference to both the major version and
the documents modifying it. For the standard citation format for other versions of the Uni-
code Standard, see “Versions” in Section B.4, Other Unicode References.

References to Unicode Character Properties

Properties and property values have defined names and abbreviations, such as:

Property: General_Category (gc)

Property Value: Uppercase_Letter (Lu)

To reference a given property and property value, these aliases are used, as in this example:

The property value Uppercase_Letter from the General_Category prop-
erty, as specified in Version 5.0.0 of the Unicode Standard.

Then cite that version of the standard, using the standard citation format that is provided
for each version of the Unicode Standard.

When referencing multi-word properties or property values, it is permissible to omit the
underscores in these aliases, or to replace them by spaces.

When referencing a Unicode character property it is customary to prepend the word “Uni-
code” to the name of the property, unless it is clear from context that the Unicode Standard
is the source of the specification.

References to Unicode Algorithms

A reference to a Unicode Algorithm must specify the name of the algorithm or its abbrevi-
ation, followed by the version of the Unicode Standard, as in this example:

The Unicode Bidirectional Algorithm, as specified in Version 4.1.0 of the
Unicode Standard.

See Unicode Standard Annex #9, “The Bidirectional Algorithm,”
(http://www.unicode.org/reports/tr9/tr9-15.html)

Where algorithms allow tailoring, the reference must state whether any such tailorings were
applied or are applicable. For algorithms contained in a Unicode Standard Annex, the doc-
ument itself and its location on the Unicode Web site may be cited as the location of the
specification.

When referencing a Unicode algorithm it is customary to prepend the word “Unicode” to
the name of the algorithm, unless it is clear from context that the Unicode Standard is the
source of the specification.

Versions and Open Repertoires

Because Unicode has an open repertoire with relatively frequent updates, it is important
not to over-specify the version number. Wherever the precise behavior of all Unicode char-
acters needs to be cited, the full three-field version number should be used, as in the first
example below. However, trailing zeros are often omitted, as in the second example. In such
a case, writing 3.1 is in all respects equivalent to writing 3.1.0.

1. The Unicode Standard, Version 3.1.1

2. The Unicode Standard, Version 3.1

3. The Unicode Standard, Version 3.0 or later

DR
AF

T

Conformance 3.2 Conformance Requirements

The Unicode Standard 5.0 DRAFT 4 Oct 05 61

4. The Unicode Standard

Where some basic level of content is all that is important, phrasing such as in the third
example can be used. Where the important information is simply the overall architecture
and semantics of the Unicode Standard, the version can be omitted entirely, as in example
four.

3.2 Conformance Requirements
This section presents the clauses specifying the formal conformance requirements for pro-
cesses implementing Version 5.0 of the Unicode Standard. A few of these clauses have been
revised from Version 4.0 of the Unicode Standard. The revisions do not change the funda-
mental substance of the conformance requirements previously set forth, but rather are
reformulated to clarify their applicability to Unicode algorithms and tailoring. The defini-
tions that these clauses—particularly C7—depend on have been extended to cover addi-
tional aspects of properties and algorithms.

In addition to the specifications printed in this book, the Unicode Standard, Version 5.0,
includes a number of Unicode Standard Annexes (UAXes) and the Unicode Character
Database. Both are available only electronically, either on the CD-ROM or on the Unicode
Web site. At the end of this section there is a list of those annexes that are considered an
integral part of the Unicode Standard, Version 5.0.0, and therefore covered by these con-
formance requirements.

The Unicode Character Database contains an extensive specification of normative and
informative character properties completing the formal definition of the Unicode Stan-
dard. See Chapter 4, Character Properties, for more information.

Note that not all conformance requirements are relevant to all implementations at all times
because implementations may not support the particular characters or operations for
which a given conformance requirement may be relevant. See Section 2.14, Conforming to
the Unicode Standard, for more information.

In this section, conformance clauses are identified with the letter C.

The numbering of clauses matches that of prior versions of The Unicode Standard where
possible. Where new clauses were added, letters are used with numbers—for example,
C12a.

Byte Ordering

C1 [Superseded by C11]

C2 [Superseded by C11]

Earlier versions of the Unicode Standard specified conformance requirements for “code
values” (now known as code units) in terms of 16-bit values. These requirements have been
superseded by the more detailed specification of the Unicode encoding forms: UTF-8,
UTF-16, and UTF-32.

C3 [Superseded by C12b]

Earlier versions of the Unicode Standard specified that in the absence of a higher-level pro-
tocol, Unicode data serialized into a sequence of bytes would be interpreted most signifi-
cant byte first. This requirement has been superseded by the more detailed specification of
the various Unicode encoding schemes.

DR
AF

T

3.2 Conformance Requirements Conformance

62 4 Oct 05 The Unicode Standard 5.0 DRAFT

Code Points Unassigned to Abstract Characters

C4 A process shall not interpret a high-surrogate code point or a low-surrogate code point
as an abstract character.

• The high-surrogate and low-surrogate code points are designated for surrogate code
units in the UTF-16 character encoding form. They are unassigned to any abstract
character.

C5 A process shall not interpret a noncharacter code point as an abstract character.

• The noncharacter code points may be used internally, such as for sentinel values or
delimiters, but should not be exchanged publicly.

C6 A process shall not interpret an unassigned code point as an abstract character.

• This clause does not preclude the assignment of certain generic semantics to unas-
signed code points (for example, rendering with a glyph to indicate the position
within a character block) that allow for graceful behavior in the presence of code
points that are outside a supported subset.

• Note that unassigned code points may have default property values. (See D11.)

• Code points whose use has not yet been designated may be assigned to abstract
characters in future versions of the standard. Because of this fact, due care in the
handling of generic semantics for such code points is likely to provide better robust-
ness for implementations that may encounter data based on future versions of the
standard.

Interpretation

C7 A process shall interpret a coded character sequence according to the character seman-
tics established by this standard, if that process does interpret that coded character
sequence.

• This restriction does not preclude internal transformations that are never visible
external to the process.

C8 A process shall not assume that it is required to interpret any particular coded character
sequence.

• Processes that interpret only a subset of Unicode characters are allowed; there is no
blanket requirement to interpret all Unicode characters.

• Any means for specifying a subset of characters that a process can interpret is out-
side the scope of this standard.

• The semantics of a private-use code point is outside the scope of this standard.

• Although these clauses are not intended to preclude enumerations or specifications
of the characters that a process or system is able to interpret, they do separate sup-
ported subset enumerations from the question of conformance. In actuality, any
system may occasionally receive an unfamiliar character code that it is unable to
interpret.

C9 A process shall not assume that the interpretations of two canonical-equivalent charac-
ter sequences are distinct.

• The implications of this conformance clause are twofold. First, a process is never
required to give different interpretations to two different, but canonical-equivalent
character sequences. Second, no process can assume that another process will make
a distinction between two different, but canonical-equivalent character sequences.

DR
AF

T

Conformance 3.2 Conformance Requirements

The Unicode Standard 5.0 DRAFT 4 Oct 05 63

• Ideally, an implementation would always interpret two canonical-equivalent char-
acter sequences identically. There are practical circumstances under which imple-
mentations may reasonably distinguish them.

• Even processes that normally do not distinguish between canonical-equivalent
character sequences can have reasonable exception behavior. Some examples of this
behavior include graceful fallback processing by processes unable to support correct
positioning of nonspacing marks; “Show Hidden Text” modes that reveal memory
representation structure; and the choice of ignoring collating behavior of
combining sequences that are not part of the repertoire of a specified language (see
Section 5.12, Strategies for Handling Nonspacing Marks).

Modification

C10 When a process purports not to modify the interpretation of a valid coded character
sequence, it shall make no change to that coded character sequence other than the possi-
ble replacement of character sequences by their canonical-equivalent sequences or the
deletion of noncharacter code points.

• Replacement of a character sequence by a compatibility-equivalent sequence does
modify the interpretation of the text.

• Replacement or deletion of a character sequence that the process cannot or does not
interpret does modify the interpretation of the text.

• Changing the bit or byte ordering of a character sequence when transforming it
between different machine architectures does not modify the interpretation of the
text.

• Changing a valid coded character sequence from one Unicode character encoding
form to another does not modify the interpretation of the text.

• Changing the byte serialization of a code unit sequence from one Unicode character
encoding scheme to another does not modify the interpretation of the text.

• If a noncharacter that does not have a specific internal use is unexpectedly encoun-
tered in processing, an implementation may signal an error or delete or ignore the
noncharacter. If these options are not taken, the noncharacter should be treated as
an unassigned code point. For example, an API that returned a character property
value for a noncharacter would return the same value as the default value for an
unassigned code point.

• All processes and higher-level protocols are required to abide by C10 as a minimum.
However, higher-level protocols may define additional equivalences that do not
constitute modifications under that protocol. For example, a higher-level protocol
may allow a sequence of spaces to be replaced by a single space.

Character Encoding Forms

C11 When a process interprets a code unit sequence which purports to be in a Unicode char-
acter encoding form, it shall interpret that code unit sequence according to the corre-
sponding code point sequence.

• The specification of the code unit sequences for UTF-8 is given in D36.

• The specification of the code unit sequences for UTF-16 is given in D35.

• The specification of the code unit sequences for UTF-32 is given in D31.

DR
AF

T

3.2 Conformance Requirements Conformance

64 4 Oct 05 The Unicode Standard 5.0 DRAFT

C12 When a process generates a code unit sequence which purports to be in a Unicode char-
acter encoding form, it shall not emit ill-formed code unit sequences.

• The definition of each Unicode character encoding form specifies the ill-formed
code unit sequences in the character encoding form. For example, the definition of
UTF-8 (D36) specifies that code unit sequences such as <C0 AF> are ill-formed.

C12a When a process interprets a code unit sequence which purports to be in a Unicode char-
acter encoding form, it shall treat ill-formed code unit sequences as an error condition,
and shall not interpret such sequences as characters.

• For example, in UTF-8 every code unit of the form 110xxxx2 must be followed by a
code unit of the form 10xxxxxx2. A sequence such as 110xxxxx2 0xxxxxxx2 is ill-
formed and must never be generated. When faced with this ill-formed code unit
sequence while transforming or interpreting text, a conformant process must treat
the first code unit 110xxxxx2 as an illegally terminated code unit sequence—for
example, by signaling an error, filtering the code unit out, or representing the code
unit with a marker such as U+FFFD replacement character.

• Conformant processes cannot interpret ill-formed code unit sequences. However,
the conformance clauses do not prevent processes from operating on code unit
sequences that do not purport to be in a Unicode character encoding form. For
example, for performance reasons a low-level string operation may simply operate
directly on code units, without interpreting them as characters. See, especially, the
discussion under definition D30e.

• Utility programs are not prevented from operating on “mangled” text. For example,
a UTF-8 file could have had CRLF sequences introduced at every 80 bytes by a bad
mailer program. This could result in some UTF-8 byte sequences being interrupted
by CRLFs, producing illegal byte sequences. This mangled text is no longer UTF-8.
It is permissible for a conformant program to repair such text, recognizing that the
mangled text was originally well-formed UTF-8 byte sequences. However, such
repair of mangled data is a special case, and it must not be used in circumstances
where it would cause security problems.

Character Encoding Schemes

C12b When a process interprets a byte sequence which purports to be in a Unicode character
encoding scheme, it shall interpret that byte sequence according to the byte order and
specifications for the use of the byte order mark established by this standard for that
character encoding scheme.

• Machine architectures differ in ordering in terms of whether the most significant
byte or the least significant byte comes first. These sequences are known as “big-
endian” and “little-endian” orders, respectively.

• For example, when using UTF-16LE, pairs of bytes must be interpreted as UTF-16
code units using the little-endian byte order convention, and any initial <FF FE>
sequence is interpreted as U+FEFF zero width no-break space (part of the text),
rather than as a byte order mark (not part of the text). (See D41.)

Bidirectional Text

C13 A process that displays text containing supported right-to-left characters or embedding
codes shall display all visible representations of characters (excluding format characters)
in the same order as if the Bidirectional Algorithm had been applied to the text, unless
tailored by a higher-level protocol as permitted by the specification.

DR
AF

T

Conformance 3.2 Conformance Requirements

The Unicode Standard 5.0 DRAFT 4 Oct 05 65

• The Bidirectional Algorithm is specified in Unicode Standard Annex #9, “The Bidi-
rectional Algorithm.”

[Named algorithms need titlecase. Need global pass. Have done Bidi. 9-29-05]

Normalization Forms

C14 A process that produces Unicode text that purports to be in a Normalization Form shall
do so in accordance with the specifications in Unicode Standard Annex #15, “Unicode
Normalization Forms.”

C15 A process that tests Unicode text to determine whether it is in a Normalization Form
shall do so in accordance with the specifications in Unicode Standard Annex #15, “Uni-
code Normalization Forms.”

C16 A process that purports to transform text into a Normalization Form must be able to
produce the results of the conformance test specified in Unicode Standard Annex #15,
“Unicode Normalization Forms.”

• This means that when a process uses the input specified in the conformance test, its
output must match the expected output of the test.

Normative References

C17 Normative references to the Standard itself, to property aliases, to property value aliases,
or to Unicode algorithms shall follow the formats specified in Section 3.1, Versions of the
Unicode Standard.

C18 Higher-level protocols shall not make normative references to provisional properties.

• Higher-level protocols may make normative references to informative properties.

Unicode Algorithms

C19 If a process purports to implement a Unicode algorithm, it shall conform to the specifi-
cation of that algorithm in the standard, including any tailoring by a higher-level pro-
tocol as permitted by the specification.

• The term Unicode algorithm is defined at D8a.

• An implementation claiming conformance to a Unicode algorithm need only guar-
antee that it produces the same results as those specified in the logical description of
the process; it is not required to follow the actual described procedure in detail. This
allows room for alternative strategies and optimizations in implementation.

C19a The specification of an algorithm may prohibit or limit tailoring by a higher-level pro-
tocol. If a process that purports to implement a Unicode algorithm applies a tailoring,
that fact must be disclosed.

• For example, the algorithms for normalization and canonical ordering are not tai-
lorable. The Bidirectional Algorithm allows some tailoring by higher-level proto-
cols. The Unicode Default Casing algorithms may be tailored without limitation.

Default Casing Algorithms

C20 An implementation that purports to support Default Case Conversion, Default Case
Detection, or Default Caseless Matching shall do so in accordance with the definitions
and specifications in Section 3.13, Default Case Algorithms.

DR
AF

T

3.3 Semantics Conformance

66 4 Oct 05 The Unicode Standard 5.0 DRAFT

• A conformant implementation may perform casing operations that are different
from the default algorithms, perhaps tailored to a particular orthography, so long as
the fact that a tailoring is applied is disclosed.

Unicode Standard Annexes

The following standard annexes are approved and considered part of Version 5.0 of the
Unicode Standard. These annexes may contain either normative or informative material, or
both. Any reference to Version 5.0 of the standard automatically includes these standard
annexes.

• UAX #9: The Bidirectional Algorithm, Version 5.0.0

• UAX #11: East Asian Width, Version 5.0.0

• UAX #14: Line Breaking Properties, Version 5.0.0

• UAX #15: Unicode Normalization Forms, Version 5.0.0

• UAX #24: Script Names, Version 5.0.0

• UAX #29: Text Boundaries, Version 5.0.0

• UAX #31: Identifier and Pattern Syntax, Version 5.0.0

• UAX #34: Unicode Named Character Sequences, Version 5.0.0

Conformance to the Unicode Standard requires conformance to the specifications con-
tained in these annexes, as detailed in the conformance clauses listed earlier in this section.

3.3 Semantics

Definitions

This and the following sections more precisely define the terms that are used in the con-
formance clauses.

The numbering of definitions matches that of prior versions of The Unicode Standard
where possible. Where new definitions were added, letters are used with numbers—for
example, D7a. In a few cases, numbers have been reused for definitions.

Character Identity and Semantics

D1 Normative behavior: The normative behaviors of the Unicode Standard consist of
the following list or any other behaviors specified in the conformance clauses:

5. Character combination

6. Canonical decomposition

7. Compatibility decomposition

8. Canonical ordering behavior

9. Bidirectional behavior, as specified in the Unicode Bidirectional Algorithm (see
Unicode Standard Annex #9, “The Bidirectional Algorithm”)

10. Conjoining jamo behavior, as specified in Section 3.12, Conjoining Jamo Behav-
ior

11. Variation selection, as specified in Section 16.4, Variation Selectors

DR
AF

T

Conformance 3.4 Characters and Encoding

The Unicode Standard 5.0 DRAFT 4 Oct 05 67

12. Normalization, as specified in Unicode Standard Annex #15, “Unicode Nor-
malization Forms”

13. Default casing, as specified in Section 3.13, Default Case Algorithms

D2 [Incorporated into other definitions]

D2a Character identity: The identity of a character is established by its character name
and representative glyph in Chapter 17, Code Charts.

• A character may have a broader range of use than the most literal interpretation of
its name might indicate; the coded representation, name, and representative glyph
need to be taken in context when establishing the identity of a character. For exam-
ple, U+002E full stop can represent a sentence period, an abbreviation period, a
decimal number separator in English, a thousands number separator in German,
and so on. The character name itself is unique, but may be misleading. See “Charac-
ter Names” in Section 17.1, Character Names List.

• Consistency with the representative glyph does not require that the images be iden-
tical or even graphically similar; rather, it means that both images are generally rec-
ognized to be representations of the same character. Representing the character
U+0061 latin small letter a by the glyph “X” would violate its character identity.

D2b Character semantics: The semantics of a character are determined by its identity,
normative properties, and behavior.

• Some normative behavior is default behavior; this behavior can be overridden by
higher-level protocols. However, in the absence of such protocols, the behavior
must be observed so as to follow the character semantics.

• The character combination properties and the canonical ordering behavior cannot
be overridden by higher-level protocols. The purpose of this constraint is to guaran-
tee that the order of combining marks in text and the results of normalization are
predictable.

3.4 Characters and Encoding
D3 Abstract character: A unit of information used for the organization, control, or rep-

resentation of textual data.

• When representing data, the nature of that data is generally symbolic as opposed to
some other kind of data (for example, aural or visual). Examples of such symbolic
data include letters, ideographs, digits, punctuation, technical symbols, and ding-
bats.

• An abstract character has no concrete form and should not be confused with a
glyph.

• An abstract character does not necessarily correspond to what a user thinks of as a
“character” and should not be confused with a grapheme.

• The abstract characters encoded by the Unicode Standard are known as Unicode
abstract characters.

• Abstract characters not directly encoded by the Unicode Standard can often be rep-
resented by the use of combining character sequences.

D4 Abstract character sequence: An ordered sequence of abstract characters.

D4a Unicode codespace: A range of integers from 0 to 10FFFF16.

DR
AF

T

3.4 Characters and Encoding Conformance

68 4 Oct 05 The Unicode Standard 5.0 DRAFT

• This particular range is defined for the codespace in the Unicode Standard. Other
character encoding standards may use other codespaces.

D4b Code point: Any value in the Unicode codespace.

• A code point is also known as a code position.

• See D28a for the definition of code unit.

D5 Encoded character: An association (or mapping) between an abstract character and a
code point.

• An encoded character is also referred to as a coded character.

• While an encoded character is formally defined in terms of the mapping between an
abstract character and a code point, informally it can be thought of as an abstract
character taken together with its assigned code point.

• Occasionally, for compatibility with other standards, a single abstract character may
correspond to more than one code point—for example, “Å” corresponds both to
U+00C5 Å latin capital letter a with ring above and to U+212B Å angstrom

sign.

• A single abstract character may also be represented by a sequence of code points—
for example, latin capital letter g with acute may be represented by the sequence
<U+0047 latin capital letter g, U+0301 combining acute accent>, rather
than being mapped to a single code point.

D6 Coded character sequence: A sequence of code points. Normally, this consists of a
sequence of encoded characters, but it may also include noncharacters or reserved
code points.

• A coded character sequence is also known as a coded character representation.

• Internally, a process may choose to make use of noncharacter code points in its
coded character sequences. However, such noncharacter code points may not be
interpreted as abstract characters (see C5), and their removal by a conformant pro-
cess does not constitute modification of interpretation of the coded character
sequence (see C10).

• Reserved code points are included in coded character sequences, so that the con-
formance requirements regarding interpretation and modification are properly
defined when a Unicode-conformant implementation encounters coded character
sequences produced under a future version of the standard.

Unless specified otherwise for clarity, in the text of the Unicode Standard the term character
alone designates an encoded character. Similarly, the term character sequence alone desig-
nates a coded character sequence.

D7 [Incorporated into other definitions]

D7a Deprecated character: A coded character whose use is strongly discouraged. Such
characters are retained in the standard, but should not be used.

• Deprecated characters are retained in the standard so that previously conforming
data stay conformant in future versions of the standard. Deprecated characters
should not be confused with obsolete characters, which are historical. Obsolete
characters do not occur in modern text, but they are not deprecated; their use is not
discouraged.

DR
AF

T

Conformance 3.4 Characters and Encoding

The Unicode Standard 5.0 DRAFT 4 Oct 05 69

D7b Noncharacter: A code point that is permanently reserved for internal use, and that
should never be interchanged. Noncharacters consist of the values U+nFFFE and
U+nFFFF (where n is from 0 to 1016) and the values U+FDD0..U+FDEF.

• For more information, see Section 16.7, Noncharacters.

• These code points are permanently reserved as noncharacters.

D7c Reserved code point: Any code point of the Unicode Standard which is reserved for
future assignment. Also known as an unassigned code point.

• Note that surrogate code points and noncharacters are considered assigned code
points, but not assigned characters.

• For a summary classification of reserved and other types of code points, see
Table 2-3.

In general, a conforming process may indicate the presence of a code point whose use has
not been designated (for example, by showing a missing glyph in rendering, or by signaling
an appropriate error in a streaming protocol), even though it is forbidden by the standard
from interpreting that code point as an abstract character.

D8 Higher-level protocol: Any agreement on the interpretation of Unicode characters
that extends beyond the scope of this standard.

• Such an agreement need not be formally announced in data; it may be implicit in
the context.

• The specification of some Unicode algorithms may limit the scope of what a confor-
mant higher-level protocol may do.

D8a Unicode algorithm: The logical description of a process used to achieve a specified
result involving Unicode characters.

• This definition, used in the Unicode Standard and other publications of the Uni-
code Consortium, is intentionally broad, so as to allow precise logical description of
required results, without constraining implementations to follow the precise steps
of that logical description.

D8b Named Unicode algorithm: A Unicode algorithm which is specified in the Unicode
Standard or in other standards published by the Unicode Consortium and which is
given an explicit name for ease of reference.

• Named Unicode algorithms are cited in titlecase in the Standard.

• When referenced outside the context of the Unicode Standard, it is customary to
prepend the word “Unicode” to the name of the algorithm.

Table 3-1 lists the named Unicode algorithms and indicates the location of their specifica-
tion. Details regarding conformance to these algorithms and any restrictions they place on
the scope of allowable tailoring by higher-level protocols can be found in the specifications.
In some cases, a named Unicode algorithm is provided for information only.

Table 3-1. Named Unicode Algorithms

Name Description

Canonical Ordering Section 3.11

Hangul Syllable Boundary Determination Section 3.12

Hangul Syllable Composition Section 3.12

Hangul Syllable Decomposition Section 3.12

Hangul Syllable Name Generation Section 3.12

DR
AF

T

3.5 Properties Conformance

70 4 Oct 05 The Unicode Standard 5.0 DRAFT

3.5 Properties
The Unicode Standard specifies many different types of character properties. This section
provides the basic definitions related to character properties.

The actual values of Unicode character properties are specified in the Unicode Character
Database. See Section 4.1, Unicode Character Database, for an overview of those data files.
Chapter 4, Character Properties, contains more detailed descriptions of some particular,
important character properties. Additional properties that are specific to particular charac-
ters (such as the definition and use of the right-to-left override character or zero-width
space) are discussed in the relevant sections of this standard.

The interpretation of some properties (such as the case of a character) is independent of
context, whereas the interpretation of other properties (such as directionality) is applicable
to a character sequence as a whole, rather than to the individual characters that compose
the sequence.

[The K definitions (K is a temporary random choice to put them in FM in a similiar style
without affecting the numbering of the current definitions) and some related material
are new, partly from UTR #23. JDA 10-1-05]

Types of Properties

K1 Property: A named attribute of an entity in the Unicode Standard, associated with a
defined set of values.

K2 Code point property: A property of code points.

• Code point properties refer to attributes of code points per se, based on architec-
tural considerations of this standard, irrespective of any particular encoded charac-
ter.

• Thus, the Surrogate property and the Noncharacter property are code point proper-
ties.

K3 Abstract character property: A property of abstract characters.

Default Case Conversion Section 3.13

Default Case Detection Section 3.13

Default Caseless Matching Section 3.13, Section 5.18

Bidirectional Algorithm UAX #9

Line Breaking Algorithm UAX #14

Normalization Algorithm UAX #15

Grapheme Cluster Boundary Determination UAX #29

Word Boundary Determination UAX #29

Sentence Boundary Determination UAX #29

Default Identifier Determination UAX #31

Alternative Identifier Determination UAX #31

Pattern Syntax Determination UAX #31

Identifier Normalization UAX #31

Identifier Case Folding UAX #31

Standard Compression Scheme for Unicode (SCSU) UTS #6

Collation Algorithm (UCA) UTS #10

Table 3-1. Named Unicode Algorithms (Continued)

Name Description

DR
AF

T

Conformance 3.5 Properties

The Unicode Standard 5.0 DRAFT 4 Oct 05 71

• Abstract character properties refer to attributes of abstract characters per se, based
on their independent existence as elements of writing systems or other notational
systems, irrespective of their encoding in the Unicode Standard.

• Thus, the Alphabetic property, the Punctuation property, the Hex_Digit property,
the Numeric_Value property, and so on, are properties of abstract characters and
are associated with those characters whether encoded in the Unicode Standard or in
any other character encoding—or even prior to their being encoded in any charac-
ter encoding standard.

K4 Encoded character property: A property of encoded characters in the Unicode Stan-
dard.

• For each encoded character property there is a mapping from every code point to
some value in the set of values associated with that property.

Encoded character properties are defined this way to facilitate the implementation of char-
acter property APIs based on the Unicode Character Database. Typically, an API will take a
property and a code point as input, and will return a value for that property as output,
interpreting it as the “character property” for the “character” encoded at that code point.
However, to be useful, such APIs must return meaningful values for unassigned code
points, as well as for encoded characters.

In some instances an encoded character property in the Unicode Standard is exactly equiv-
alent to a code point property. For example, the Pattern_Syntax property simply defines a
range of code points which are reserved for pattern syntax. (See Unicode Standard Annex
#31, “Identifier and Pattern Syntax.”)

In other instances, an encoded character property directly reflects an abstract character
property, but extends the domain of the property to include all code points, including
unassigned code points. For Boolean properties, such as the Hex_Digit property, typically
an encoded character property will be true for the encoded characters with that abstract
character property, and will be false for all other code points, including unassigned code
points, noncharacters, private-use characters, and encoded characters for which the
abstract character property is inapplicable or irrelevant.

However, in many instances, an encoded character property is semantically complex, and
may telescope together values associated with a number of abstract character properties
and/or code point properties. The General_Category property is an example—it contains
values associated with several abstract character properties (such as Letter, Punctuation,
Symbol), and also code point properties (such as [gc=Cs] for the Surrogate code point
property).

In the text of this standard the terms “Unicode character property,” “character property,” or
the term “property” without qualifier, generally refer to an encoded character property,
unless otherwise indicated.

A list of the encoded character properties formally considered to be a part of the Unicode
Standard can be found in PropertyAliases.txt in the Unicode Character Database. See also
“Property Aliases” later in this section.

Property Values

K5 Property value: One of the set of values associated with an encoded character prop-
erty.

• For example, the East_Asian_Width [EAW] property has the possible values “Nar-
row”, “Neutral”, “Wide”, “Ambiguous”, and “Unassigned”.

DR
AF

T

3.5 Properties Conformance

72 4 Oct 05 The Unicode Standard 5.0 DRAFT

A list of the values associated with encoded character properties in the Unicode Standard
can be found in PropertyValueAliases.txt in the Unicode Character Database. See also
“Property Aliases” later in this section.

K6 Explicit property value: A value for an encoded character property which is explicitly
associated with a code point in one of the data files of the Unicode Character Data-
base.

K7 Implicit property value: A value for an encoded character property which is given by
generic rule or by an “otherwise” clause in one of the data files of the Unicode Char-
acter Database.

• Implicit property values are used to avoid having to explicitly list values for over a
million code points (most of them unassigned) for every property.

K8 Default property value: The value (or in some cases small set of values) of a property
associated with unassigned code points or with encoded characters for which the
property is irrelevant.

• For example, for most Boolean properties, “False” is the default property value.
Note that in such cases, the default property value used for unassigned code points
may be the same value that is used for many assigned characters as well.

• Some properties, particularly enumerated properties, specify a particular, unique
value as their default value. For example, “XX” is the default property value for the
Line_Break property.

• A default property value is typically defined implicitly, to avoid having to repeat
long lists of unassigned code points.

• In the case of some properties with arbitrary string values, the default property
value is an implied null value. For example, the fact that there is no Unicode charac-
ter name for unassigned code points is equivalent to saying that the default property
value for the Name property for an unassigned code point is a null string.

• In some instances, an encoded character property may have multiple default values.
For example, the Bidi_Class property defines a range of unassigned code points as
having the “R” value, another range of unassigned code points the “AL” value, and
the otherwise case as having the “L” value.

Classification of Properties by Their Values

K9 Enumerated property: A property with a small set of named values.

• As characters are added to the Unicode Standard, the set of values may need to be
extended in the future, but enumerated properties have a relatively fixed set of pos-
sible values.

K10 Closed enumeration: An enumerated property for which the set of values is closed
and will not be extended for future versions of the Unicode Standard.

• Currently, the General Category is the only closed enumeration, except for the Bool-
ean properties.

K11 Boolean property: A closed enumerated property whose set of values is limited to
“true” and “false”.

• The presence or absence of the property is the essential information.

K12 Numeric property: A numeric property is a property whose value is a number that
can take on any integer, or real value.

DR
AF

T

Conformance 3.5 Properties

The Unicode Standard 5.0 DRAFT 4 Oct 05 73

• An example is the Numeric_Value property. There is no implied limit to the num-
ber of possible distinct values for the property, except the limitations on represent-
ing integers or real numbers in computers.

K13 String-valued property: A property whose value is a string.

• The Canonical_Decomposition property is a string-valued property.

K14 Catalog property: A property that is an enumerated property, typically unrelated to
an algorithm, that may be extended in each successive version of the Unicode Stan-
dard.

• Examples are Age and Block properties. Additional values for both may be added
each time a new version of the Standard adds new characters or blocks.

K15 Miscellaneous property: A property whose values are not Boolean, enumerated,
numeric, string or catalog values.

• The Unicode character name property is a miscellaneous property.

Normative and Informative Properties

Unicode character properties are divided into those that are normative and those that are
informative.

D9 Normative property: A Unicode character property used in the specification of the
standard.

Specification that a character property is normative means that implementations which
claim conformance to a particular version of the Unicode Standard and which make use of
that particular property must follow the specifications of the standard for that property for
the implementation to be conformant. For example, the directionality property (bidirec-
tional character type) is required for conformance whenever rendering text that requires
bidirectional layout, such as Arabic or Hebrew.

Whenever a normative process depends on a property in a specified way, that property is
designated as normative.

The fact that a given Unicode character property is normative does not mean that the val-
ues of the property will never change for particular characters. Corrections and extensions
to the standard in the future may require minor changes to normative values, even though
the Unicode Technical Committee strives to minimize such changes. See also “Stability of
Properties” later in this section.

Some of the normative Unicode algorithms depend critically on particular property values
for their behavior. Normalization, for example, defines an aspect of textual interoperability
that many applications rely on to be absolutely stable. As a result, some of the normative
properties disallow any kind of overriding by higher-level protocols. Thus, the decomposi-
tion of Unicode characters is both normative and not overridable; no higher-level protocol
may override these values, because to do so would result in non-interoperable results for
the normalization of Unicode text. Other normative properties, such as case mapping, are
overridable by higher-level protocols, because their intent is to provide a common basis for
behavior, but they may require tailoring for particular local cultural conventions or partic-
ular implementations.

Some important normative character properties of the Unicode Standard are listed in
Table 3-2, with an indication of which sections in the standard provide a general descrip-
tion of the properties and their use. Other normative properties are documented in the
Unicode Character Database. In all cases, the Unicode Character Database provides the
definitive list of character properties and the exact list of property value assignments for

DR
AF

T

3.5 Properties Conformance

74 4 Oct 05 The Unicode Standard 5.0 DRAFT

each version of the Standard. A list of additional, special character properties can be found
in Section 4.12, Characters with Unusual Properties.

K16 Overridable property: A normative property whose values may be overridden by
conformant higher-level protocols.

• For example, the Canonical_Decomposition property is not overridable. The
Uppercase property can be overridden.

D9a Informative property: A Unicode character property whose values are provided for
information only.

A conformant implementation of the Unicode Standard is free to use or change informa-
tive property values as it may require, while remaining conformant to the standard. An
implementer always has the option of establishing a protocol to convey the fact that infor-
mative properties are being used in distinct ways.

Informative properties capture expert implementation experience. When an informative
property is explicitly specified in the Unicode Character Database, its use is strongly rec-
ommended for implementations to encourage comparable behavior between implementa-
tions. Note that it is possible for an informative property in one version of the Unicode
Standard to become a normative property in a subsequent version of the standard if its use
starts to acquire conformance implications in some part of the standard.

Table 3-3 provides a partial list of the more important informative character properties. For
a complete listing, see the Unicode Character Database.

Table 3-2. Normative Character Properties

Property Description

Bidi_Class (directionality) UAX #9 and Section 4.4

Bidi_Mirrored Section 4.7 and UAX #9

Block Chapter 17

Canonical_Combining_Class Section 3.11, Section 4.3, and UAX #15

Case-related properties Section 3.13, Section 4.2, and Chapter 17

Composition_Exclusion UAX #15

Decomposition_Mapping Chapter 3, Chapter 17, and UAX #15

Default_Ignorable_Code_Point Section 5.20

Deprecated Section 3.1

General_Category Section 4.5

Hangul_Syllable_Type Section 3.12 and UAX #29

Jamo_Short_Name Section 3.12

Joining_Type and Joining_Group Section 8.2

Name Chapter 17

Noncharacter_Code_Point Section 16.7

Numeric_Value Section 4.6

White_Space UCD.html

Table 3-3. Informative Character Properties

Property Description

Dash Section 6.2 and Table 6-3

East_Asian_Width Section 12.3 and UAX #11

Letters-related properties Section 4.10

Line_Break Section 16.1, Section 16.2, and UAX #14

Mathematical Section 15.4

DR
AF

T

Conformance 3.5 Properties

The Unicode Standard 5.0 DRAFT 4 Oct 05 75

D9b Provisional property: A Unicode character property whose values are unapproved
and tentative, and which may be incomplete or otherwise not in a usable state.

• Provisional properties may be removed from future versions of the standard, with-
out prior notice.

Some of the information provided about characters in the Unicode Character Database
constitutes provisional data. This may capture partial or preliminary information. It may
contain errors or omissions, or otherwise not be ready for systematic use; however, it is
included in the data files for distribution partly to encourage review and improvement of
the information. For example, a number of the tags in the Unihan.txt file provide provi-
sional property values of various sorts about Han characters.

The data files of the Unicode Character Database may also contain various annotations and
comments about characters, and those annotations and comments should be considered
provisional. Implementations should not attempt to parse annotations and comments out
of the data files and treat them as informative character properties per se.

Context Dependence

K17 Context-dependent property: A property that applies to a code point in the context of
a longer code point sequence.

• For example, the lowercase mapping of a Greek sigma depends on the context of the
surrounding characters.

K18 Context-independent property: A property that is not context dependent: it applies to
a code point in isolation.

Stability of Properties

K19 Stable transformation: A transformation T on a property P is stable with respect to
an algorithm A, if the result of the algorithm on the transformed property A(T(P))
is the same as the original result A(P) for all code points.

K20 Stable property: A property is stable with respect to a particular algorithm or process,
as long as possible changes in the assignment of property values are restricted in
such a manner that the result of the algorithm on the property continues to be the
same as the original result for all previously assigned code points.

• For example, while the absolute values of the canonical combining classes are not
guaranteed to be the same between versions of the Unicode Standard, their relative
values will be maintained. As a result, the Canonical Combining Class, while not
immutable, is a stable property with respect to the Normalization Forms as defined
in Unicode Standard Annex #15, “Unicode Normalization Forms.”

• As new characters are assigned to previously unassigned code points, replacing any
default values for these code points with actual property values must maintain sta-
bility.

Script UAX #24

Space Section 6.2 and Table 6-2

Unicode_1_Name Section 4.9

Table 3-3. Informative Character Properties (Continued)

Property Description

DR
AF

T

3.5 Properties Conformance

76 4 Oct 05 The Unicode Standard 5.0 DRAFT

K21 Fixed property: A property whose values (other than a default value), once associated
with a specific code point, are fixed and will not be changed, except to correct obvi-
ous or clerical errors.

• For a fixed property, any default values can be replaced without restriction by actual
property values, as new characters are assigned to previously unassigned code
points. Examples of fixed properties are Age or Hangul_Syllable_Type.

• Designating a property as fixed does not imply stability or immutability, see “Stabil-
ity” in Section 3.1, Versions of the Unicode Standard. While the age of a character, for
example, is established by the version of the Unicode Standard at which it was
added, errors in the published listing of the property value could be corrected. For
some other properties, there are explicit stability guarantees that prohibit the cor-
rection even of such errors.

K22 Immutable property: A fixed property that is also subject to a stability guarantee pre-
venting any change in the published listing of property values other than assignment
of new values to formerly unassigned code points.

• An immutable property is trivially stable with respect to all context-free algorithms.

[Mark says we haven’t defined “context-free algorithms”--needs at least a couple of
examples (+ and -). JDA 10-1-05]

• An example of an immutable property is the Unicode character name itself. Because
character names are values of an immutable property, misspellings and incorrect
names will never be corrected clerically. Any errata will be noted in a comment in
the character names list, and, where needed, an informative character name alias
will be provided.

• When an encoded character property representing a code point property is immu-
table, none of its values can ever change. This follows from the fact that the code
points themselves do not change, and the status of the property is unaffected by
whether a particular abstract character is encoded at a code point later or not. An
example of such a property is the Pattern_Syntax property; all values of that prop-
erty are unchangeable for all code points, forever.

• In the more typical case of an immutable property, the values for existing encoded
characters cannot change, but when a new character is encoded, the formerly unas-
signed code point changes from having a default value for the property to having
one of its non-default values. Once that non-default value is published, then it can
no longer be changed.

K23 Stabilized property: A property which is neither extended to new characters, nor
maintained in any other manner, but which is retained in the Unicode Character
Database.

• A stabilized property is also a fixed property.

K24 Deprecated property: A property whose use by implementations is discouraged.

• One of the reasons a property may be deprecated is because a different combination
of properties better expresses the intended semantics.

• Where sufficiently widespread legacy support exists for the deprecated property, not
all implementations may be able to discontinue the use of the deprecated property.
In such a case, a deprecated property may be extended to new characters, so as to
maintain it in a usable and consistent state.

DR
AF

T

Conformance 3.5 Properties

The Unicode Standard 5.0 DRAFT 4 Oct 05 77

Informative or normative properties in the standard will not be removed even when they
are supplanted by other properties or are no longer useful. However, they may be stabilized
and/or deprecated.

Simple and Derived Properties

D9c Simple property: A Unicode character property whose values are specified directly in
the Unicode Character Database (or elsewhere in the standard) and whose values
cannot be derived from other simple properties.

D9d Derived property: A Unicode character property whose values are algorithmically
derived from some combination of simple properties.

[4.0.1 D definition updates need to be put in glossary also. Figure out which they are and
do. 8-24-04.]

The Unicode Character Database lists a number of derived properties explicitly. Even
though these values can be derived, they are provided as lists because the derivation may
not be trivial and because explicit lists are easier to understand, reference, and implement.
Good examples of derived properties are the ID_Start and ID_Continue properties, which
can be used to specify a formal identifier syntax for Unicode characters. The details of how
derived properties are computed can be found in the documentation for the Unicode Char-
acter Database.

Property Aliases

To enable normative references to Unicode character properties, formal aliases for proper-
ties and for property values are defined as part of the Unicode Character Database.

D10 Property alias: A unique identifier for a particular Unicode character property.

• The identifiers used for property aliases contain only ASCII alphanumeric charac-
ters or the underscore character.

• Short and long forms for each property alias are defined. The short forms are typi-
cally just two or three characters long to facilitate their use as attributes for tags in
markup languages. For example, “General_Category” is the long form and “gc” is
the short form of the property alias for the General Category property.

• Property aliases are defined in the file PropertyAliases.txt in the Unicode Character
Database.

• Property aliases of normative properties are themselves normative.

D10a Property value alias: A unique identifier for a particular enumerated value for a par-
ticular Unicode character property.

• The identifiers used for property value aliases contain only ASCII alphanumeric
characters or the underscore character, or have the special value “n/a”.

• Short and long forms for property value aliases are defined. For example,
“Currency_Symbol” is the long form and “Sc” is the short form of the property
value alias for the currency symbol value of the General Category property.

• Property value aliases are defined in the file PropertyValueAliases.txt in the Unicode
Character Database.

• Property value aliases are unique identifiers only in the context of the particular
property with which they are associated. The same identifier string might be associ-

DR
AF

T

3.6 Combination Conformance

78 4 Oct 05 The Unicode Standard 5.0 DRAFT

ated with an entirely different value for a different property. The combination of a
property alias and a property value alias is, however, guaranteed to be unique.

• Property value aliases referring to values of normative properties are themselves
normative.

The property aliases and property value aliases can be used, for example, in XML formats
of property data, for regular-expression property tests, and in other programmatic textual
descriptions of Unicode property data. Thus “gc=Lu” is a formal way of specifying that the
General Category of a character (using the property alias “gc”) has the value of being an
uppercase letter (using the property value alias “Lu”).

D11 [Revised to Definition K8]

Private Use

D12 Private-use code point: Code points in the ranges U+E000..U+F8FF, U+F0000..
U+FFFFD, and U+100000..U+10FFFD.

• Private-use code points are considered to be assigned characters, but the abstract
characters associated with them have no interpretation specified by this standard.
They can be given any interpretation by conformant processes.

• Private-use code points may be given default property values, but these default val-
ues are overridable by higher-level protocols that give those private-use code points
a specific interpretation.

3.6 Combination
D13 [Revised to Definition D13b]

D13a Graphic character: A character with the General Categories of Letter (L), Combining
Mark (M), Number (N), Punctuation (P), Symbol (S), or Space Separator (Zs).

• Graphic characters specifically exclude the line and paragraph separators (Zl, Zp),
and exclude the characters with the General Categories of Other (Cn, Cs, Cc, Cf).

• The interpretation of private-use characters (Co) as graphic characters or not is
determined by the implementation.

• For more information, see Chapter 2, General Structure, especially Section 2.4, Code
Points and Characters, and Table 2-3.

D13b Base character: Any graphic character except for those with the General Category of
Combining Mark (M).

• Most Unicode characters are base characters. In terms of General Category values, a
base character is any code point that has one of the categories: Letter (L), Number
(N), Punctuation (P), Symbol (S), or Space Separator (Zs).

• Base characters do not include control characters or format controls.

• Base characters are independent graphic characters, but this does not preclude the
presentation of base characters from adopting different contextual forms or partici-
pating in ligatures.

• The interpretation of private-use characters (Co) as base characters or not is deter-
mined by the implementation. However, the default interpretation of private-use
characters should be as base characters, in the absence of other information.

DR
AF

T

Conformance 3.6 Combination

The Unicode Standard 5.0 DRAFT 4 Oct 05 79

D14 Combining character: A character with the General Category of Combining Mark
(M).

• Combining characters consist of all characters with the General Category values of
Spacing Combining Mark (Mc), Non-Spacing Mark (Mn), and Enclosing Mark
(Me).

• All characters with non-zero canonical combining class are combining characters,
but the reverse is not the case: there are combining characters with a zero canonical
combining class.

• The interpretation of private-use characters (Co) as combining characters or not is
determined by the implementation.

• These characters are not normally used in isolation unless they are being described.
They include such characters as accents, diacritics, Hebrew points, Arabic vowel
signs, and Indic matras.

• The graphic positioning of a combining character depends on the last preceding
base character, unless they are separated by a character that is neither a combining
character nor one of zero width joiner or zero width non-joiner. The combin-
ing character is said to apply to that base character.

• There may be no such base character, such as when a combining character is at the
start of text or follows a control or format character, such as a carriage return, tab,
or right-left mark. In such cases, the combining characters are called isolated
combining characters.

• With isolated combining characters, or when a process is unable to perform graphi-
cal combination, a process may present a combining character without graphical
combination; that is, it may present it as if it were a base character.

• The representative images of combining characters are depicted with a dotted circle
in the code charts; when presented in graphical combination with a preceding base
character, that base character is intended to appear in the position occupied by the
dotted circle.

• Combining characters generally take on the properties of their base character, while
retaining their combining property.

D15 Nonspacing mark: A combining character with the property [General_Category =
Mn] or [General_Category = Me].

• The position of a nonspacing mark in presentation is dependent on its base charac-
ter. It generally does not consume space along the visual baseline in and of itself.

• Such characters may be large enough to affect the placement of their base character
relative to preceding and succeeding base characters. For example, a circumflex
applied to an “i” may affect spacing (“î”), as might the character U+20DD combin-

ing enclosing circle.

D15a Enclosing mark: A nonspacing mark with the property [General_Category = Me].

• Enclosing marks are a subclass of nonspacing marks which surround a base charac-
ter, rather than merely being placed over, under, or through it.

D16 Spacing mark: A combining character that is not a nonspacing mark.

• Examples include U+093F devanagari vowel sign i. In general, the behavior of
spacing marks does not differ greatly from that of base characters.

DR
AF

T

3.6 Combination Conformance

80 4 Oct 05 The Unicode Standard 5.0 DRAFT

• Note that spacing marks such as U+0BCA tamil vowel sign o may appear on both
sides of a base character, but are not enclosing marks.

D17 Combining character sequence: A maximal character sequence consisting of either a
base character followed by a sequence of one or more characters where each is a
combining character, zero width joiner, or zero width non-joiner; or a
sequence of one or more characters where each is a combining character, zero

width joiner, or zero width non-joiner.

• When identifying a combining character sequence in Unicode text, the definition of
the combining character sequence is applied maximally. Thus, for example, in the
sequence <c, dot-below, caron, acute, a>, the entire sequence <c, dot-below, caron,
acute> is identified as the combining character sequence, rather than the alternative
of identifying <c, dot-below> as a combining character sequence followed by a sep-
arate (defective) combining character sequence <caron, acute>.

D17a Defective combining character sequence: A combining character sequence that does
not start with a base character.

• Defective combining character sequences occur when a sequence of combining
characters appears at the start of a string or follows a control or format character.
Such sequences are defective from the point of view of handling of combining
marks, but are not ill-formed. (See D30.)

D17b Grapheme base: A character with the property [Grapheme_Base = True], or any
standard Korean syllable block.

• Characters with the property [Grapheme_Base = True] include all base characters
plus most spacing marks.

• The concept of a grapheme base is introduced to simplify discussion of the graphi-
cal application of nonspacing marks to other elements of text. Note that a grapheme
base may consist of a spacing (combining) mark, which distinguishes it from a base
character, per se. A grapheme base may also itself consist of a sequence of charac-
ters, in the case of the standard Korean syllable block.

• For the definition of standard Korean syllable block, see K21 in Section 3.12, Con-
joining Jamo Behavior.

[Update K21 ref above as necessary once reformatted. JDA 9-27-05]

D17c Grapheme extender: A character with the property [Grapheme_Extend = True].

• Grapheme extender characters consist of all nonspacing marks, zero width

joiner, zero width non-joiner, and a small number of spacing marks.

• A grapheme extender can be conceived of primarily as the kind of nonspacing
graphical mark which gets applied above or below another spacing character.

• zero width joiner and zero width non-joiner are formally defined to be graph-
eme extenders so that their presence does not break up a sequence of other graph-
eme extenders.

• The small number of spacing marks which have the property [Grapheme_Extend =
True] are all the second parts of a two-part combining mark.

D17d Grapheme cluster: A maximal character sequence consisting of a grapheme base fol-
lowed by zero or more grapheme extenders, or alternatively the sequence <CR, LF>.

• The grapheme cluster represents a horizontally segmentable unit of text, consisting
of some grapheme base (which may consist of a Korean syllable) together with any
number of nonspacing marks applied to it.

DR
AF

T

Conformance 3.7 Decomposition

The Unicode Standard 5.0 DRAFT 4 Oct 05 81

• A grapheme cluster is similar, but not identical to a combining character sequence.
A combining character sequence starts with a base character, and extends across any
subsequent sequence of combining marks, nonspacing or spacing. A combining
character sequence is most directly relevant to processing issues related to normal-
ization, comparison, and searching.

• A grapheme cluster starts with a grapheme base, and extends across any subsequent
sequence of nonspacing marks. A grapheme cluster is most directly relevant to text
rendering and such processes as cursor placement and text selection in editing.

D17e Extended grapheme cluster: The text between grapheme cluster boundaries as speci-
fied by Unicode Standard Annex #29, “Text Boundaries.”

• Extended grapheme clusters are either a grapheme cluster, a single character such as
a control character, or the sequence <CR, LF>. They do not have linguistic signifi-
cance, but are used to break up a string of text into units for processing.

3.7 Decomposition
D17f Decomposition mapping: A mapping from a character to a sequence of one or more

characters that is a canonical or compatibility equivalent, and listed in the character
names list or described in Section 3.12, Conjoining Jamo Behavior.

• Each character has at most one decomposition mapping. The mappings in
Section 3.12, Conjoining Jamo Behavior are canonical mappings. The mappings in
the character names list are identified as either canonical or compatibility mappings
(see Section 17.1, Character Names List).

D18 Decomposable character: A character that is equivalent to a sequence of one or more
other characters, according to the decomposition mappings found in the Unicode
Character Database, and those described in Section 3.12, Conjoining Jamo Behavior.
It may also be known as a precomposed character or composite character.

• The decomposition mappings from the Unicode Character Database are also
printed in Section 17.1, Character Names List.

D19 Decomposition: A sequence of one or more characters that is equivalent to a decom-
posable character. A full decomposition of a character sequence results from decom-
posing each of the characters in the sequence until no characters can be further
decomposed.

Compatibility Decomposition

D20 Compatibility decomposition: The decomposition of a character that results from
recursively applying both the compatibility mappings and the canonical mappings
found in the Unicode Character Database, and those described in Section 3.12, Con-
joining Jamo Behavior, until no characters can be further decomposed, and then
reordering nonspacing marks according to Section 3.11, Canonical Ordering Behav-
ior.

• The decomposition mappings from the Unicode Character Database are also
printed in Section 17.1, Character Names List.

• Some compatibility decompositions remove formatting information.

D21 Compatibility decomposable character: A character whose compatibility decomposi-
tion is not identical to its canonical decomposition. It may also be known as a com-
patibility precomposed character or a compatibility composite character.

DR
AF

T

3.7 Decomposition Conformance

82 4 Oct 05 The Unicode Standard 5.0 DRAFT

• For example, U+00B5 micro sign has no canonical decomposition mapping, so its
canonical decomposition is the same as the character itself. It has a compatibility
decomposition to U+03BC greek small letter mu. Because micro sign has a
compatibility decomposition that is not equal to its canonical decomposition, it is a
compatibility decomposable character.

• For example, U+03D3 greek upsilon with acute and hook symbol canonically
decomposes to the sequence <U+03D2 greek upsilon with hook symbol,
U+0301 combining acute accent>. That sequence has a compatibility decompo-
sition of <U+03A5 greek capital letter upsilon, U+0301 combining acute

accent>. Because greek upsilon with acute and hook symbol has a compati-
bility decomposition that is not equal to its canonical decomposition, it is a compat-
ibility decomposable character.

• This should not be confused with the term “compatibility character,” which is dis-
cussed in Section 2.3, Compatibility Characters.

• Compatibility decomposable characters are a subset of compatibility characters
included in the Unicode Standard to represent distinctions in other base standards.
They support transmission and processing of legacy data. Their use is discouraged
other than for legacy data or other special circumstances.

• Replacing a compatibility decomposable character by its compatibility decomposi-
tion may lose round-trip convertibility with a base standard.

D22 Compatibility equivalent: Two character sequences are said to be compatibility
equivalents if their full compatibility decompositions are identical.

Canonical Decomposition

D23 Canonical decomposition: The decomposition of a character that results from recur-
sively applying the canonical mappings found in the Unicode Character Database,
and those described in Section 3.12, Conjoining Jamo Behavior, until no characters
can be further decomposed, and then reordering nonspacing marks according to
Section 3.11, Canonical Ordering Behavior.

• The decomposition mappings from the Unicode Character Database are also
printed in Section 17.1, Character Names List.

• A canonical decomposition does not remove formatting information.

D23a Canonical decomposable character: A character which is not identical to its canonical
decomposition. It may also be known as a canonical precomposed character or a
canonical composite character.

• For example, U+00E0 latin small letter a with grave is a canonical decompos-
able character because its canonical decomposition is to the sequence <U+0061
latin small letter a, U+0300 combining grave accent>. U+212A kelvin sign

is a canonical decomposable character because its canonical decomposition is to
U+004B latin capital letter k.

D24 Canonical equivalent: Two character sequences are said to be canonical equivalents if
their full canonical decompositions are identical.

• For example, the sequences <o, combining-diaeresis> and <ö> are canonical equiva-
lents. Canonical equivalence is a Unicode property. It should not be confused with
language-specific collation or matching, which may add other equivalencies. For
example, in Swedish, ö is treated as a completely different letter from o, collated after
z. In German, ö is weakly equivalent to oe and collated with oe. In English, ö is just

DR
AF

T

Conformance 3.8 Surrogates

The Unicode Standard 5.0 DRAFT 4 Oct 05 83

an o with a diacritic that indicates that it is pronounced separately from the previ-
ous letter (as in coöperate) and is collated with o.

• By definition, all canonical-equivalent sequences are also compatibility-equivalent
sequences.

Note: For information on the use of decomposition in normalization, see Unicode Stan-
dard Annex #15, “Unicode Normalization Forms.”

3.8 Surrogates
D25 High-surrogate code point: A Unicode code point in the range U+D800 to U+DBFF.

D25a High-surrogate code unit: A 16-bit code unit in the range D80016 to DBFF16, used in
UTF-16 as the leading code unit of a surrogate pair.

D26 Low-surrogate code point: A Unicode code point in the range U+DC00 to U+DFFF.

D26a Low-surrogate code unit: A 16-bit code unit in the range DC0016 to DFFF16, used in
UTF-16 as the trailing code unit of a surrogate pair.

• High-surrogate and low-surrogate code points are designated only for that use.

• High-surrogate and low-surrogate code units are used only in the context of the
UTF-16 character encoding form.

D27 Surrogate pair: A representation for a single abstract character that consists of a
sequence of two 16-bit code units, where the first value of the pair is a high-surro-
gate code unit, and the second is a low-surrogate code unit.

• Surrogate pairs are used only in UTF-16. (See Section 3.9, Unicode Encoding Forms.)

• Isolated surrogate code units have no interpretation on their own. Certain other
isolated code units in other encoding forms also have no interpretation on their
own. For example, the isolated byte 8016 has no interpretation in UTF-8; it can only
be used as part of a multibyte sequence. (See Table 3-7.)

• Sometimes high-surrogate code units are referred to as leading surrogates. Low-sur-
rogate code units are then referred to as trailing surrogates. This is analogous to
usage in UTF-8, which has leading bytes and trailing bytes.

• For more information, see Section 16.6, Surrogates Area, and Section 5.4, Handling
Surrogate Pairs in UTF-16.

3.9 Unicode Encoding Forms
The Unicode Standard supports three character encoding forms: UTF-32, UTF-16, and
UTF-8. Each encoding form maps the Unicode code points U+0000..U+D7FF and
U+E000..U+10FFFF to unique code unit sequences. The size of the code unit is specified
for each encoding form. This section presents the formal definition of each of these encod-
ing forms.

D28 Unicode scalar value: Any Unicode code point except high-surrogate and low-surro-
gate code points.

• As a result of this definition, the set of Unicode scalar values consists of the ranges 0
to D7FF16 and E00016 to 10FFFF16, inclusive.

DR
AF

T

3.9 Unicode Encoding Forms Conformance

84 4 Oct 05 The Unicode Standard 5.0 DRAFT

D28a Code unit: The minimal bit combination that can represent a unit of encoded text
for processing or interchange.

• Code units are particular units of computer storage. Other character encoding stan-
dards typically use code units defined as 8-bit units, or octets. The Unicode Standard
uses 8-bit code units in the UTF-8 encoding form, 16-bit code units in the UTF-16
encoding form, and 32-bit code units in the UTF-32 encoding form.

• A code unit is also referred to as a code value in the information industry.

• In the Unicode Standard, specific values of some code units cannot be used to repre-
sent an encoded character in isolation. This restriction applies to isolated surrogate
code units in UTF-16 and to the bytes 80–FF in UTF-8. Similar restrictions apply
for the implementations of other character encoding standards; for example, the
bytes 81–9F, E0–FC in SJIS (Shift-JIS) cannot represent an encoded character by
themselves.

• For information on use of wchar_t or other programming language types to rep-
resent Unicode code units, see Section 5.2, ANSI/ISO C wchar_t.

D28b Code unit sequence: An ordered sequence of one or more code units.

• When the code unit is an 8-bit unit, a code unit sequence may also be referred to as
a byte sequence.

• Note that a code unit sequence may consist of a single code unit.

• In the context of programming languages, the value of a string data type basically
consists of a code unit sequence. Informally, a code unit sequence is itself just
referred to as a string, and a byte sequence is referred to as a byte string. Care must be
taken in making this terminological equivalence, however, because the formally
defined concept of string may have additional requirements or complications in
programming languages. For example, a string is defined as a pointer to char in the C
language, and is conventionally terminated with a NULL character. In object-ori-
ented languages, a string is a complex object, with associated methods, and its value
may or may not consist of merely a code unit sequence.

• Depending on the structure of a character encoding standard, it may be necessary to
use a code unit sequence (of more than one unit) to represent a single encoded
character. For example, the code unit in SJIS is a byte: Encoded characters such as
“a” can be represented with a single byte in SJIS, whereas ideographs require a
sequence of two code units. The Unicode Standard also makes use of code unit
sequences whose length is greater than one code unit.

D29 A Unicode encoding form assigns each Unicode scalar value to a unique code unit
sequence.

• For historical reasons, the Unicode encoding forms are also referred to as Unicode
(or UCS) transformation formats (UTF). That term is, however, ambiguous between
its usage for encoding forms and encoding schemes.

• The mapping of the set of Unicode scalar values to the set of code unit sequences for
a Unicode encoding form is one-to-one. This property guarantees that a reverse
mapping can always be derived. Given the mapping of any Unicode scalar value to a
particular code unit sequence for a given encoding form, one can derive the original
Unicode scalar value unambiguously from that code unit sequence.

• The mapping of the set of Unicode scalar values to the set of code unit sequences for
a Unicode encoding form is not onto. In other words for any given encoding form,
there exist code unit sequences that have no associated Unicode scalar value.

DR
AF

T

Conformance 3.9 Unicode Encoding Forms

The Unicode Standard 5.0 DRAFT 4 Oct 05 85

• To ensure that the mapping for a Unicode encoding form is one-to-one, all Unicode
scalar values, including those corresponding to noncharacter code points and unas-
signed code points, must be mapped to unique code unit sequences. Note that this
requirement does not extend to high-surrogate and low-surrogate code points,
which are excluded by definition from the set of Unicode scalar values.

D29a Unicode string: A code unit sequence containing code units of a particular Unicode
encoding form.

• In the rawest form, Unicode strings may be implemented simply as arrays of the
appropriate integral data type, consisting of a sequence of code units lined up one
immediately after the other.

• A single Unicode string must contain only code units from a single Unicode encod-
ing form. It is not permissible to mix forms within a string.

D29b Unicode 8-bit string: A Unicode string containing only UTF-8 code units.

D29c Unicode 16-bit string: A Unicode string containing only UTF-16 code units.

D29d Unicode 32-bit string: A Unicode string containing only UTF-32 code units.

D30 Ill-formed: A Unicode code unit sequence that purports to be in a Unicode encoding
form is called ill-formed if and only if it does not follow the specification of that Uni-
code encoding form.

• Any code unit sequence that would correspond to a code point outside the defined
range of Unicode scalar values would, for example, be ill-formed.

• UTF-8 has some strong constraints on the possible byte ranges for leading and trail-
ing bytes. A violation of those constraints would produce a code unit sequence that
could not be mapped to a Unicode scalar value, resulting in an ill-formed code unit
sequence.

D30a Well-formed: A Unicode code unit sequence that purports to be in a Unicode encod-
ing form is called well-formed if and only if it does follow the specification of that
Unicode encoding form.

• A Unicode code unit sequence that consists entirely of a sequence of well-formed
Unicode code unit sequences (all of the same Unicode encoding form) is itself a
well-formed Unicode code unit sequence.

D30b Well-formed UTF-8 code unit sequence: A well-formed Unicode code unit sequence
of UTF-8 code units.

D30c Well-formed UTF-16 code unit sequence: A well-formed Unicode code unit sequence
of UTF-16 code units.

D30d Well-formed UTF-32 code unit sequence: A well-formed Unicode code unit sequence
of UTF-32 code units.

D30e In a Unicode encoding form: A Unicode string is said to be in a particular Unicode
encoding form if and only if it consists of a well-formed Unicode code unit sequence
of that Unicode encoding form.

• A Unicode string consisting of a well-formed UTF-8 code unit sequence is said to be
in UTF-8. Such a Unicode string is referred to as a valid UTF-8 string, or a UTF-8
string for short.

• A Unicode string consisting of a well-formed UTF-16 code unit sequence is said to
be in UTF-16. Such a Unicode string is referred to as a valid UTF-16 string, or a
UTF-16 string for short.

DR
AF

T

3.9 Unicode Encoding Forms Conformance

86 4 Oct 05 The Unicode Standard 5.0 DRAFT

• A Unicode string consisting of a well-formed UTF-32 code unit sequence is said to
be in UTF-32. Such a Unicode string is referred to as a valid UTF-32 string, or a
UTF-32 string for short.

Unicode strings need not contain well-formed code unit sequences under all conditions.
This is equivalent to saying that a particular Unicode string need not be in a Unicode
encoding form.

• For example, it is perfectly reasonable to talk about an operation that takes the two
Unicode 16-bit strings, <004D D800> and <DF02 004D>, each of which contains
an ill-formed UTF-16 code unit sequence, and concatenates them to form another
Unicode string <004D D800 DF02 004D>, which contains a well-formed UTF-16
code unit sequence. The first two Unicode strings are not in UTF-16, but the result-
ant Unicode string is.

• As another example, the code unit sequence <C0 80 61 F3> is a Unicode 8-bit
string, but does not consist of a well-formed UTF-8 code unit sequence. That code
unit sequence could not result from the specification of the UTF-8 encoding form,
and is thus ill-formed. (The same code unit sequence could, of course, be well-
formed in the context of some other character encoding standard using 8-bit code
units, such as ISO/IEC 8859-1, or vendor code pages.)

If, on the other hand, a Unicode string purports to be in a Unicode encoding form, then it
must contain only a well-formed code unit sequence. If there is an ill-formed code unit
sequence in a source Unicode string, then a conformant process that verifies that the Uni-
code string is in a Unicode encoding form must reject the ill-formed code unit sequence.
(See conformance clause C12.) For more information, see Section 2.7, Unicode Strings.

Table 3-4 gives examples that summarize the three Unicode encoding forms.

UTF-32

D31 UTF-32 encoding form: The Unicode encoding form which assigns each Unicode
scalar value to a single unsigned 32-bit code unit with the same numeric value as the
Unicode scalar value.

• In UTF-32, the code point sequence <004D, 0430, 4E8C, 10302> is represented as
<0000004D 00000430 00004E8C 00010302>.

• Because surrogate code points are not included in the set of Unicode scalar values,
UTF-32 code units in the range 0000D80016..0000DFFF16 are ill-formed.

Table 3-4. Examples of Unicode Encoding Forms

Code Point Encoding Form Code Unit Sequence

U+004D UTF-32 0000004D

UTF-16 004D

UTF-8 4D

U+0430 UTF-32 00000430

UTF-16 0430

UTF-8 D0 B0

U+4E8C UTF-32 00004E8C

UTF-16 4E8C

UTF-8 E4 BA 8C

U+10302 UTF-32 00010302

UTF-16 D800 DF02

UTF-8 F0 90 8C 82

DR
AF

T

Conformance 3.9 Unicode Encoding Forms

The Unicode Standard 5.0 DRAFT 4 Oct 05 87

• Any UTF-32 code unit greater than 0010FFFF16 is ill-formed.

For a discussion of the relationship between UTF-32 and UCS-4 encoding form defined in
ISO/IEC 10646, see Section C.2, Encoding Forms in ISO/IEC 10646.

D32 [Superseded]

D33 [Incorporated in other definitions]

D34 [Incorporated in other definitions]

UTF-16

D35 UTF-16 encoding form: The Unicode encoding form which assigns each Unicode
scalar value in the ranges U+0000..U+D7FF and U+E000..U+FFFF to a single
unsigned 16-bit code unit with the same numeric value as the Unicode scalar value,
and which assigns each Unicode scalar value in the range U+10000..U+10FFFF to a
surrogate pair, according to Table 3-5.

• In UTF-16, the code point sequence <004D, 0430, 4E8C, 10302> is represented as
<004D 0430 4E8C D800 DF02>, where <D800 DF02> corresponds to U+10302.

• Because surrogate code points are not Unicode scalar values, isolated UTF-16 code
units in the range D80016..DFFF16 are ill-formed.

Table 3-5 specifies the bit distribution for the UTF-16 encoding form. Note that for Uni-
code scalar values equal to or greater than U+10000, UTF-16 uses surrogate pairs. Calcula-
tion of the surrogate pair values involves subtraction of 1000016, to account for the starting
offset to the scalar value. ISO/IEC 10646 specifies an equivalent UTF-16 encoding form.
For details, see Section C.3, UCS Transformation Formats.

Where wwww = uuuuu - 1.

[Check table footnote above. It’s not currently attached to the table. JDA 10-25-04]

UTF-8

D36 UTF-8 encoding form: The Unicode encoding form which assigns each Unicode sca-
lar value to an unsigned byte sequence of one to four bytes in length, as specified in
Table 3-6.

• In UTF-8, the code point sequence <004D, 0430, 4E8C, 10302> is represented as
<4D D0 B0 E4 BA 8C F0 90 8C 82>, where <4D> corresponds to U+004D, <D0
B0> corresponds to U+0430, <E4 BA 8C> corresponds to U+4E8C, and <F0 90 8C
82> corresponds to U+10302.

• Any UTF-8 byte sequence that does not match the patterns listed in Table 3-7 is ill-
formed.

• Before the Unicode Standard, Version 3.1, the problematic “non-shortest form”
byte sequences in UTF-8 were those where BMP characters could be represented in
more than one way. These sequences are ill-formed, because they are not allowed by
Table 3-7.

Table 3-5. UTF-16 Bit Distribution

Scalar Value UTF-16

xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

000uuuuuxxxxxxxxxxxxxxxx 110110wwwwxxxxxx 110111xxxxxxxxxx

DR
AF

T

3.9 Unicode Encoding Forms Conformance

88 4 Oct 05 The Unicode Standard 5.0 DRAFT

• Because surrogate code points are not Unicode scalar values, any UTF-8 byte
sequence that would otherwise map to code points D800..DFFF is ill-formed.

Table 3-6 specifies the bit distribution for the UTF-8 encoding form, showing the ranges of
Unicode scalar values corresponding to one-, two-, three-, and four-byte sequences. For a
discussion of the difference in the formulation of UTF-8 in ISO/IEC 10646, see Section C.3,
UCS Transformation Formats.

Table 3-7 lists all of the byte sequences that are well-formed in UTF-8. A range of byte val-
ues such as A0..BF indicates that any byte from A0 to BF (inclusive) is well-formed in that
position. Any byte value outside of the ranges listed is ill-formed. For example:

• The byte sequence <C0 AF> is ill-formed, because C0 is not well-formed in the “1st
Byte” column.

• The byte sequence <E0 9F 80> is ill-formed, because in the row where E0 is well-
formed as a first byte, 9F is not well-formed as a second byte.

• The byte sequence <F4 80 83 92> is well-formed, because every byte in that
sequence matches a byte range in a row of the table (the last row).

Cases where a trailing byte range is not 80..BF are in bold italic to draw attention to
them. These occur only in the second byte of a sequence.

[Above table footnote has problems to check also re attachment below table. JDA 10-25-
04]

As a consequence of the well-formedness conditions specified in Table 3-7, the following
byte values are disallowed in UTF-8: C0–C1, F5–FF.

Encoding Form Conversion

D37 Encoding form conversion: A conversion defined directly between the code unit
sequences of one Unicode encoding form and the code unit sequences of another
Unicode encoding form.

Table 3-6. UTF-8 Bit Distribution

Scalar Value 1st Byte 2nd Byte 3rd Byte 4th Byte

00000000 0xxxxxxx 0xxxxxxx

00000yyy yyxxxxxx 110yyyyy 10xxxxxx

zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Table 3-7. Well-Formed UTF-8 Byte Sequences

Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte

U+0000..U+007F 00..7F

U+0080..U+07FF C2..DF 80..BF

U+0800..U+0FFF E0 A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

DR
AF

T

Conformance 3.10 Unicode Encoding Schemes

The Unicode Standard 5.0 DRAFT 4 Oct 05 89

• In implementations of the Unicode Standard, a typical API will logically convert the
input code unit sequence into Unicode scalar values (code points), and then convert
those Unicode scalar values into the output code unit sequence. However, proper
analysis of the encoding forms makes it possible to convert the code units directly,
thereby obtaining the same results but with a more efficient process.

• A conformant encoding form conversion will treat any ill-formed code unit
sequence as an error condition. (See conformance clause C12a.) This guarantees
that it will neither interpret nor emit an ill-formed code unit sequence. Any imple-
mentation of encoding form conversion must take this requirement into account,
because an encoding form conversion implicitly involves a verification that the Uni-
code strings being converted do, in fact, contain well-formed code unit sequences.

3.10 Unicode Encoding Schemes
D38 Unicode encoding scheme: A specified byte serialization for a Unicode encoding

form, including the specification of the handling of a byte order mark (BOM), if
allowed.

• For historical reasons, the Unicode encoding schemes are also referred to as Unicode
(or UCS) transformation formats (UTF). That term is, however, ambiguous between
its usage for encoding forms and encoding schemes.

The Unicode Standard supports seven encoding schemes. This section presents the formal
definition of each of these encoding schemes.

D39 UTF-8 encoding scheme: The Unicode encoding scheme that serializes a UTF-8 code
unit sequence in exactly the same order as the code unit sequence itself.

• In the UTF-8 encoding scheme, the UTF-8 code unit sequence <4D D0 B0 E4 BA
8C F0 90 8C 82> is serialized as <4D D0 B0 E4 BA 8C F0 90 8C 82>.

• Because the UTF-8 encoding form already deals in ordered byte sequences, the
UTF-8 encoding scheme is trivial. The byte ordering is already obvious and com-
pletely defined by the UTF-8 code unit sequence itself. The UTF-8 encoding scheme
is defined merely for completeness of the Unicode character encoding model.

• While there is obviously no need for a byte order signature when using UTF-8, there
are occasions when processes convert UTF-16 or UTF-32 data containing a byte
order mark into UTF-8. When represented in UTF-8, the byte order mark turns
into the byte sequence <EF BB BF>. Its usage at the beginning of a UTF-8 data
stream is neither required nor recommended by the Unicode Standard, but its pres-
ence does not affect conformance to the UTF-8 encoding scheme. Identification of
the <EF BB BF> byte sequence at the beginning of a data stream can, however, be
taken as near-certain indication that the data stream is using the UTF-8 encoding
scheme.

D40 UTF-16BE encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in big-endian format.

• In UTF-16BE, the UTF-16 code unit sequence <004D 0430 4E8C D800 DF02> is
serialized as <00 4D 04 30 4E 8C D8 00 DF 02>.

• In UTF-16BE, an initial byte sequence <FE FF> is interpreted as U+FEFF zero

width no-break space.

D41 UTF-16LE encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in little-endian format.

DR
AF

T

3.10 Unicode Encoding Schemes Conformance

90 4 Oct 05 The Unicode Standard 5.0 DRAFT

• In UTF-16LE, the UTF-16 code unit sequence <004D 0430 4E8C D800 DF02> is
serialized as <4D 00 30 04 8C 4E 00 D8 02 DF>.

• In UTF-16LE, an initial byte sequence <FF FE> is interpreted as U+FEFF zero

width no-break space.

D42 UTF-16 encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in either big-endian or little-endian format.

• In the UTF-16 encoding scheme, the UTF-16 code unit sequence <004D 0430 4E8C
D800 DF02> is serialized as <FE FF 00 4D 04 30 4E 8C D8 00 DF 02> or <FF FE 4D
00 30 04 8C 4E 00 D8 02 DF> or <00 4D 04 30 4E 8C D8 00 DF 02>.

• In the UTF-16 encoding scheme, an initial byte sequence corresponding to U+FEFF
is interpreted as a byte order mark (BOM); it is used to distinguish between the two
byte orders. An initial byte sequence <FE FF> indicates big-endian order, and an
initial byte sequence <FF FE> indicates little-endian order. The BOM is not consid-
ered part of the content of the text.

• The UTF-16 encoding scheme may or may not begin with a BOM. However, when
there is no BOM, and in the absence of a higher-level protocol, the byte order of the
UTF-16 encoding scheme is big-endian.

Table 3-8 gives examples that summarize the three Unicode encoding schemes for the UTF-
16 encoding form.

D43 UTF-32BE encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in big-endian format.

• In UTF-32BE, the UTF-32 code unit sequence <0000004D 00000430 00004E8C
00010302> is serialized as <00 00 00 4D 00 00 04 30 00 00 4E 8C 00 01 03 02>.

• In UTF-32BE, an initial byte sequence <00 00 FE FF> is interpreted as U+FEFF
zero width no-break space.

Table 3-8. Summary of UTF-16BE, UTF-16LE, and UTF-16

Code Unit Sequence Encoding Scheme Byte Sequence(s)

004D UTF-16BE 00 4D

UTF-16LE 4D 00

UTF-16 FE FF 00 4D
FF FE 4D 00
00 4D

0430 UTF-16BE 04 30

UTF-16LE 30 04

UTF-16 FE FF 04 30
FF FE 30 04
04 30

4E8C UTF-16BE 4E 8C

UTF-16LE 8C 4E

UTF-16 FE FF 4E 8C
FF FE 8C 4E
4E 8C

D800 DF02 UTF-16BE D8 00 DF 02

UTF-16LE 00 D8 02 DF

UTF-16 FE FF D8 00 DF 02
FF FE 00 D8 02 DF
D8 00 DF 02

DR
AF

T

Conformance 3.10 Unicode Encoding Schemes

The Unicode Standard 5.0 DRAFT 4 Oct 05 91

D44 UTF-32LE encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in little-endian format.

• In UTF-32LE, the UTF-32 code unit sequence <0000004D 00000430 00004E8C
00010302> is serialized as <4D 00 00 00 30 04 00 00 8C 4E 00 00 02 03 01 00>.

• In UTF-32LE, an initial byte sequence <FF FE 00 00> is interpreted as U+FEFF
zero width no-break space.

D45 UTF-32 encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in either big-endian or little-endian format.

• In the UTF-32 encoding scheme, the UTF-32 code unit sequence <0000004D
00000430 00004E8C 00010302> is serialized as <00 00 FE FF 00 00 00 4D 00 00 04
30 00 00 4E 8C 00 01 03 02> or <FF FE 00 00 4D 00 00 00 30 04 00 00 8C 4E 00 00
02 03 01 00> or <00 00 00 4D 00 00 04 30 00 00 4E 8C 00 01 03 02>.

• In the UTF-32 encoding scheme, an initial byte sequence corresponding to U+FEFF
is interpreted as a byte order mark (BOM); it is used to distinguish between the two
byte orders. An initial byte sequence <00 00 FE FF> indicates big-endian order, and
an initial byte sequence <FF FE 00 00> indicates little-endian order. The BOM is
not considered part of the content of the text.

• The UTF-32 encoding scheme may or may not begin with a BOM. However, when
there is no BOM, and in the absence of a higher-level protocol, the byte order of the
UTF-32 encoding scheme is big-endian.

Table 3-9 gives examples that summarize the three Unicode encoding schemes for the UTF-
32 encoding form.

Note that the terms UTF-8, UTF-16, and UTF-32, when used unqualified, are ambiguous
between their sense as Unicode encoding forms or Unicode encoding schemes. For UTF-8,
this ambiguity is usually innocuous, because the UTF-8 encoding scheme is trivially
derived from the byte sequences defined for the UTF-8 encoding form. However, for UTF-
16 and UTF-32, the ambiguity is more problematical. As encoding forms, UTF-16 and

Table 3-9. Summary of UTF-32BE, UTF-32LE, and UTF-32

Code Unit Sequence Encoding Scheme Byte Sequence(s)

0000004D UTF-32BE 00 00 00 4D

UTF-32LE 4D 00 00 00

UTF-32 00 00 FE FF 00 00 00 4D
FF FE 00 00 4D 00 00 00
00 00 00 4D

00000430 UTF-32BE 00 00 04 30

UTF-32LE 30 04 00 00

UTF-32 00 00 FE FF 00 00 04 30
FF FE 00 00 30 04 00 00
00 00 04 30

00004E8C UTF-32BE 00 00 4E 8C

UTF-32LE 8C 4E 00 00

UTF-32 00 00 FE FF 00 00 4E 8C
FF FE 00 00 8C 4E 00 00
00 00 4E 8C

00010302 UTF-32BE 00 01 03 02

UTF-32LE 02 03 01 00

UTF-32 00 00 FE FF 00 01 03 02
FF FE 00 00 02 03 01 00
00 01 03 02

DR
AF

T

3.11 Canonical Ordering Behavior Conformance

92 4 Oct 05 The Unicode Standard 5.0 DRAFT

UTF-32 refer to code units in memory; there is no associated byte orientation, and a BOM
is never used. As encoding schemes, UTF-16 and UTF-32 refer to serialized bytes, as for
streaming data or in files; they may have either byte orientation, and a BOM may be
present.

When the usage of the short terms “UTF-16” or “UTF-32” might be misinterpreted, and
where a distinction between their use as referring to Unicode encoding forms or to Uni-
code encoding schemes is important, the full terms, as defined in this chapter of the Uni-
code Standard, should be used. For example, use UTF-16 encoding form or UTF-16
encoding scheme. They may also be abbreviated to UTF-16 CEF or UTF-16 CES, respec-
tively.

When converting between different encoding schemes, extreme care must be taken in han-
dling any initial byte order marks. For example, if one converted a UTF-16 byte serializa-
tion with an initial byte order mark to a UTF-8 byte serialization, converting the byte order
mark to <EF BB BF> in the UTF-8 form, the <EF BB BF> would now be ambiguous as to
its status as a byte order mark (from its source) or as an initial zero width no-break space. If
the UTF-8 byte serialization were then converted to UTF-16BE and the initial <EF BB BF>
were converted to <FE FF>, the interpretation of the U+FEFF character would have been
modified by the conversion. This would be nonconformant according to conformance
clause C10, because the change between byte serializations would have resulted in modifi-
cation of the interpretation of the text. This is one reason why the use of initial <EF BB BF>
as a signature on UTF-8 byte sequences is not recommended by the Unicode Standard.

3.11 Canonical Ordering Behavior
This section provides a formal statement of canonical ordering behavior, which deter-
mines, for the purposes of interpretation, which combining character sequences are to be
considered equivalent. A precise definition of equivalence is required, so that text contain-
ing combining character sequences can be created and interchanged in a predictable way.

When combining sequences contain multiple combining characters, different sequences
can contain the same characters, but in a different order. Under certain circumstances two
such sequences may be equivalent, even though they differ in the order of the combining
characters.

Canonical ordering is a process of specifying a defined order for sequences of combining
marks, whereby it is possible to determine definitively which sequences are equivalent and
which are not.

Canonical ordering behavior, and more specifically, canonical ordering, is a required part of
the normative specification of normalization for the Unicode Standard. See Unicode Stan-
dard Annex #15, “Unicode Normalization Forms.”

Canonical ordering is also a required part of the separate standard, Unicode Technical
Standard #10, “Unicode Collation Algorithm.”

Application of Combining Marks

There are a number of principles in the Unicode Standard regarding the application of
combining marks. These principles are listed in this section, with an indication of which
are considered to be normative and which are considered to be guidelines.

In particular, guidelines for rendering of combining marks in conjunction with other
characers should be considered as appropriate for defining default rendering behavior, in
the absence of more specific information about rendering. It is often the case that combin-

DR
AF

T

Conformance 3.11 Canonical Ordering Behavior

The Unicode Standard 5.0 DRAFT 4 Oct 05 93

ing marks in complex scripts, or even particular, general-use nonspacing marks will have
rendering requirements that depart significantly from the general guidelines. Rendering
processes should, as appropriate, make use of available information about specific typo-
graphic practices and conventions, in order to produce best rendering of text.

To help in the clarification of the principles regarding the application of combining marks,
a distinction is made between dependence and graphical application.

D45a Dependence: A combining mark is said to depend on its associated base character.

• The associated base character is the base character in the combining character
sequence that a combining mark is part of.

• A combining mark in a defective combining character sequence has no associated
base character, and thus cannot be said to depend on any particular base character.
This is one of the reasons why fallback processing is required for defective combin-
ing character sequences.

• Dependence concerns all combining marks, including spacing marks and combin-
ing marks that have no visible display.

D45b Graphical application: A nonspacing mark is said to apply to its associated grapheme
base.

• The associated grapheme base is the grapheme base in the grapheme cluster that a
nonspacing mark is part of.

• A nonspacing mark in a defective combining character sequence is not part of a
grapheme cluster, and is subject to the same kinds of fallback processing as for any
defective combining character sequence.

• Graphic application concerns visual rendering issues, and thus is an issue for non-
spacing marks that have visible glyphs. Those glyphs interact, in rendering, with
their grapheme base.

Throughout the text of the standard, whenever the situation is clear, discussion of combin-
ing marks often simply talks about combining marks “applying” to their base. In the proto-
typical case, often illustrated, of a nonspacing accent mark applying to a single base
character letter, this simplification is not problematical, because the nonspacing mark both
depends (notionally) on its base character and simultaneously applies (graphically) to its
grapheme base, affecting its display. The finer distinctions are needed when dealing with
the edge cases, such as combining marks that have no display glyph, graphical application
of nonspacing marks to Korean syllables, and the behavior of spacing combining marks.

The distinction made here between notional dependence and graphical application does
not preclude spacing marks or even sequences of base characters from having effects on
neighboring characters in rendering. Thus, spacing forms of dependent vowels (matras) in
Indic scripts, may trigger particular kinds of conjunct formation, or may be repositioned in
ways that influence the rendering of other characters. (See Chapter 9, South Asian Scripts-I,
for many examples.) Similarly, sequences of base characters may also form ligatures in ren-
dering. (See “Cursive Connection and Ligatures” in Section 16.2, Layout Controls.)

The following listing specifies the principles regarding application of combining marks.

P1 [Normative] Combining character order: Combining characters follow the base
character on which they depend.

• This principle follows from the definition of a combining character sequence.

DR
AF

T

3.11 Canonical Ordering Behavior Conformance

94 4 Oct 05 The Unicode Standard 5.0 DRAFT

• Thus the character sequence <U+0061 “a” latin small letter a, U+0308 “!”
combining diaeresis, U+0075 “u” latin small letter u> is unambiguously
interpreted (and displayed) as “äu”, not “aü”

P2 [Guideline] Inside-out application. Nonspacing marks with the same combining
class are generally positioned graphically outward from the grapheme base to
which they apply.

• The most numerous and important instances of this principle involve nonspacing
marks applied either directly above or below a grapheme base.

• In a sequence of two nonspacing marks above a grapheme base, the first nonspacing
mark is placed directly above the grapheme base, and the second is then placed
above the first nonspacing mark.

• In a sequence of two nonspacing marks below a grapheme base, the first nonspacing
mark is placed directly below the grapheme base, and the second is then placed
below the first nonspacing mark.

• This rendering behavior for nonspacing marks can be generalized to sequences of
any length, although practical considerations usually limit such sequences to no
more than two or three marks above and/or below a grapheme base.

• The principle of inside-out application is also referred to as default stacking behavior
for nonspacing marks.

P3 [Guideline] Side-by-side application. Notwithstanding the principle of inside-out
application, some specific nonspacing marks may override the default stacking
behavior and are positioned side-by-side over (or under) a grapheme base, rather
than stacking vertically.

• Such side-by-side positioning may reflect language-specific orthographic rules,
such as for Vietnamese diacritics and tone marks, or for polytonic Greek breathing
and accent marks. For examples, see Section 2.11, Combining Characters.

• When positioned side-by-side, the visual rendering order of a sequence of non-
spacing marks reflects the dominant order of the script with which they are used.
Thus in Greek, the first non-spacing mark in such a sequence will be positioned to
the left side above a grapheme base, and the second to the right side above the
grapheme base. In Hebrew, the opposite positioning is used for side-by-side place-
ment.

P4 [Guideline] Traditional typographical behavior will sometimes override the
default placement or rendering of nonspacing marks.

• Because of typographical conflict with the descender of a base character, a combin-
ing comma below placed on a lowercase “g” is traditionally rendered as if it were an
inverted comma above. See Section 7.1, Latin.

• Because of typographical conflict with the ascender of a base chracter, a combining
há`ek (caron) is traditionally rendered as an apostrophe when placed, for example,
on a lowercase “d”. See Section 7.1, Latin.

• The relative placement of vowel marks in Arabic cannot be predicted by default
stacking behavior alone, but depends on traditional rules of Arabic typography. See
Section 8.2, Arabic.

[Confirm 8.2 Arabic cross ref above once we have the example in for the ed note that we
need an example of non-default placement of vowel marks. JDA per Asmus 10-1-05]

DR
AF

T

Conformance 3.11 Canonical Ordering Behavior

The Unicode Standard 5.0 DRAFT 4 Oct 05 95

P5 [Normative] Nondistinct order. Nonspacing marks with different, non-zero com-
bining classes may occur in different orders without affecting either the visual dis-
play of a combining character sequence or the interpretation of that sequence.

• For example, if one nonspacing mark occurs above a grapheme base and another
nonspacing mark occurs below, they will have distinct combining classes, and the
order in which they occur in the combining character sequence does not matter for
the display or interpretation of the resulting grapheme cluster.

• Inserting a combining grapheme joiner between two combining marks with nondis-
tinct order prevents their canonical reordering. For more information, see “Com-
bining Grapheme Joiner” in Section 16.2, Layout Controls.

• The introduction of the combining class for characters and its use in canonical
ordering in the standard is to precisely define canonical equivalence, and thereby to
clarify exactly which such alternate sequences must be considered as identical for
display and interpretation.

• In cases of nondistinct order, the order of combining marks has no linguistic signif-
icance. The order does not reflect how “closely bound” they are to the base. After
canonical reordering, the order may no longer reflect the typed-in sequence. Ren-
dering systems should be prepared to deal with common type-in sequences and
with canonically reordered sequences.

P6 [Guideline] Enclosing marks surround their grapheme base and any intervening
nonspacing marks.

• This implies that enclosing marks successively surround previous enclosing marks.
See Figure 3-1.

• Dynamic application of enclosing marks, particularly sequences of enclosing marks,
is beyond the capability of most fonts and simple rendering processes. so it is not
unexpected to find fallback rendering in cases such as that illustrated in Figure 3-1.

P7 [Guideline] Double diacritic nonspacing marks, such as U+0360 combining dou-

ble tilde, apply to their grapheme base, but are intended to be rendered with
glyphs that encompass a following grapheme base as well. See Figure 7-7 for an
example.

• Because such double diacritic display spans combinations of elements which would
otherwise be considered grapheme clusters, the support of double diacritics in ren-
dering may involve special handling for cursor placement and text selection.

P8 [Guideline] When double diacritic nonspacing marks interact with normal nons-
pacing marks in a grapheme cluster, they “float” to the outermost layer of the stack
of rendered marks (either above or below). See Figure 7-8 for an example.

• This behavior can be conceived of as a kind of looser binding of such double diacrit-
ics to their bases. In effect, all other nonspacing marks are applied first, and then the
double diacritic will span the resulting stacks.

Figure 3-1. Enclosing Marks

a + + ¨ + ➠@ @ ä@

DR
AF

T

3.11 Canonical Ordering Behavior Conformance

96 4 Oct 05 The Unicode Standard 5.0 DRAFT

• Double diacritic nonspacing marks are also given a very high combining class, so
that in canonical order they appear at or near the end of any combining character
sequence.

• The interaction of enclosing marks and double diacritics is not well-defined graphi-
cally. It is unlikely that most fonts or rendering processes could handle combina-
tions of these felicitously. It is not recommended to use combinations of these
together in the same grapheme cluster.

Combining Marks and Korean Syllables. When a grapheme cluster comprises a Korean
syllable, a combining mark applies to that entire syllable. For example, in the following
sequence the grave is applied to the entire Korean syllable, not just to the last jamo:

U+1100 ! choseong kiyeok + U+1161 " jungseong a + U+0300 & grave →
(

If the combining mark in question is an enclosing combining mark, then it would enclose
the entire Korean syllable, rather than the last jamo in it:

U+1100 ! choseong kiyeok + U+1161 " jungseong a + U+20DD %
enclosing circle →)

This treatment of the application of combining marks with respect to Korean syllables fol-
lows from the implications of canonical equivalence. It should be noted, however, that
older implementations may have supported the application of an enclosing combining
mark to an entire Indic consonant conjunct or to a sequence of grapheme clusters linked
together by combining grapheme joiners. Such an approach has a number of technical
problems and leads to interoperability defects, so it is strongly recommended that imple-
mentations do not follow it.

For more information on the recommended use of the combining grapheme joiner, see the
subsection “Combining Grapheme Joiner” in Section 16.2, Layout Controls. For more dis-
cussion regarding the application of combining marks in general, see Section 7.9, Combin-
ing Marks.

Combining Classes

Each character in the Unicode Standard has a combining class associated with it. The com-
bining class is a numerical value used by the canonical ordering algorithm to determine
which sequences of combining marks are to be considered canonically equivalent and
which are not. Canonical equivalence is the criterion for whether two alternate sequences
are considered identical for interpretation.

D46 Combining class: A numeric value in the range 0..255 given to each Unicode code
point, formally defined as the property Canonical_Combining_Class.

• The combining class for each encoded character in the standard is specified in the
file UnicodeData.txt in the Unicode Character Database. Any code point not listed
in that data file defaults to [Canonical_Combining_Class = 0] (or [ccc = 0] for
short).

• An extracted listing of combining classes, sorted by numeric value, is provided in
the file DerivedCombiningClass.txt in the Unicode Character Database.

• Only combining marks have a combining class other than zero. Almost all combin-
ing marks with a class other than zero are also nonspacing marks, but there are a few
exceptions. And not all nonspacing marks have a non-zero combining class. So
while the correlation between [ccc ≠ 0] and [gc = Mn] is close, it is not exact, and
implementations should not depend on the two concepts being identical.

DR
AF

T

Conformance 3.11 Canonical Ordering Behavior

The Unicode Standard 5.0 DRAFT 4 Oct 05 97

D46a Fixed position class: A subset of the range of numeric values for combining classes,
specifically any value in the range 10..199.

• Fixed position classes are assigned to a small number of Hebrew, Arabic, Syriac, Tel-
ugu, Thai, Lao, and Tibetan combining marks whose position was conceived of as
occurring in a fixed position with respect to their grapheme base, regardless of any
other combining mark which might also apply to that grapheme base.

• Not all Arabic vowel points or Indic matras are given fixed position classes. The
existence of fixed position classes in the standard is an historical artifact of an earlier
stage in its development, prior to the formal standardization of the Unicode Nor-
malization Forms.

D46b Typographic interaction: Graphical application of one nonspacing mark in a position
relative to a grapheme base that is already occupied by another nonspacing mark, so
that some rendering adjustment must be done (such as default stacking or side-by-
side placement) to avoid illegible overprinting or crashing of glyphs.

The assignment of combining class values for Unicode characters was originally done with
the goal in mind of defining distinct numeric values for each group of nonspacing marks
that would typographically interact. Thus all generic nonspacing marks above are given the
value [ccc = 230], while all generic nonspacing marks below are given the value [ccc = 220].
Smaller numbers of nonspacing marks which tend to sit on one “shoulder” or another of a
grapheme base, or which may actually be attached to the grapheme base itself when
applied, have their own combining classes.

When assigned this way, canonical ordering assures that, in general, alternate sequences of
combining characters that typographically interact will not be canonically equivalent,
whereas alternate sequences of combining characters that do not typographically interact
will be canonically equivalent.

This is roughly correct for the normal cases of detached, generic nonspacing marks placed
above and below base letters. However, the ramifications of complex rendering for many
scripts ensure that there are always some edge cases where there may be typographic inter-
action between combining marks of distinct combining classes. This has turned out to be
particularly true for some of the fixed position classes for Hebrew and Arabic, for which a
distinct combining class is no guarantee that there will be no typographic interaction for
rendering.

Because of these considerations, particular combining class values should only be taken as
a guideline regarding issues of typographic interaction of combining marks.

The only normative use of combining class values is as input to the canonical ordering algo-
rithm, where they are used to normatively distinguish between sequences of combining
marks that are canonically equivalent and those which are not.

Canonical Ordering

The canonical ordering of a decomposed character sequence results from a sorting process
that acts on each sequence of combining characters according to their combining class. The
canonical order of character sequences does not imply any kind of linguistic correctness or
linguistic preference for ordering of combining marks in sequences. See the information on
rendering combining marks in Section 5.13, Rendering Nonspacing Marks, for more infor-
mation. Characters with combining class zero never reorder relative to other characters, so
the amount of work in the algorithm depends on the number of non-class-zero characters
in a row. An implementation of this algorithm will be extremely fast for typical text.

DR
AF

T

3.11 Canonical Ordering Behavior Conformance

98 4 Oct 05 The Unicode Standard 5.0 DRAFT

The algorithm described here represents a logical description of the process. Optimized
algorithms can be used in implementations as long as they are equivalent—that is, as long
as they produce the same result. This algorithm is not tailorable; higher-level protocols
shall not specify different results.

More explicitly, the canonical ordering of a decomposed character sequence D results from
the following algorithm.

R9 For each character x in D, let p(x) be the combining class of x.

R10 Whenever any pair (A, B) of adjacent characters in D is such that
p(B) ‡ 0 & p(A) > p(B), exchange those characters.

R11 Repeat step R2 until no exchanges can be made among any of the characters in D.

Sample combining classes for this discussion are listed in Table 3-10.

Because underdot has a lower combining class than diaeresis, the algorithm will return the
a, then the underdot, then the diaeresis. The sequence a + underdot + diaeresis is already in
the final order, and so is not rearranged by the algorithm. The sequence in the opposite
order, a + diaeresis + underdot, is rearranged by the algorithm.

a + underdot + diaeresis í a + underdot + diaeresis

a + diaeresis + underdot í a + underdot + diaeresis

However, because diaeresis and breve have the same combining class (because they interact
typographically), they do not rearrange.

a + breve + diaeresis õ a + diaeresis + breve

a + diaeresis + breve õ a + breve + diaeresis

Applying the algorithm gives the results shown in Table 3-11.

Table 3-10. Sample Combining Classes

Combining
Class

Abbreviation Code Unicode Name

0 a U+0061 latin small letter a

220 underdot U+0323 combining dot below

230 diaeresis U+0308 combining diaeresis

230 breve U+0306 combining breve

0 a-underdot U+1EA1 latin small letter a with dot below

0 a-diaeresis U+00E4 latin small letter a with diaeresis

0 a-breve U+0103 latin small letter a with breve

Table 3-11. Canonical Ordering Results

Original Decompose Sort Result

a-diaeresis + underdot a + diaeresis + underdot a + underdot + diaeresis a + underdot + diaeresis

a + diaeresis + underdot a + underdot + diaeresis a + underdot + diaeresis

a + underdot + diaeresis a + underdot + diaeresis

a-underdot + diaeresis a + underdot + diaeresis a + underdot + diaeresis

a-diaeresis + breve a + diaeresis + breve a + diaeresis + breve

a + diaeresis + breve a + diaeresis + breve

a + breve + diaeresis a + breve + diaeresis

a-breve + diaeresis a + breve + diaeresis a + breve + diaeresis

DR
AF

T

Conformance 3.12 Conjoining Jamo Behavior

The Unicode Standard 5.0 DRAFT 4 Oct 05 99

3.12 Conjoining Jamo Behavior
The Unicode Standard contains both a large set of precomposed modern Hangul syllables
and a set of conjoining Hangul jamo, which can be used to encode archaic Korean syllable
blocks as well as modern Korean syllable blocks. This section describes how to

• Determine the syllable boundaries in a sequence of conjoining jamo characters

• Compose jamo characters into precomposed Hangul syllables

• Determine the canonical decomposition of precomposed Hangul syllables

• Algorithmically determine the names of precomposed Hangul syllables

For more information, see the “Hangul Syllables” and “Hangul Jamo” subsections in
Section 12.5, Hangul. Hangul syllables are a special case of grapheme clusters.

K25 Leading consonant: In the Korean context, a jamo character in the range
U+1100..U+1159. Abbreviated as L.

• When not occurring in clusters, the term leading consonant is equivalent to syllable-
initial character.

K26 Choseong: A sequence of one or more leading consonants.

• In Modern Korean, a choseong consists of a single jamo, but in Old Korean, a
sequence of more than one leading consonant may occur.

• Equivalent to syllable-initial cluster.

K27 Choseong filler: U+115F hangul choseong filler. Abbreviated as Lf.

• A choseong filler stands in for a missing choseong to make a well-formed Korean syl-
lable.

K28 Vowel: In the Korean context, a jamo character in the range U+1161..U+11A2.
Abbreviated as V.

• When not occurring in clusters, the term vowel is equivalent to syllable-peak charac-
ter.

K29 Jungseong: A sequence of one or more vowels.

• In Modern Korean, a jungseong consists of a single jamo, but in Old Korean, a
sequence of more than one vowel may occur.

• Equivalent to syllable-peak cluster.

K30 Jungseong filler: U+1160 hangul jungseong filler. Abbreviated as Vf.

• A jungseong filler stands in for a missing jungseong to make a well-formed Korean
syllable.

K31 Trailing consonant: In the Korean context, a jamo character in the range
U+11A8..U+11F9. Abbreviated as T.

• When not occurring in clusters, the term trailing consonant is equivalent to syllable-
final character.

K32 Jongseong: A sequence of one or more trailing consonants.

• In Modern Korean, a jongseong consists of a single jamo, but in Old Korean, a
sequence of more than one trailing consonant may occur.

• Equivalent to syllable-final cluster.

DR
AF

T

3.12 Conjoining Jamo Behavior Conformance

100 4 Oct 05 The Unicode Standard 5.0 DRAFT

K33 Precomposed Hangul syllable: Any of the characters in the range U+AC00..U+D7A3.

K34 Syllable block: A sequence of Korean characters that should be grouped into a single
square cell for display.

• This is different from a precomposed Hangul syllable, and is meant to include
sequences needed for the representation of Old Korean syllables.

• A syllable block may contain a precomposed Hangul syllable plus other characters.

Hangul Syllable Boundary Determination

In rendering, a sequence of jamos is displayed as a series of syllable blocks. The following
rules specify how to divide up an arbitrary sequence of jamos (including nonstandard
sequences) into these syllable blocks.

The precomposed Hangul syllables are of two types: LV or LVT. In determining the sylla-
ble boundaries, the LV behave as if they were a sequence of jamo L V, and the LVT behave
as if they were a sequence of jamo L V T.

Within any sequence of characters, a syllable break never occurs between the pairs of char-
acters shown in Table 3-12. In Table 3-12 non-opportunities for syllable breaks are shown
by “×”. Combining marks are shown by the symbol M.

In all cases other than those shown in Table 3-12, there is a syllable break before and after
any jamo or precomposed Hangul syllable. Note that as for other characters, any combin-
ing mark between two conjoining jamos prevents the jamos from forming a syllable block.

Even in normalization form NFC, a syllable block may contain a precomposed Hangul syl-
lable in the middle. An example is L LVT T. Each well-formed modern Hangul syllable,
however, can be represented in the form L V T? (that is one L, one V and optionally one
T), and consists of a single encoded character in NFC.

For information on the behavior of Hangul compatibility jamo in syllables, see
Section 12.5, Hangul.

Standard Korean Syllables

K35 Standard Korean syllable block: A sequence of one or more L followed by a sequence
of one or more V and a sequence of zero or more T.

Table 3-12. Hangul Syllable No-Break Rules

Do Not Break Between Examples

L L, V, or precomposed
Hangul syllable

L × L
L × V
L × LV
L × LVT

V or LV V or T V × V
V × T
LV × V
LV × T

T or LVT T T × T
LVT × T

Jamo or precomposed
Hangul syllable

Combining marks L × M
V × M
T × M
LV × M
LVT × M

DR
AF

T

Conformance 3.12 Conjoining Jamo Behavior

The Unicode Standard 5.0 DRAFT 4 Oct 05 101

• A choseong filler may substitute for a missing leading consonant, and a jungseong
filler may substitute for a missing vowel.

• Using regular expression notation, a standard Korean syllable block is thus of the
form: (L+ | Lf) (V+ | Vf) T*

• Alternatively, a standard Korean syllable block may be expressed as a sequence of a
choseong and a jungseong, optionally followed by a jongseong.

Because of equivalence relations, a standard Korean syllable block may also consist of a pre-
composed Hangul syllable or a mixture of jamos and a precomposed Hangul syllable char-
acter canonically equivalent to a sequence of jamos.

A sequence of jamos which do not all match the regular expression for a standard Korean
syllable block can be transformed into a sequence of standard Korean syllable blocks by the
correct insertion of choseong fillers and jungseong fillers. This transformation of a string of
text into standard Korean syllables is performed by determining the syllable breaks as
explained in the earlier subsection “Hangul Syllable Boundaries,” then inserting one or two
fillers as necessary to transform each syllable into a standard Korean syllable. Thus:

L [^V] í L Vf [^V]

[^L] V í [^L] Lf V

[^V] T í [^V] Lf Vf T

where [^X] indicates a character that is not X, or the absence of a character.

Examples. In Table 3-13, the first row shows syllable breaks in a standard sequence, the sec-
ond row shows syllable breaks in a nonstandard sequence, and the third row shows how the
sequence in the second row could be transformed into standard form by inserting fillers
into each syllable. Syllable breaks are shown by middle dots “·”.

Hangul Syllable Composition

The following algorithm describes how to take a sequence of canonically decomposed char-
acters D and compose Hangul syllables. Hangul composition and decomposition are sum-
marized here, but for a more complete description, implementers must consult Unicode
Standard Annex #15, “Unicode Normalization Forms.” Note that, like other non-jamo
characters, any combining mark between two conjoining jamos prevents the jamos from
composing.

First, define the following constants:
SBase = AC0016
LBase = 110016
VBase = 116116
TBase = 11A716
SCount = 11172
LCount = 19
VCount = 21
TCount = 28
NCount = VCount * TCount

Table 3-13. Korean Syllable Break Examples

No. Sequence Sequence with Syllable Breaks Marked

1 LVTLVLVLVfLfVLfVfT í LVT · LV · LV · LVf · LfV · LfVfT

2 LLTTVVTTVVLLVV í LL · TT · VVTT · VV · LLVV

3 LLTTVVTTVVLLVV í LLVf · LfVfTT · LfVVTT · LfVV · LLVV

DR
AF

T

3.12 Conjoining Jamo Behavior Conformance

102 4 Oct 05 The Unicode Standard 5.0 DRAFT

1. Iterate through the sequence of characters in D, performing steps 2 through 5.

2. Let i represent the current position in the sequence D. Compute the following
indices, which represent the ordinal number (zero-based) for each of the com-
ponents of a syllable, and the index j, which represents the index of the last
character in the syllable.
LIndex = D[i] - LBase
VIndex = D[i+1] - VBase
TIndex = D[i+2] - TBase
j = i + 2

3. If either of the first two characters is out of bounds (LIndex < 0 OR LIndex ≥
LCount OR VIndex < 0 OR VIndex ≥ VCount), then increment i, return to step
2, and continue from there.

4. If the third character is out of bounds (TIndex ≤ 0 or TIndex ≥ TCount), then it
is not part of the syllable. Reset the following:
TIndex = 0
j = i + 1

5. Replace the characters D[i] through D[j] by the Hangul syllable S, and set i to
be j + 1.
S = (LIndex * VCount + VIndex) * TCount + TIndex + SBase

Example. The first three characters are

U+1111 ë hangul choseong phieuph

U+1171 Ò hangul jungseong wi

U+11B6 ∂ hangul jongseong rieul-hieuh

Compute the following indices,
LIndex = 17
VIndex = 16
TIndex = 15

and replace the three characters by
S = [(17 * 21) + 16] * 28 + 15 + SBase

= D4DB16

= L

Hangul Syllable Decomposition

The following algorithm describes the reverse mapping—how to take Hangul syllable S and
derive the canonical decomposition D. This normative mapping for these characters is
equivalent to the canonical mapping in the character charts for other characters.

1. Compute the index of the syllable:
SIndex = S - SBase

2. If SIndex is in the range (0 ≤ SIndex < SCount), then compute the components
as follows:
L = LBase + SIndex / NCount
V = VBase + (SIndex % NCount) / TCount
T = TBase + SIndex % TCount

The operators “/” and “%” are as defined in Section 0.4, Notational Conventions.

3. If T = TBase, then there is no trailing character, so replace S by the sequence
L V. Otherwise, there is a trailing character, so replace S by the sequence L V T.

DR
AF

T

Conformance 3.13 Default Case Algorithms

The Unicode Standard 5.0 DRAFT 4 Oct 05 103

Example
L = LBase + 17
V = VBase + 16
T = TBase + 15
D4DB16 → 111116, 117116, 11B616

Hangul Syllable Name Generation

The character names for Hangul syllables are derived from the decomposition by starting
with the string hangul syllable, and appending the short name of each decomposition
component in order. (See Chapter 17, Code Charts, and Jamo.txt in the Unicode Character
Database.) For example, for U+D4DB, derive the decomposition, as shown in the preced-
ing example. It produces the following three-character sequence:

U+1111 hangul choseong phieuph (p)
U+1171 hangul jungseong wi (wi)
U+11B6 hangul jongseong rieul-hieuh (lh)

The character name for U+D4DB is then generated as hangul syllable pwilh, using the
short name as shown in parentheses above. This character name is a normative property of
the character.

3.13 Default Case Algorithms

[This entire section either will be extracted to a new update for UAX #21, or needs to be
further rewritten for clarity of definitions and clarification of status of normative and
informative material in relation to UAX #29. Ken 10-04]

This section specifies the default operations for case conversion, case detection, and case-
less matching. For information about the data sources for case mapping, see Section 4.2,
Case—Normative. For a general discussion of case mapping operations, see Section 5.18,
Case Mappings.

The default casing operations are to be used in the absence of tailoring for particular lan-
guages and environments. Where a particular environment (such as a Turkish locale)
requires tailoring, that can be done without violating conformance.

All the specifications are logical specifications; particular implementations can optimize
the processes as long as they provide the same results.

Definitions

The full case mappings for Unicode characters are obtained by using the mappings from
SpecialCasing.txt plus the mappings from UnicodeData.txt, excluding any latter mappings
that would conflict. Any character that does not have a mapping in these files is considered
to map to itself. In this discussion, the full case mappings of a character C are referred to as
default_lower(C), default_title(C), and default_upper(C). The full case folding of a charac-
ter C is referred to as default_fold(C).

Detection of case and case mapping requires more than just the General Category values
(Lu, Lt, Ll). The following definitions are used:

D47 A character C is defined to be cased if and only if at least one of following is true for
C: uppercase=true, or lowercase=true, or general_category=titlecase_letter.

• The uppercase and lowercase property values are specified in the data file
DerivedCoreProperties.txt in the Unicode Character Database.

DR
AF

T

3.13 Default Case Algorithms Conformance

104 4 Oct 05 The Unicode Standard 5.0 DRAFT

D47a A character C is defined to be case-ignorable if C has the Unicode Property
Word_Break=MidLetter as defined in Unicode Standard Annex #29, “Text Bound-
aries;” or the General Category of C is Nonspacing Mark (Mn), Enclosing Mark
(Me), Format Control (Cf), Letter Modifier (Lm), or Symbol Modifier (Sk).

D47b A case-ignorable sequence is a sequence of zero or more case-ignorable characters.

D48 A character C is in a particular casing context for context-dependent matching if and
only if it matches the corresponding specification in Table 3-14.

In Table 3-14, a description of each context is followed by the equivalent regular expres-
sion(s) describing the context before C, the context after C, or both. The regular expres-
sions use the syntax of Unicode Technical Standard #18, “Unicode Regular Expressions,”
with one addition: “!” means that the expression does not match. All of the regular expres-
sions are case-sensitive.

Default Case Conversion

The following specify the default case conversion operations for Unicode strings, in the
absence of tailoring. In each instance, there are two variants: simple case conversion and
full case conversion. In the full case conversion, the context-dependent mappings based on
the casing context mentioned above must be used.

R1 toUppercase(X): Map each character C in X to default_upper(C).

R2 toLowercase(X): Map each character C to default_lower(C).

R3 toTitlecase(X): Find the word boundaries based on Unicode Standard Annex #29,
“Text Boundaries.” Between each pair of word boundaries, find the first cased
character F. If F exists, map F to default_title(F); then map each subsequent char-
acter C to default_lower(C).

R4 toCasefold(X): Map each character C to default_fold(C).

Table 3-14. Context Specification for Casing

Context Description Regular Expressions

Final_Sigma C is preceded by a sequence consisting
of a cased letter and a case-ignorable
sequence, and C is not followed by a
sequence consisting of a case ignor-
able sequence and then a cased letter.

Before C: \p{cased} (\p{case-ignorable})*

After C ! ((\p{case-ignorable})*
\p{cased})

After_Soft_Do
tted

There is a Soft_Dotted character before
C, with no intervening character of
combining class 0 or 230 (ABOVE).

Before C: [\p{Soft_Dotted}]
([^\p{cc=230} \p{cc=0}])*

More_Above C is followed by a character of combin-
ing class 230 (ABOVE) with no inter-
vening character of combining class 0
or 230 (ABOVE).

After C: [^\p{cc=0}]* [\p{cc=230}]

Before_Dot C is followed by combining dot
above (U+0307). Any sequence of
characters with a combining class that
is neither 0 nor 230 may intervene
between the current character and the
combining dot above.

After C: ([^\p{cc=230} \p{cc=0}])*
[\u0307]

After_I There is an uppercase I before C, and
there is no intervening combining
character class 230 (ABOVE) or 0.

Before C: [I] ([^\p{cc=230} \p{cc=0}])*

DR
AF

T

Conformance 3.13 Default Case Algorithms

The Unicode Standard 5.0 DRAFT 4 Oct 05 105

Default Case Detection

The specification of the default case detection of a string is based on the case conversion
operations. Given a string X, and a string Y = NFD(X), then:

• isLowercase(X) if and only if toLowercase(Y) = Y

• isUppercase(X) if and only if toUppercase(Y) = Y

• isTitlecase(X) if and only if toTitlecase(Y) = Y

• isCasefolded(X) if and only if toCasefold(Y) = Y

• isCased(X) if and only if ¬isLowercase(Y) or ¬isUppercase(Y) or
¬isTitlecase(Y)

The examples in Table 3-15 show that these conditions are not mutually exclusive. “A2” is
both uppercase and titlecase; “3” is uncased, so it is lowercase, uppercase, and titlecase.

Default Caseless Matching

Default caseless (or case-insensitive) matching is specified by the following:

• A string X is a caseless match for a string Y if and only if:

toCasefold(X) = toCasefold(Y)

As described earlier, normally caseless matching should also use normalization, which
means using one of the following operations:

• A string X is a canonical caseless match for a string Y if and only if:

NFD(toCasefold(NFD(X))) =
NFD(toCasefold(NFD(Y)))

• A string X is a compatibility caseless match for a string Y if and only if:

NFKD(toCasefold(NFKD(toCasefold(NFD(X))))) =
NFKD(toCasefold(NFKD(toCasefold(NFD(Y)))))

The invocations of normalization before folding in the above definitions are to catch very
infrequent edge cases. Normalization is not required before folding, except for the charac-
ter U+0345 n combining greek ypogegrammeni and any characters that have it as part
of their decomposition, such as U+1FC3 o greek small letter eta with ypogegram-

meni.

In practice, optimized versions of implementations can catch these special cases and,
thereby, avoid an extra normalization.

Table 3-15. Case Detection Examples

Case Letter Name Alphanumeric Digit

Lowercase a john smith a2 3

Uppercase A JOHN SMITH A2 3

Titlecase A John Smith A2 3

DR
AF

T

3.13 Default Case Algorithms Conformance

106 4 Oct 05 The Unicode Standard 5.0 DRAFT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

