
UTS #46: Unicode IDNA Compatible Preprocessing http://www.unicode.org/reports/tr46/tr46-1.html

1 of 12 1/23/2009 2:51 PM

 Technical Reports

Proposed Draft Unicode Technical Standard #46

UNICODE IDNA COMPATIBLE PREPROCESSSING
Version 1 (draft 1)
Authors Mark Davis (markdavis@google.com), Michel Suignard
Date 2008-12-09
This Version http://www.unicode.org/reports/tr46/tr46-1.html
Previous
Version

n/a

Latest Version http://www.unicode.org/reports/tr46/
Revision 1
Summary

This document provides a specification for an internationalized domain name
preprocessing step that is intended for use with IDNAbis, the projected update
for Internationalized Domain Names. The proposed specification maintains
compatibility with IDNA2003 (the current version of Internationalized Domain
Names), and consistently extends that mechanism for characters introduced in
any later Unicode version.

At this point, IDNAbis is still in development, so this draft is based on the
current draft of IDNAbis, and may change substantially as that draft changes.

Status

This is a draft document which may be updated, replaced, or superseded by
other documents at any time. Publication does not imply endorsement by the
Unicode Consortium. This is not a stable document; it is inappropriate to cite
this document as other than a work in progress.

A Unicode Technical Standard (UTS) is an independent specification.
Conformance to the Unicode Standard does not imply conformance to any
UTS.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this document is
found in the References. For the latest version of the Unicode Standard see
[Unicode]. For a list of current Unicode Technical Reports see [Reports]. For more
information about versions of the Unicode Standard, see [Versions].

Contents

rick@unicode.org
Text Box
L2/09-024

UTS #46: Unicode IDNA Compatible Preprocessing http://www.unicode.org/reports/tr46/tr46-1.html

2 of 12 1/23/2009 2:51 PM

1 Introduction
1.1 Requirements

2 Conformance
3 Preprocessing
4 IDNA Mapping Table

4.1 Usage
4.2 UCD Representation

5 Differences from IDNA2003
5.1 Joiner Characters
5.2 Other Special Cases
5.3 Post Unicode 3.2 Case Pairs
5.4 Post Unicode 3.2 Normalization Mappings

6 Mapping Table Construction
6.1 Removed
6.2 Remapped
6.3 Special Cases
6.4 Grandfathered

Acknowledgements
References
Modifications

1. Introduction
Until 2003, domain names could only contain ASCII letters. The Internationalized
Domain Name specifications adopted by the IETF in 2003 allow Unicode
characters in domain names, as part of what are called IRIs (Internationalized
Resource Identifiers). For example, one can now type in "http://bücher.de" into
the address bar of any modern browser, and it will go to a corresponding site,
even though the "ü" is not an ASCII character. Internally, this is handled by
transforming the string into a case-folded and normalized (NFKC) form, then
mapping it to a sequence of ASCII characters using a transformation known as
Punycode. For this case, the Punycode value actually used to look up domain
names on the wire is "http://xn--bcher-kva.de". The specifications for this are
called the IDNA2003 specifications, which include: the IDNA base specification
[RFC3490], Nameprep [RFC3491], Punycode [RFC3492], and Stringprep
[RFC3454].

[Editorial Note: this introduction is too long. It needs to be condensed, possibly
with extra material pushed to an appendix. The overall tone of the document
also needs to become less informal, with removal of proposal-style language.]

Because of the transformation step in IDNA2003, it is possible to use
"http://Bücher.de", as well as "HTTP://BÜCHER.DE", or "HTTP://BU¨CHER.DE"
(where the ¨ represents a U+0308 (̈) COMBINING DIAERESIS), or many other
variations.

There is a projected update of IDNA2003 which is called IDNAbis or IDNA2008.
There are quite a number of changes between these two versions: the one

UTS #46: Unicode IDNA Compatible Preprocessing http://www.unicode.org/reports/tr46/tr46-1.html

3 of 12 1/23/2009 2:51 PM

relevant to this document is that IDNAbis no longer has a required case folding
and normalizing step. Instead, at a low level IDNAbis disallows any string that is
not already case-folded and normalized. This means that strict adherence to
IDNAbis, without any other action, would cause any of the above variant strings
to fail. Thus typing "http://Bücher.de" would fail. (Domain names containing all
ASCII characters, such as "Bucher.de", would continue to work even with case
variations.) However, IDNAbis does allow for a preprocessing step, which is
called a "local mapping".

Many user agents will have a requirement to interoperate compatibly with the
prior IDNA2003 specification and/or operate in an environment that needs to
allow lenient typing or parsing of internationalized domain names. This includes
not only browsers, but email clients, word processors, IM clients, and many
others. It is generally understood at the W3C that all attributes that take URLs
should take full IRIs, not punycoded-URIs, so for example SVG, MathML, XLink,
XML, et cetera, all take IRIs now, as does HTML5.

For example, here is a chart showing the behavior of some major browsers with
links containing IDNs.

Browser Interpretation of IDNs

 Link Firefox3,
Safari

IE7 Comments

1

works works Punycode version

2 works works
3 works works
3a works works The ü here is the decomposed

form: U+0075 (u) LATIN SMALL
LETTER U + U+0308 (̈)
COMBINING DIAERESIS

4

works doesn't %C3%BC is the
percent-escaped UTF-8
version of ü; this is being
implemented in current and
upcoming versions of
browsers...

5 works works The dot is a U+FF0E (．)
FULLWIDTH FULL STOP

6 works works The "1." are actually the single
U+2488 (⒈) DIGIT ONE FULL
STOP, so this maps to
http://bücher1.de

Note that #6 is not formally provided for in IDNA2003, because the
transformation is handled there on a label-by-label basis. However, this form is

UTS #46: Unicode IDNA Compatible Preprocessing http://www.unicode.org/reports/tr46/tr46-1.html

4 of 12 1/23/2009 2:51 PM

commonly supported by browsers and other programs, probably because it is
just simpler to apply the transformation to the whole host name rather than to
each label individually.

Firefox and IE7 both accept all of these forms (except #4, which is coming), and
interpret them as equivalent. Because of that, and because of the substantial
number of existing (and future) web pages that contain these formats,
implementations will have little choice but to support a preprocessing step that
allows for all of the forms, into the indefinite future. Note that this is not simply
a typing or UI issue; IRIs are in existing HTML pages as hrefs, and also used in
many other W3C protocols. These forms are also parsed out of plain text; for
example, most email clients and IM clients parse for IRIs and add links to them.
So an occurrence of "http://Bücher.de" in the middle of plain text will often be
transformed as well.

IDNAbis allows for preprocessing (called "local mapping"), and even allows these
to be different according to locale or application program. But it is undesirable
to have different programs (browsers, email clients, et cetera) mapping these
characters differently; that would cause a huge interoperability problem. For
example, examine at what could happen to different strings in the following
table under locale-specific mappings.

Possible Local Mapping Variations

 Link Text Comments

1 http://schaffer.de legal as is

2 http://schaeffer.de legal as is

3 http://schäffer.de legal as is

4 HTTP://SCHAFFER.DE always legal, matches #1
5 HTTP://SCHÄFFER.DE Could fail, or map to #1 for English, or #2 for German, et

cetera
6 HTTP://SCHÆFFER.DE Could map to #4 for English, or other languages without æ
7 HTTP://SCHÄffER.DE Could fail, or map to #1. (The "ff" is U+FB00 (ff) LATIN

SMALL LIGATURE FF)
8 HTTP://SCHÄF➀FER.DE Could fail, or map to #1. The ➀ here represents the

normally invisible: U+00AD SOFT HYPHEN.

9

HTTP://➀➁SCHÄFFER➂.DE Could fail, or map to #1 or #2. The ➀, ➁, and ➂ here
represent the following normally invisible characters: ➀
U+E0065 TAG LATIN SMALL LETTER E, ➁ U+E006E TAG LATIN
SMALL LETTER N, and ➂ U+E007F CANCEL TAG.

An IDNA2008-conformant implementation could remap any of the items #4 to
#9 in the Link Text column. using a local mapping—or not, in which case they
would fail. It could remove the illegal characters in #8 to #9, or not remove them
and have the lookup fail. It could map the ligature ff to ff, or not. It could even
decide, based on local linguistic mappings, to map #5 and #6 to different valid

UTS #46: Unicode IDNA Compatible Preprocessing http://www.unicode.org/reports/tr46/tr46-1.html

5 of 12 1/23/2009 2:51 PM

domain names, different than what IDNA2003 does. Such mappings could be
based on the UI language of the client, or the language of the email, or the
default system language, or other choices. That means on the same page, a
browser might go to different places depending on what the user's language
was.

With IDNA2003, in contrast, the mappings for all of these are completely
determinant (with all but the first being allowed, and the last being disallowed).

This specification provides a common mapping that maintains compatibility with
IDNA2003, accommodates the newer Unicode characters, provides stability over
time, and thus allows for interoperability among all programs that use it.

Note that lower-level protocols, such as the SMTP envelope, should require the
strict use of already-transformed IDNs, and thus not use the preprocessing
specified here. Language-specific modifications to the preprocessing specified
in this document are outside the scope of this document; they are, however, very
strongly discouraged because of the problems they pose for interoperability.

Open Issues

The exact formulation for IDNAbis is not final yet, and we would not want
to release a preprocessing specification until it is final.

1.1 Requirements

The preprocessing is compatible with IDNA2003, with a small set of
documented differences for certain rare characters. See Section 5,
Differences from IDNA2003.
Where the preprocessing results in an "abort with error", the input is not
interpreted as valid.

In a user-interface, this should be indicated with a warning; in other
processing (such as search-engine parsing of a web page), lookup
would fail.

2 Conformance
The requirements for conformance on implementations of the Unicode IDNA
Compatible Preprocesssing are as follows:

C1 Given a version of Unicode, and a Unicode String, a conformant
implementation of Unicode IDNA Compatible Preprocessing shall replicate
the results given by applying the algorithm specified by Section 3,
Preprocessing.

The algorithm is a logical specification, designed to be straightforward to
describe. An actual implementation of the algorithm is free to change any
part of the algorithm as long the result of preprocessing by the
implementation would be the same as the result generated by the logical

UTS #46: Unicode IDNA Compatible Preprocessing http://www.unicode.org/reports/tr46/tr46-1.html

6 of 12 1/23/2009 2:51 PM

algorithm.

3. Preprocessing
The input to the preprocessing is a prospective domain_name string, which is a
sequence of labels with dot separators, such as "Bücher.de". (For more about the
parts of a URL, including the domain name, see
http://tools.ietf.org/html/rfc3987). A series of steps transform this input
domain_name string.

The preprocessing assumes that the input string is in Unicode. This may have
involved converting escapes in an original domain name string to Unicode code
points as necessary, depending on the environment in which it is being used.
For example, this can include converting:

HTML NCRs like 十 for U+5341 (十) CJK UNIFIED IDEOGRAPH-5341
Javascript escapes like \u5341 for U+5341 (十) CJK UNIFIED
IDEOGRAPH-5341
URI/IRI %-escapes like %2e for U+002E (.) FULL STOP.

The preprocessing consists of the following steps, performed in order.

Map the domain_name string according to the IDNA Mapping Table (see
below).

1.

Normalize the domain_name string to Unicode Normalization Form C:
domain_name = toNFC(domain_name)
Note that because of the construction of the table, characters are
limited to those already allowed by NFKC, so this is equivalent to
toNFKC().

2.

Parse the domain_name string into labels, using U+002E (.) FULL STOP as
the label delimiter.

Note that the dot may have resulted from a mapping from other
characters, such as U+2488 (⒈) DIGIT ONE FULL STOP or U+FF0E (．)
FULLWIDTH FULL STOP. See Section 5.1.2, Remapped.

3.

Verify that each label in the domain_name complies with IDNAbis.
Abort with error if it does not comply
Each label that contains only characters [\-a-zA-Z0-9] is an ASCII
label. Each other label must conform to the IDNAbis specification.
IDNAbis has different requirements for two types of implementations:
lookup and for registries. The verification will thus depend on the
particular type of implemenation.

4.

Return the string resulting from the successive application of the above
steps, if there has been no error.

5.

Note that the processing matches what is commonly done with label delimiters
by browsers, whereby characters containing periods are transformed into the

UTS #46: Unicode IDNA Compatible Preprocessing http://www.unicode.org/reports/tr46/tr46-1.html

7 of 12 1/23/2009 2:51 PM

NFKC format before labels are separated. These characters can be seen with the
Unicode utilities using a regular expression:

http://unicode.org/cldr/utility/list-unicodeset.jsp?a=[:toNFKC=/\./:]

Some of these characters would be effectively forbidden, because they would
result in a sequence of two periods, and thus empty labels.

Note also that some browsers allow characters like "_" in domain names. Any
such treatment is outside of the scope of this document.

4. IDNA Mapping Table
The IDNA Mapping Table provides a combined case folding and NFKC
normalization, with some small modifications for IDNA2003 compatibility. The
values in the table will remain stable for all future versions of Unicode; that is,
no mappings will be changed, and any new mappings will only be added for
newly assigned characters. There are more details in each section below.

Each version of Unicode will contain an updated version of this table:
implementations will never need to actually use the algorithm for generating the
tables—they can just pick up the data and use them in the Preprocessing
algorithm.

Note that the way that the IDNA Mapping Table is constructed, in order to
ensure that isNFKC(output), it is sufficient to do toNFC(output). That is, the extra
changes that are in NFKC but not in NFC are already in the table. It is also
necessary to do at least toNFC(output), because otherwise the text may have
unordered combining marks and/or uncomposed character sequences.

The IDNA Mapping Table is stabilized in Unicode. That is, characters will only be
added to the domain, never removed or changed in mapping—and the only
characters that will be added are those that are newly assigned.

Editorial Note: we probably can't be quite this strict about stability, because
IDNAbis (or a subsequent version) might make destabilizing changes.

4.1 Usage

The IDNA Mapping Table consists of a set of mappings from single code points
to a sequence of zero or more other code points, also referred to as a 'table'. All
code points that are not specifically entered into the table are mapped to
themselves.

To use the table to map a string, walk through the string, one code point at a
time. If there is a mapping entry for that code point, replace that code point with
the result of the mapping entry. Otherwise retain the code point as is.

4.2. UCD Representation

The IDNA Mapping Table is represented in the Unicode Character Database

UTS #46: Unicode IDNA Compatible Preprocessing http://www.unicode.org/reports/tr46/tr46-1.html

8 of 12 1/23/2009 2:51 PM

(UCD) via two properties. These properties will be updated with each version of
Unicode.

A contributory property, Other_Idna_Mapping, which contains the
exceptional values.

1.

A derived property, Idna_Mapping (Idna_Maps), which contains the full
mapping table.

2.

During the span of time between the first release of IDNAbis, and the release of
the subsequent version of Unicode, the tables will initially be made available
outside of the UCD.

5. Differences from IDNA2003
The following are differences from IDNA2003. Section 5.1 Joiner Characters and
Section 5.2 Other Special Cases are special exceptions required for compatibility
with IDNA2008. The other exceptions are because of changes in Unicode
between version 3.2 and version 5.1. They could have been carried forward as
exceptions, but their usage is so rare that they are simply documented here.

For security and interoperability, applications may need to generate two versions
of domain names, one with the exceptions of Section 5.1 Joiner Characters and
Section 5.2 Other Special Cases, and one without. This would allow determining
whether there is a divergence in a registry between the two forms.

To use a online demo of IDNA2003 mappings, see
http://demo.icu-project.org/icu-bin/idnbrowser.

5.1 Joiner Characters

The following characters were mapped to nothing (deleted) in IDNA2003. They
are allowed in IDNA2008, and thus unchanged by this mapping.

U+200C ZERO WIDTH NON-JOINER

U+200D ZERO WIDTH JOINER

5.2 Other Special Cases

The following characters were case-folded in IDNA2003. They are allowed in
IDNA2008 (despite being mapped in IDNA2003), and thus unchanged by this
mapping.

U+00DF (ß) LATIN SMALL LETTER SHARP S

U+03C2 (ς) GREEK SMALL LETTER FINAL SIGMA

5.3 Post Unicode 3.2 Case Pairs

These are characters that did not have corresponding lowercase characters in
Unicode 3.2, but had lowercase characters added later. Unicode has since

UTS #46: Unicode IDNA Compatible Preprocessing http://www.unicode.org/reports/tr46/tr46-1.html

9 of 12 1/23/2009 2:51 PM

stabilized case folding, so that this will not happen in the future. That is, case
pairs will be assigned in the same version of Unicode—so any newly assigned
character will either have a case folding in that version of Unicode, or it will
never have a case folding in the future.

U+04C0 (Ӏ) CYRILLIC LETTER PALOCHKA

U+10A0 (Ⴀ) GEORGIAN CAPITAL LETTER AN

…U+10C5 (Ⴥ) GEORGIAN CAPITAL LETTER HOE

U+2132 (Ⅎ) TURNED CAPITAL F

U+2183 (Ↄ) ROMAN NUMERAL REVERSED ONE HUNDRED

5.4 Post Unicode 3.2 Normalization Mappings

These are characters whose normalizations changed after Unicode 3.2 (all of
them were in Unicode 4.0.0). See Corrigendum #4: Five Unihan Canonical
Mapping Errors. While the set of characters that are normalized to different
values has been stable in Unicode, the results have not been. As of Unicode 5.1,
normalization is completely stabilized, so these are the only such characters.

U+2F868 (?) CJK COMPATIBILITY IDEOGRAPH-2F868 → U+2136A (?) CJK
UNIFIED IDEOGRAPH-2136A

U+2F874 (?) CJK COMPATIBILITY IDEOGRAPH-2F874 → U+5F33 (?) CJK
UNIFIED IDEOGRAPH-5F33

U+2F91F (?) CJK COMPATIBILITY IDEOGRAPH-2F91F → U+43AB (?) CJK
UNIFIED IDEOGRAPH-43AB

U+2F95F (?) CJK COMPATIBILITY IDEOGRAPH-2F95F → U+7AAE (?) CJK
UNIFIED IDEOGRAPH-7AAE

U+2F9BF (?) CJK COMPATIBILITY IDEOGRAPH-2F9BF → U+4D57 (?) CJK
UNIFIED IDEOGRAPH-4D57

6 Mapping Table Construction
The IDNA Mapping Table is constructed as specified in this section, for each
version of Unicode. Post Unicode 5.0, case folding and normalization are always
backwards compatible. The only issue for any new release of Unicode is whether
any unassigned characters needed to be added to the exception table.

Like all Unicode properties, it is the data in the Unicode Character Database that
is normative. This is simply a description of how that data is generated.

Informally, the table construction is done by mapping each Unicode character by
applying case folding and then normalization to Unicode Normalization Form KD
(NFKD). There are some exceptional mappings that provide for compatibility with

UTS #46: Unicode IDNA Compatible Preprocessing http://www.unicode.org/reports/tr46/tr46-1.html

10 of 12 1/23/2009 2:51 PM

IDNA2003, and allow for special handling of future assigned characters. Those
are listed in Section 5.3 Special Cases. Note that unassigned (reserved) code
points never need an entry in the IDNA Mapping Table; they do not need to be
included because their presence will cause an error anyway in the preprocessing.

Formally, the construction of the IDNA Mapping Table is specified as:

For each code point X:

If X is in the IDNA Preprocessing Exceptions Table, add the mapping
found in that table

1.

Else add a mapping from X to toNFKC(toCaseFold(toNFKC(X)))2.

Notes:

toCaseFold and isCaseFolded are defined in the Unicode Standard 5.0,
Section 3.13 Default Case Algorithms, page 125, rule R4 and definition
D127

(also
http://www.unicode.org/versions/Unicode5.0.0/ch03.pdf#G34078)

toNFKC and isNFKC are defined in Unicode Standard 5.0, UAX#15, Section
X2 Notation, page 1339.

(also http://www.unicode.org/reports/tr15/#Notation)

The following is an exhaustive list of the items in the IDNA Preprocessing
Exceptions Table. The notation [:xxx:] means a Unicode property value. A
mapping is expressed as X → Y, where X is a single code point, and Y is a
sequence of zero or more other code points.

This set is stabilized. That is, characters will only be added to the set, never
removed or changed in mapping—and the only characters that will be added are
those that are newly assigned.

6.1. Removed (X → "")

These are specific mappings as part of IDNA2003, plus natural property
extensions for post Unicode 3.2.

The following characters are removed in the mapping; that is, they map to the
empty string:

U+00AD SOFT HYPHEN
U+034F COMBINING GRAPHEME JOINER
U+1806 (᠆) MONGOLIAN TODO SOFT HYPHEN
U+200B ZERO WIDTH SPACE
U+2060 WORD JOINER
U+FEFF ZERO WIDTH NO-BREAK SPACE
Variation Selectors

UTS #46: Unicode IDNA Compatible Preprocessing http://www.unicode.org/reports/tr46/tr46-1.html

11 of 12 1/23/2009 2:51 PM

Default-Ignorable Code Points minus Unassigned minus Join Controls
(http://unicode.org/cldr/utility/list-unicodeset.jsp?a=[[:di:]-[:unassigned:]-[:Join_
This allows text that has default ignorable characters (thus invisible to the
user) to be removed in processing.

In UnicodeSet notation, this is:

[\u034F\u200B-\u200D\u2060\uFEFF\u00AD
[:variation_selector:][:di:]-[:unassigned:]-[:Join_C:]]

The Join Controls were mapped to nothing (deleted) in IDNA2003. They are
allowed in IDNAbis in limited contexts.

U+200C ZERO WIDTH NON-JOINER
U+200D ZERO WIDTH JOINER

[Issue: best compatibility would be to delete them in all the contexts in which
they are disallowed in IDNAbis. That, however, would mean having to track the
CONTEXT rules for IDNAbis, which would make for an unstable mapping.]

6.2. Remapped (X → Y)

The following are specific mappings as part of IDNA2003, having to do with
label separators:

Map U+3002 (。) IDEOGRAPHIC FULL STOP (and anything mapped to it by
toNFKC) to U+002E (.) FULL STOP.

That is:

U+3002 (。) IDEOGRAPHIC FULL STOP → U+002E (.) FULL STOP
U+FF61 (｡) HALFWIDTH IDEOGRAPHIC FULL STOP → U+002E (.) FULL STOP

Note: Like IDNA2003, the set of exceptions is quite limited. Only those
characters that are treated as full-stops in CJK character sets are mapped. This
does not include all characters that function like full stops, nor does the
mapping include are characters that look like full stops but are not full stops.
Note that because the preprocessing is done to the entire domain_name string,
in some cases a dot may result from the NFKC decomposition of a character like
U+2488 (⒈) DIGIT ONE FULL STOP.

6.3 Special Cases (X → X)

The following characters are not altered by the mapping: they are treated as
special cases by IDNAbis.

U+200C ZERO WIDTH NON-JOINER

U+200D ZERO WIDTH JOINER

UTS #46: Unicode IDNA Compatible Preprocessing http://www.unicode.org/reports/tr46/tr46-1.html

12 of 12 1/23/2009 2:51 PM

U+00DF (ß) LATIN SMALL LETTER SHARP S

U+03C2 (ς) GREEK SMALL LETTER FINAL SIGMA

6.4 Grandfathered (X → Y)

If any future version of Unicode were to have property assignments that would
cause the mapping for a previously-existing character to change, then the old
mapping will be retained by being added as an exceptional case. This list is
currently empty.

Acknowledgements
[TBD].

References
[TBD].
(http://tools.ietf.org/id/idnabis)

Modifications
The following summarizes modifications from the previous revisions of this
document.

Copyright © 2008 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no
expressed or implied warranty of any kind, and assumes no liability for errors or
omissions. No liability is assumed for incidental and consequential damages in connection
with or arising out of the use of the information or programs contained or accompanying
this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some
jurisdictions.

