
UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

1 of 50 4/13/2009 11:56 AM

 Technical Reports

Proposed Update

Unicode Standard Annex #44

UNICODE CHARACTER DATABASE

Version Unicode 5.2 draft 8
Authors Mark Davis (markdavis@google.com) and Ken Whistler

(ken@unicode.org)
Date 2009-03-26
This Version http://www.unicode.org/reports/tr44/tr44-3.html
Previous Version http://www.unicode.org/reports/tr44/tr44-2.html
Latest Version http://www.unicode.org/reports/tr44/
Revision 3

Summary

This annex consolidates information documenting the Unicode Character Database. This annex
provides the core documentation for the Unicode Character Database (UCD). It describes the
layout and organization of the Unicode Character Database and how it specifies the formal
definitions of the Unicode Character Properties.

Status

This is a draft document which may be updated, replaced, or superseded by other documents at any
time. Publication does not imply endorsement by the Unicode Consortium. This is not a stable
document; it is inappropriate to cite this document as other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard, but is
published online as a separate document. The Unicode Standard may require conformance to
normative content in a Unicode Standard Annex, if so specified in the Conformance chapter of
that version of the Unicode Standard. The version number of a UAX document corresponds to the
version of the Unicode Standard of which it forms a part.

Please submit corrigenda and other comments with the online reporting form [Feedback]. Related
information that is useful in understanding this annex is found in Unicode Standard Annex #41,
“Common References for Unicode Standard Annexes.” For the latest version of the Unicode Standard,
see [Unicode]. For a list of current Unicode Technical Reports, see [Reports]. For more information
about versions of the Unicode Standard, see [Versions]. For any errata which may apply to this annex,
see [Errata].

Contents

1 Introduction
2 Conformance

2.1 Simple and Derived Properties
2.2 Use of Default Values
2.3 Stability of Releases

3 Documentation
3.1 Character Properties in the Standard
3.2 The Character Property Model

rick@unicode.org
Text Box
L2/09-124

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

2 of 50 4/13/2009 11:56 AM

3.3 NamesList.html
3.4 StandardizedVariants.html
3.5 Unihan and UAX #38
3.6 Data File Comments
3.7 Obsolete Documentation Files

4 UCD Files
4.1 Directory Structure
4.2 File Format Conventions
4.3 File List
4.4 Zipped Files
4.5 UCD in XML

5 Properties
5.1 Property Table
5.2 Derived Extracted Properties
5.3 Property Summary
5.4 Case and Case Mapping
5.5 Property Value Lists
5.6 Property and Property Value Aliases
5.7 Matching Rules
5.8 Invariants
5.9 Validation
5.10 Deprecation

6 Test Files
6.1 NormalizationTest.txt
6.2 Segmentation Test Files and Documentation

7 UCD Change History
Acknowledgments
References
Modifications

Reviewers please note that the entire text of this annex has been extensively rewritten for this
proposed update, to account for the complete incorporation of the former content of UCD.html into the
text of the annex. Review the entire document as you would new material. The content of Version 5.1.0
of UCD.html has also been extensively edited and reorganized in the interest of text flow and clarity,
and substantial new documentation has been added to cover gaps noted during the editorial process.
No attempt has been made to use change bars to indicate differences from the previous approved
version of the annex, as in this case change bars would obscure more than they would illuminate about
the changed text. Instead, indications of change: text additions and text removals track changes
subsequent to the first draft of this Proposed Update. See also Modifications.

WarningNote: the information in this annex does not completely describe is not intended as an
exhaustive description of the use and interpretation of Unicode character properties and
behavior. It must be used in conjunction with the data in the other files in the Unicode Character
Database, and relies on the notation and definitions supplied in The Unicode Standard. All
chapter references are to Version 5.2.0 of the standard unless otherwise indicated.

1 Introduction

The Unicode Standard is far more than a simple encoding of characters. The standard also associates
a rich set of semantics with each encoded character—properties that are required for interoperability
and correct behavior in implementations, as well as for Unicode conformance. These semantics are
embodied in the Unicode Character Database (UCD), a collection of data files which contain the
Unicode character code points and character names. The data files define the Unicode character
properties and mappings between Unicode characters (such as case mappings).

This annex describes the UCD and provides a guide to the various documentation files associated with
it.
Although this description and guide is complete for the UCD itself, there are other portions of the
Unicode Standard which must also be consulted to obtain the complete picture regarding Unicode

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

3 of 50 4/13/2009 11:56 AM

character properties. In particular, implementers should familiarize themselves with the formal
definitions and conformance requirements for properties detailed in Section 3.5, "Properties" in
[Unicode] and with further normative specifications regarding particular character properties in Chapter
4, "Character Properties" in [Unicode].

The latest version of the UCD is always located on the Unicode Web site at:

http://www.unicode.org/Public/UNIDATA/

The specific files for the UCD associated with this version of the Unicode Standard (5.2.0) are located
at:

http://www.unicode.org/Public/5.2.0/

Stable, archived versions of the UCD associated with all earlier versions of the Unicode Standard can
be accessed from:

http://www.unicode.org/ucd/

For a description of the changes in the UCD for this version and earlier versions, see the UCD Change
History.

2 Conformance

The Unicode Character Database is an integral part of the Unicode Standard.

The UCD contains normative property and mapping information required for implementation of various
Unicode algorithms such as the Unicode Bidirectional Algorithm, Unicode Normalization, and Unicode
Casefolding. The data files also contain additional informative and provisional character property
information.

Each specification of a Unicode algorithm, whether specified in the text of [Unicode] or in one of the
Unicode Standard Annexes, designates which data file(s) in the UCD are needed to provide normative
property information required by that algorithm.

For information on the meaning and application of the terms, normative, informative, and provisional,
see Section 3.5, "Properties" in [Unicode].

For information about the applicable terms of use for the UCD, see the Unicode Terms of Use.

2.1 Simple and Derived Properties

Some character properties in the UCD are simple properties. This status has no bearing on whether or
not the properties are normative, but merely indicates that their values are not derived from some
combination of other properties.

Other character properties are derived. This means that their values are derived by rule from some
other combination of properties. Generally such rules are stated as set operations, and may or may not
include explicit exception lists for individual characters.

Sometimes Certain
simple properties are defined merely to make the statement of the rule defining a derived property
more compact or general. Such properties are known as contributory properties. Sometimes these
contributory properties are defined to encapsulate the messiness inherent in exception lists. At other
times, a contributory property may be defined to help stabilize the definition of an important derived
property which is subject to stability guarantees.

Derived character properties are not considered second-class citizens among Unicode character
properties. They are defined to make implementation of important algorithms easier to state. Included
among the first-class derived properties important for such implementations are: Uppercase,

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

4 of 50 4/13/2009 11:56 AM

Lowercase, XID_Start, XID_Continue, Math, and Default_Ignorable_Code_Point, all defined in
DerivedCoreProperties.txt, and as well as derived properties for the optimization of normalization,
defined in DerivedNormalizationProps.txt.

Implementations should simply use the derived properties, and should not try to rederive them from
lists of simple properties and collections of rules, because of the chances for error and divergence
when doing so.

Definitions of property derivations are provided for information only, typically in comment fields in the
data files. Such definitions may be refactored, refined, or corrected over time.

If there are any cases of mismatches between the definition of a derived property as listed in
DerivedCoreProperties.txt or similar data files in the UCD, and the definition of a derived property as a
set definition rule, the explicit listing in the data file should always be taken as the normative definition
of the property.
To ensure that there is never any ambiguity between versions of the standard, even if the definition of
a derivation is changed at some point in time, As described in Stability of Releases the exact property
listing in the data files for any given version of the standard is always the truth for that property value
for that version—and will never change for that version.

2.2 Use of Default Values

Unicode character properties have default values. Default values are the value or values that a
character property takes for an unassigned code point, or in some instances, for designated subranges
of code points, whether assigned or unassigned. For example, the default value of a binary Unicode
character property is always "N".

For the formal discussion of default values, see D26 in Section 3.5, "Properties" in [Unicode]. For
conventions related to default values in various data files of the UCD, see File Format Conventions.
and for documentation regarding the particular default values of individual Unicode character
properties, see the Property Table Default Values.

2.3 Stability of Releases

Just as for the Unicode Standard as a whole, each version of the UCD, once published, is absolutely
stable and will never change. Each released version is archived in a directory on the Unicode Web
site, with a directory number associated with that version. URLs pointing to that version's directory are
also stable and will be maintained in perpetuity.

Any errors discovered for a released version of the UCD are noted in [Errata], and if appropriate will be
corrected in a subsequent version of the UCD.

Stability guarantees constraining how Unicode character properties can (or cannot) change between
releases of the UCD are documented in the Unicode Consortium Stability Policies [Stability].

2.3.1 Changes to Properties Between Releases

Updates to character properties in the Unicode Character Database may be required for any of three
reasons:

To cover new characters added to the standard1.
To add new character properties to the standard2.

To change the assigned values for a property for some characters already in the standard3.

While the Unicode Consortium endeavors to keep the values of all character properties as stable as
possible between versions, occasionally circumstances may arise which require changing them. In
particular, as less well-documented scripts, such as those for minority languages, or historic scripts are
added to the standard, the exact character properties and behavior may not fully be known when the
script is first encoded. The properties for some of these characters may change as further information
becomes available or as implementations turn up problems in the initial property assignments. As far

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

5 of 50 4/13/2009 11:56 AM

as possible, any readjustment of property values based on growing implementation experience is
made to be compatible with established practice.

Occasionally, a character property value is changed to prevent incorrect generalizations about a
character's use based on its nominal property values. For example, U+200B ZERO WIDTH SPACE
was originally classified as a space character (General_Category=Zs), but it was reclassified as a
Format character (General_Category=Cf) to clearly distinguish it from space characters in its function
as a format control for line breaking.

3 Documentation

This annex provides the core documentation for the UCD, but additional information about character
properties is available in other parts of the standard and in additional documentation files contained
within the UCD itself.

3.1 Character Properties in the Standard

The formal definitions related to character properties used by the Unicode Standard are documented in
Section 3.5, "Properties" in [Unicode]. Understanding those definitions and related terminology is
essential to the appropriate use of Unicode character properties.

See Section 4.1, "Unicode Character Database", in [Unicode] for a general discussion of the UCD and
its use in defining properties. The rest of Chapter 4 provides important explanations regarding the
meaning and use of various normative character properties.

3.2 The Character Property Model

For a general discussion of the property model which underlies the definitions associated with the
UCD, see UTR #23: The Unicode Character Property Model [UTR23]. That technical report is
informative, but over the years various content from it has been incorporated into normative portions of
the Unicode Standard, particularly for the definitions in Chapter 3.

UTR #23 also discusses string functions and their relation to character properties.

3.3 NamesList.html

NamesList.html formally describes (in BNF) the format of the NamesList.txt data file in BNF. , the file
which That data file
is used to drive the printing of the Unicode code charts and names list. See also Section 17.1,
"Character Names List", in [Unicode] for a detailed discussion of the conventions used in the Unicode
names list as formatted for printing.

3.4 StandardizedVariants.html

StandardizedVariants.html documents standardized variants, showing a representative glyph for each.
It is closely tied to the data file, StandardizedVariants.txt, which defines those sequences normatively.

3.5 Unihan and UAX #38

UAX #38, Unicode Han Database (Unihan) [UAX38] describes the format and content of Unihan.txt, the
data file which collects together all property information for CJK Unified Ideographs. That annex also
specifies in detail which of the Unihan character properties are normative, informative, or provisional.

It is important to note that Unihan.txt and its associated documentation is aimed only at CJK Unified
Ideographs. It does not have as its scope legacy East Asian character sets as a whole, which also
contain many non-CJK characters. As a result, while Unihan.txt contains extensive and detailed
mapping information for CJK Unified Ideographs, it must be supplemented from other sources to
establish mapping tables for various important commercial and national character set standards from
East Asia.

The Unihan Database (Unihan.txt) contains extensive and detailed mapping information for CJK
Unified Ideographs encoded in the Unicode Standard, but it is aimed only at those ideographs, not at

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

6 of 50 4/13/2009 11:56 AM

other characters used in the East Asian context in general. In contrast, East Asian legacy character
sets, including important commercial and national character set standards, contain many non-CJK
characters. As a result, the Unihan Database must be supplemented from other sources to establish
mapping tables for those character sets.

3.6 Data File Comments

In addition to the specific documentation files for the UCD, individual data files often contain extensive
header comments describing their content and any special conventions used in the data.

In some instances, individual property definition sections also contain comments with information about
how the property may be derived. Such comments are informative; while they are intended to convey
the intent of the derivation, in case of any mismatch between a statement of a derivation in a comment
field and the actual listing of the derived property, it is the list which is to be taken as normative. See
Simple and Derived Properties.

3.7 Obsolete Documentation Files

UCD.html was formerly the primary documentation file for the UCD. As of Version 5.2.0, its content has
been wholly incorporated into this document, as of Version 5.2.0.

Unihan.html was formerly the primary documentation file for Unihan.txt. As of Version 5.1.0, its content
has been wholly incorporated into [UAX38], as of Version 5.1.0.

Much earlier Versions of the Unicode Standard prior to Version 4.0.0 contained small, segmented
focussed
documentation files, UnicodeCharacterDatabase.html, PropList.html, and DerivedProperties.html,
which were later incorporated consolidated into UCD.html.

4 UCD Files

The heart of the UCD consists of the data files themselves. This section describes the directory
structure for the UCD, the format conventions for the data files, and provides documentation for data
files not documented elsewhere in this annex.

4.1 Directory Structure

Each version of the UCD is released in a separate, numbered directory under the Public directory on
the Unicode Web site. The content of that directory is complete for that release. It is also stable—once
released, it will be archived permanently in that directory, unchanged, at a stable URL.

The specific files for the UCD associated with this version of the Unicode Standard (5.2.0) are located
at:

http://www.unicode.org/Public/5.2.0/

4.1.1 UCD Files Proper

The UCD proper is located in the ucd
subdirectory of the numbered version directory. That directory contains all of the documentation files
and most of the data files for the UCD, including some data files for derived properties.

Although all UCD data files are version-specific for a release and most contain internal date and
version stamps, the file names of the released data files do not differ from version to version. When
linking to a version-specific data file, the version will be indicated by the version number of the directory
for the release.

All files for derived extracted properties are in the extracted subdirectory of the ucd subdirectory. See
Derived Extracted Properties for documentation regarding those data files and their content.

A number of auxiliary properties are specified in files in the auxiliary subdirectory of the ucd

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

7 of 50 4/13/2009 11:56 AM

subdirectory. In Version 5.2.0 it contains data files specifying properties associated with UAX #29,
Unicode Text Segmentation [UAX29] and with UAX #14, Unicode Line Breaking Algorithm [UAX14], as
well as test data for those algorithms. See Segmentation Test Files and Documentation for more
information about the test data.

4.1.2 UCD XML Files

The XML version of the UCD is located in the ucdxml subdirectory of the numbered version directory.
See the UCD in XML for more details.

4.1.3 Charts

The code charts specific to a version of Unicode are archived as a single large pdf file in the charts
subdirectory of the numbered version directory. See the readme.txt in that subdirectory and the general
web page explaining the Unicode Code Charts for more details.

4.1.4 Beta Review Considerations

Prior to the formal release for any particular version of the UCD, a beta review is conducted. The beta
review files are located in the same directory that is later used for the released UCD, but during the
beta review period, the subdirectory structure differs somewhat and may contain temporary files,
including documentation of diffs between deltas for the beta review. Also, during the beta review, all
data file names are suffixed with version numbers and delta numbers. So a typical file name during
beta review may be "PropList-5.2.0d13.txt" instead of the finally released "PropList.txt".

Notices contained in a ReadMe.txt file in the UCD directory during the beta review period also make it
clear that that directory contains preliminary material under review, rather than a final, stable release.

4.1.5 File Directory Differences for Early Releases

The UCD in XML was introduced in Version 5.1.0, so UCD directories prior to that do not contain the
ucdxml subdirectory.

UCD directories prior to Version 4.1.0 do not contain the auxiliary subdirectory.

UCD directories prior to Version 3.2.0 do not contain the extracted subdirectory.

The general structure of the file directory for a released version of the UCD described above applies to
Versions 4.1.0 and later. Prior to Version 4.1.0, versions of the UCD were not self-contained, complete
sets of data files for that version, but instead only contained any new data files or any data files which
had changed since the prior release.

The directory naming conventions and the file naming conventions also differed prior to Version 4.1.0.
So, for example, Version 4.0.0 of the UCD is contained in a directory named 4.0-Update, and Version
4.0.1 of the UCD in a directory named 4.0-Update1. Furthermore, for these earlier versions, the data
file names do contain explicit version numbers.

It is important to understand and keep these differences in mind when accessing any version of the
UCD earlier than Version 4.1.0. Full details on the exact collection of data files associated with the
release of any version of the UCD prior to Version 4.1.0 can be found online by referring to the
component listings at Enumerated Versions.

4.2 File Format Conventions

Files in the UCD use the format conventions described in this section, unless otherwise specified.

4.2.1 Data Fields

Each line of data consists of fields separated by semicolons. The fields are numbered starting
with zero.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

8 of 50 4/13/2009 11:56 AM

The first field (0) of each line in the Unicode Character Database files represents a code point or
range. The remaining fields (1..n) are properties associated with that code point.
Leading and trailing spaces within a field are not significant. However, no leading or trailing
spaces are allowed in any field of UnicodeData.txt.

Unihan.txt has a separate format, using tab characters instead of semicolons to separate fields.
See [UAX38] for the detailed specification of the format of Unihan.txt.

4.2.2 Code Points and Sequences

Code points are expressed as hexadecimal numbers with four to six digits. They are written
without the "U+" prefix
in all data files except Unihan.txt. Unihan.txt uses the "U+" prefix for all Unicode code points, to
distinguish them from other decimal and hexadecimal numerical references occurring in its data
fields.
When a data field contains a sequence of code points, spaces separate the code points.

4.2.3 Code Point Ranges

A range of code points is specified by the form "X..Y".
Each code point in a range has the associated property value specified on a data file. For
example (from Blocks.txt):

0000..007F; Basic Latin
0080..00FF; Latin-1 Supplement

For backward compatibility, ranges in the file UnicodeData.txt are specified by entries for the start
and end characters of the range, rather than by the form "X..Y". The start character is indicated
by a range identifier, followed by a comma and the string "First", in angle brackets. This entry
takes the place of a regular character name in field 1 for that line. The end character is indicated
on the next line with the same range identifier, followed by a comma and the string "Last", in
angle brackets:

4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;;
9FC3;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;;

When For character ranges
using this convention, the names of all characters in the range are algorithmically derivable. See
Section 4.8, "Name—Normative" in [Unicode] for more information on derivation of character
names for such ranges.

4.2.4 Comments

U+0023 NUMBER SIGN ("#") is used to indicate comments: all characters from the number sign
to the end of the line are considered part of the comment, and are disregarded when parsing
data.
In many files, the comments on data lines use a common format, as illustrated here (from
Scripts.txt):

09B2 ; Bengali # Lo BENGALI LETTER LA

The first part of a comment using this common format is the General_Category value, provided
for information. This is followed by the character name for the code point in the first field (0).

The printing of the General_Category value is suppressed in instances where it would be
redundant, as for DerivedGeneralCategory.txt, in which the value of the property value in the data
field is already the General_Category value.
The symbol "L&" indicates characters of General_Category Lu, Ll, or Lt (uppercase, lowercase,
or titlecase letter). For example:

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

9 of 50 4/13/2009 11:56 AM

0386 ; Greek # L& GREEK CAPITAL LETTER ALPHA WITH TONOS

This usage of L& is the same as as used in these comments is an alias for the derived LC value
for the General_Category property, as documented in PropertyValueAliases.txt.

When the data line contains a range of code points, this common format for a comment also
indicates a range of character names, separated by "..", as illustrated here:

00BC..00BE ; numeric # No [3] VULGAR FRACTION ONE QUARTER..VULGAR FRACTION THREE QUARTERS

Code point ranges in the data files are calculated so that they all Normally, consecutive
characters with the same property value would be represented by a single code point range. In
data files using this comment convention, such ranges are subdivided so that all characters in a
range also
have the same General_Category value (or LC). While this convention results in more ranges
than are strictly necessary, it makes the contents of the ranges clearer.

When a code point range occurs, the number of items in the range is included in the comment (in
square brackets), immediately following the General_Category value.
The comments are purely informational, and may change format or be omitted in the future. They
should not be parsed for content.

4.2.5 Code Point Labels

Surrogate code points, private-use characters, control codes, noncharacters, and unassigned
code points have no names. When such code points are listed in the data files, for example to list
their General_Category values, the comments use code point labels instead of character names.
For example (from DerivedCoreProperties.txt):

2065..2069 ; Default_Ignorable_Code_Point # Cn [5] <reserved-2065>..<reserved-2069>

Code point labels use one of the tags as documented in Section 4.8, "Name—Normative" in
[Unicode] and as shown in the table below Table 1, followed by "-" and the code point expressed
in hexadecimal. The entire label is then enclosed in angle brackets.

Table 1. Code Point Label Tags

Tag General_Category Note
reserved Cn Noncharacter_Code_Point=F
noncharacter Cn Noncharacter_Code_Point=T
control Cc
private-use Co
surrogate Cs

4.2.6 Multiple Values

When a file contains the specification for multiple properties, the second field specifies the name
of the property and the third field specifies the property value. For example (from
DerivedNormalizationProps.txt):

03D2 ; FC_NFKC; 03C5 # L& GREEK UPSILON WITH HOOK SYMBOL
03D3 ; FC_NFKC; 03CD # L& GREEK UPSILON WITH ACUTE AND HOOK SYMBOL

4.2.7 Binary Property Values

For binary properties, the second field specifies the name of the applicable property, with the
implied value of the property being "True". Only the ranges of characters with the binary property
value of "Y" (= True) are listed. For example (from PropList.txt):

1680 ; White_Space # Zs OGHAM SPACE MARK

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

10 of 50 4/13/2009 11:56 AM

180E ; White_Space # Zs MONGOLIAN VOWEL SEPARATOR
2000..200A ; White_Space # Zs [11] EN QUAD..HAIR SPACE

4.2.8 Default Values

Entries for a code point may be omitted in a data file if the code point has the a default value for
the property in question.

For string properties, including the definition of foldings, the default value is the code point of the
character itself.
For miscellaneous properties which take strings as values, such as the Unicode Name property,
the default value is a null string.
For binary properties, the default value is always "N" (= False) and is always omitted.

For other types of enumerated and catalog properties, the default value is listed in a comment.
For example (from Scripts.txt):

All code points not explicitly listed for Script
have the value Unknown (Zzzz).

A few properties of the enumerated type have multiple default values. In those cases, comments
in the file explain the code point ranges for applicable values. See Table 2.

Default values may also be listed in specially formatted comment lines, using the keyword
"@missing". For example:

@missing: 0000..10FFFF; Unknown

Because of the legacy format constraints for UnicodeData.txt, that file contains no specific
information about default values for properties. The default values for fields in UnicodeData.txt
are documented instead in the UnicodeData.txt entry in the Property Table section below. in the
Default Values for Properties table below if they cannot be derived from the general rules about
default values for properties.

Some Default values for common catalog, enumeration, and numeric properties are listed in the table
below: Table 2.

Table 2. Default Values for Properties

Property Name Default Value
Age unassigned
Bidi_Class L, AL, R
Block No_Block
Canonical_Combining_Class Not_Reordered (= 0)
Decomposition_Type None
East_Asian_Width Neutral (= N), Wide (= W)
General_Category Cn
Numeric_Type None
Numeric_Value NaN
Script Unknown (= Zzzz)

Default values for some the Unicode character property ies such as Bidi_Class are complex. See the
relevant annexes UAX #9, The Unicode Bidirectional Algorithm [UAX9] and other documentation
DerivedBidiClass.txt for more details.

Default values for the East_Asian_Width property are also complex. This property defaults to Neutral
for most code points, but defaults to Wide for unassigned code points in blocks associated with CJK
ideographs. See UAX #11, East Asian Width [UAX11] and DerivedEastAsianWidth.txt for more details.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

11 of 50 4/13/2009 11:56 AM

4.2.9 Text Encoding

The data files use UTF-8. Unless otherwise noted, non-ASCII characters only appear in
comments.
Unihan.txt makes extensive use of UTF-8 in data fields. (See [UAX38] for details.)

For legacy reasons, NamesList.txt is exceptional; it is encoded in Latin-1. See NamesList.html
Segmentation test data files, such as WordBreakTest.txt, make use of non-ASCII (UTF-8)
characters as delimiters for data fields.

4.2.10 Line Termination

All data files in the UCD use LF line termination (not CRLF line termination). When copied to
different systems, these line endings may be automatically changed to use the native line
termination conventions for that system. Make sure your editor (or parser) can deal with the line
termination style in the local copy of the data files.

4.2.11 Other Conventions

In some test data files, segments of the test data are distinguished by a line starting with an "@"
sign. For example (from NormalizationTest.txt):

@Part1 # Character by character test

4.2.12 Other File Formats

The data format for Unihan.txt differs from the standard format. See the discussion of Unihan and
UAX #38 earlier in this annex for more information.
The format for NamesList.txt, which documents the Unicode names list and which is used
programmatically to drive the formatting program for Unicode code charts, also differs
significantly from regular UCD data files. See NamesList.html

Index.txt is another exception. It uses a tab-delimited format, with field 0 consisting of an index
entry string, and field 1 a code point. Index.txt represents the data printed in Section I.1, "Unicode
Names Index" in [Unicode]. It is also used to help maintain the online Unicode Character Name
Index.

The various segmentation test data files make use of "#" to delimit comments, but have distinct
conventions for their data fields. See the documentation in their header sections for details of the
data field formats for those files.

The XML version of the UCD has its own file format conventions. In those files, "#" is used to
stand for the code point in algorithmically derivable character names such as CJK UNIFIED
IDEOGRAPH-4E00, so as to allow for name sharing in more compact representations of the
data. See UAX #42, Unicode Character Database in XML [UAX42] for details.

4.3 File List

The exact list of files associated with any particular version of the UCD is available on the Unicode
Web site by referring to the component listings at Enumerated Versions.

The majority of the data files in the UCD provide specifications of character properties for Unicode
characters. Those files and their contents are documented in detail in the Property Table section
below.

The data files in the extracted
subdirectory constitute reformatted listings of single character properties extracted from
UnicodeData.txt or other primary data files. The reformatting is provided to make it easier to see the
particular set of characters having certain values for enumerated properties, or to separate the
statement of that property from other properties defined together in UnicodeData.txt. These extracted,
derived data files are further documented in the Derived Extracted Properties section below.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

12 of 50 4/13/2009 11:56 AM

The UCD also contains a number of test data files, whose purpose is to provide standard test cases
useful in verifying the implementation of complex Unicode algorithms. See the Test Files section below
for more documentation.

The remaining files in the Unicode Character Database do not directly specify Unicode properties. The
important ones and their functions are listed in the table below Table 3. The Status column indicates
whether the file (and its content) is considered Normative, Informative, or Provisional.

Table 3. Files in the UCD

File Name Reference Status Description
Index.txt Chapter

17
I Index to Unicode characters, as printed in the

Unicode Standard.
NamesList.txt Chapter

17
I Names list used for production of the code

charts, derived from UnicodeData.txt. It contains
additional annotations.

NamesList.html Chapter
17

I Documents the format of NamesList.txt.

StandardizedVariants.txt Chapter
16

N Lists all the standardized variant sequences that
have been defined, plus a textual description of
their desired appearance.

StandardizedVariants.html Chapter
16

N A derived documentation file, generated from
StandardizedVariants.txt, plus a list of sample
glyphs showing the desired appearance of each
standardized variant.

NamedSequences.txt [UAX34] N Lists the names for all approved named
sequences.

NamedSequencesProv.txt [UAX34] P Lists the names for all provisional named
sequences.

For more information about these files and their use, see the referenced annexes or chapters of
Unicode Standard.

4.4 Zipped Files

Starting with Version 4.1.0, zipped versions of all of the UCD files, both data files and documentation
files, are available under the Public/zipped directory on the Unicode Web site. Each collection of
zipped files is located there in a numbered subdirectory corresponding to that version of the UCD.

Two different zipped files are provided for each version:

Unihan.zip is the zipped version of the very large Unihan database file, Unihan.txt.

UCD.zip is the zipped version of all of the rest of the UCD data files, excluding Unihan.txt.

This bifurcation allows for better management of downloading version-specific information, because
Unihan.zip contains all the pertinent CJK-related property information, while UCD.zip contains all of the
rest of the UCD property information, for those who may not need the voluminous CJK data.

In versions of the UCD prior to Version 4.1.0, zipped copies of Unihan.txt are provided in the same
directory as the UCD data files. These zipped files are only posted for versions of the UCD in which
Unihan.txt itself was updated.

4.5 UCD in XML

Starting with Version 5.1.0, a set of XML data files using that schema are also released with each
version of the UCD. Those data files make it possible to import and process the UCD property data
using standard XML parsing tools, instead of the specialized parsing required for the various individual
data files of the UCD.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

13 of 50 4/13/2009 11:56 AM

4.5.1 UAX #42

UAX #42, Unicode Character Database in XML [UAX42] defines an XML schema which is used to
incorporate all of the Unicode character property information into the XML version of the UCD. See that
annex for details of the schema and conventions regarding the grouping of property values for more
compact representations.

4.5.2 XML File List

The XML version of the UCD is contained in the ucdxml subdirectory of the UCD. The files are all
zipped. The list of files is shown in the table below: Table 4.

Table 4. XML File List

File Name CJK non-CJK
ucd.all.flat.zip x x
ucd.all.grouped.zip x x
ucd.nounihan.flat.zip x
ucd.nounihan.grouped.zip x
ucd.unihan.flat.zip x
ucd.unihan.grouped.zip x

The "flat" file versions simply list all attributes with no particular compression. The "grouped" file
versions apply the grouping mechanism described in [UAX42] to cut down on the size of the data files.

5 Properties

This section documents the Unicode character properties, relating them in detail to the particular UCD
data files in which they are specified. For enumerated properties in particular, this section also
documents the actual values which those properties can have.

An index of all the non-CJK character properties by name can be found below in the Property
Summary
section. For a comparable index of CJK character propertes, see UAX #38, Unicode Han Database
(Unihan) [UAX38].

5.1 Property Table

The big property table below, Table 6, specifies the list of character properties defined in each data file
of the UCD. Table 6 is divided into separate sections for each data file in the UCD. The Data files
which define a single property or a small number of properties are listed first, followed by the data files
which define a large number of properties: DerivedCoreProperties.txt, DerivedNormalizationProps.txt,
PropList.txt, and UnicodeData.txt.

For each data file in the UCD there is a separate section of the property table. In that section, the first
column lists the character properties specified in that file.

In Table 6 each property is described as follows:

First Column.
This column contains the name of each of the character properties specified in the respective data file.
Properties marked as stabilized
in the first column are no longer actively maintained, nor are they extended as new characters are
added.

For UnicodeData.txt
the default property values are listed in the first column in parentheses after the property name, with
the special convention (<code point>) indicating that code point itself is the default value.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

14 of 50 4/13/2009 11:56 AM

Second Column. The second This column in the property table indicates the type of the property,
according to the following key: key in Table 5.

Table 5. Property Type Key

Property Type Symbol Examples
Catalog C Age, Block
Enumeration E Joining_Type, Line_Break
Binary B Uppercase, White_Space
String S Uppercase_Mapping, Case_Folding
Numeric N Numeric_Value
Miscellaneous M Name, Jamo_Short_Name

Catalog
properties have enumerated values which are expected to be regularly extended in successive
versions of the Unicode Standard. This distinguishes them from Enumeration properties.

Enumeration
properties have enumerated values which constitute a logical partition space; new values will
generally not be added to them in successive versions of the standard.

Binary
properties are a special case of Enumeration properties, which have exactly two values: Yes and
No (or True and False).

String
properties are typically mappings from a Unicode code point to another Unicode code point or
sequence of Unicode code points; examples include case mappings and decomposition
mappings.

Numeric
properties specify the actual numeric values for digits and other characters associated with
numbers in some way.

Miscellaneous
properties are those properties that do not fit neatly into the other property categories; they
currently include character names, comments about characters, and the Unicode_Radical_Stroke
property (a combination of numeric values) documented in UAX #38, Unicode Han Database
(Unihan) [UAX38].

Third Column. The third This column in the property table indicates the status of the property:
Normative or Informative or Contributory.

Fourth Column. Finally, the fourth Thiscolumn in the property table provides a description of the
property or properties. This includes information on derivation for derived properties, as well as
references to locations in the standard where the property is defined or discussed in detail.

In the section of the table for UnicodeData.txt, the data field numbers are also supplied in parentheses
at the start of the description.

For a few entries in the property table, values specified in the fields in a data file only contribute to a full
definition of a Unicode character property. For example, the values in field 1 (Name) in UnicodeData.txt
do not provide all the values for the Name property for all code points; Jamo.txt must also be used, and
the Name property for CJK Unified Ideographs is derived by rule.

Properties marked as stabilized
are no longer actively maintained, nor are they extended as new characters are added.

None of the Unicode character properties should be used simply on the basis of the descriptions in the
property table without consulting the relevant discussions in the Unicode Standard. Because of the
enormous variety of characters in the repertoire of the Unicode Standard, character properties tend not
to be self-evident in application, even when the names of the properties may seem familiar from their
usage with much smaller legacy character encodings.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

15 of 50 4/13/2009 11:56 AM

Table 6. Property Table

ArabicShaping.txt
Joining_Type
Joining_Group

E N Basic Arabic and Syriac character shaping properties, such
initial, medial and final shapes. See Section 8.2, "Arabic" i
[Unicode].

BidiMirroring.txt
Bidi_Mirroring_Glyph S I Informative mapping for substituting characters in an

implementation of bidirectional mirroring. This maps a su
of characters with the Bidi_Mirrored property to other
characters that normally are displayed with the correspon
mirrored glyph. See UAX #9: The Unicode Bidirectional
Algorithm [UAX9]. Do not confuse this with the Bidi_Mirro
property itself.

Blocks.txt
Block C N List of block names, which are arbitrary names for ranges

code points. See Chapter 17 in [Unicode].
CompositionExclusions.txt
Composition_Exclusion B N Properties for normalization. See UAX #15: Unicode

Normalization Forms [UAX15]. Unlike other files,
CompositionExclusions simply lists the relevant code poin

CaseFolding.txt
Simple_Case_Folding
Case_Folding

S N Mapping from characters to their case-folded forms. This
informative file containing normative derived properties.

Derived from UnicodeData and SpecialCasing.

Note: The case foldings are omitted in the data file if they
the same as the code point itself.

DerivedAge.txt
Age C N/I This file shows when various code points were

designated/assigned in successive versions of the Unicod
Standard.

The Age property is normative in the sense that it is
completely specified based on when a character is encode
the standard. However, DerivedAge.txt is provided for
information. The value of the Age property for a code poi
can be derived by analysis of successive versions of the U
and Age is not used normatively in the specification of an
Unicode algorithm.

EastAsianWidth.txt
East_Asian_Width E I Properties for determining the choice of wide versus narro

glyphs in East Asian contexts. Property values are describ
UAX #11: East Asian Width [UAX11].

HangulSyllableType.txt
Hangul_Syllable_Type

E N The values L, V, T, LV, and LVT used in Chapter 3 in [Unic

Jamo.txt
Jamo_Short_Name

M C The Hangul Syllable names are derived from the Jamo Sho
Names, as described in Chapter 3 in [Unicode].

LineBreak.txt

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

16 of 50 4/13/2009 11:56 AM

Line_Break E N Properties for line breaking. For more information, see UA
#14: Unicode Line Breaking Algorithm [UAX14].

GraphemeBreakProperty.txt
Grapheme_Cluster_Break E I

See UAX #29: Unicode Text Segmentation [UAX29]

SentenceBreakProperty.txt
Sentence_Break E I

See UAX #29: Unicode Text Segmentation [UAX29]

WordBreakProperty.txt
Word_Break E I

See UAX #29: Unicode Text Segmentation [UAX29]

NameAliases.txt
Name_Alias

M N Normative formal aliases for characters with erroneous na
as described in Chapter 4 in [Unicode]. These aliases exac
match the formal aliases published in the Unicode Standa
code charts.

NormalizationCorrections.txt
used in Decomposition Mappings S N NormalizationCorrections lists code point differences for

Normalization Corrigenda. For more information, see UAX
Unicode Normalization Forms [UAX15].

Scripts.txt
Script C I Script values for use in regular expressions. For more

information, see UAX #24: Unicode Script Property [UAX24
SpecialCasing.txt
Uppercase_Mapping
Lowercase_Mapping
Titlecase_Mapping

S I Data for producing (in combination with the simple case
mappings from UnicodeData.txt) the full case mappings.

Unihan.txt (for more information, see [UAX38])
Numeric_Type
Numeric_Value

E I The characters tagged with either kPrimaryNumeric,
kAccountingNumeric, and or kOtherNumeric are given th
property value Numeric_Type=Numeric numeric, and the
Numeric_Values indicated in those tags.

Most characters have these numeric properties based on
values from UnicodeData.txt. See Numeric_Type.

Unicode_Radical_Stroke M I The Unicode radical-stroke count, based on the tag
kRSUnicode.

DerivedCoreProperties.txt
Alphabetic B I Characters with the Alphabetic property. For more inform

see Chapter 4 in [Unicode].

Generated from: Lu + Ll + Lt + Lm + Lo + Nl +
Other_Alphabetic

Cased B I Characters which are cased; in other words, they have cas
mappings to characters other than themselves. This prop
not identical to the value of the isCased(X) function for De
Case Detection. For more information, see D120 and D12
Section 3.13, "Default Case Algorithms" in [Unicode].

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

17 of 50 4/13/2009 11:56 AM

Generated from: Lowercase + Uppercase + Lt

Case_Ignorable B I Characters which are ignored for casing purposes. For mo
information, see D121 in Section 3.13, "Default Case
Algorithms" in [Unicode].

Generated from: Mn + Me + Cf + Lm + Sk +
Word_Break=MidLetter

Default_Ignorable_Code_Point B N For programmatic determination of default ignorable cod
points. New characters that should be ignored in renderin
(unless explicitly supported) will be assigned in these ran
permitting programs to correctly handle the default rende
of such characters when not otherwise supported. For mo
information, see the FAQ Display of Unsupported Charact
and Section 5.21, "Default Ignorable Code Points" in [Unic

Generated from
Other_Default_Ignorable_Code_Point
+ Cf (format characters)
+ Variation_Selector
- White_Space
- FFF9..FFFB (annotation characters)
- 0600..0603, 06DD, 070F (exceptional Cf characters tha
should be visible)

Lowercase B I Characters with the Lowercase property. For more informa
see Chapter 4 in [Unicode].

Generated from: Ll + Other_Lowercase

Grapheme_Base B I For programmatic determination of grapheme cluster
boundaries. For more information, see UAX #29: Unicode
Segmentation [UAX29].

Generated from: [0..10FFFF] - Cc - Cf - Cs - Co - Cn - Zl
- Grapheme_Extend

Grapheme_Extend B I For programmatic determination of grapheme cluster
boundaries. For more information, see UAX #29: Unicode
Segmentation [UAX29].

Generated from: Me + Mn + Other_Grapheme_Extend

Note: Depending on an application's interpretation of Co
(private use), they may be either in Grapheme_Base, or in
Grapheme_Extend, or in neither.

Grapheme_Link B I Deprecated property, formerly proposed for programmati
determination of grapheme cluster boundaries.

Generated from: Canonical_Combining_Class=Virama

ID_Start B I Used to determine programming identifiers, as described
ID_Continue B I

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

18 of 50 4/13/2009 11:56 AM

UAX #31: Unicode Identifier and Pattern Syntax [UAX31].
Math B I Characters with the Math property. For more information,

Chapter 4 in [Unicode].

Generated from: Sm + Other_Math

Uppercase B I Characters with the Uppercase property. For more inform
see Chapter 4 in [Unicode].

Generated from: Lu + Other_Uppercase

XID_Start B I Used to determine programming identifiers, as described
UAX #31: Unicode Identifier and Pattern Syntax [UAX31].XID_Continue B I

DerivedNormalizationProps.txt
Full_Composition_Exclusion B N Characters that are excluded from composition: those list

explicitly in CompositionExclusions.txt, plus the derivable
of Singleton Decompositions and Non-Starter Decomposi
as documented in that data file.

Expands_On_NFC
Expands_On_NFD
Expands_On_NFKC
Expands_On_NFKD

B N Characters that expand to more than one character in the
specified normalization form.

FC_NFKC_Closure S N Characters that require extra mappings for closure under
Folding plus Normalization Form KC. Characters marked w
this property have a third field with the mapping in it.

Generated with the following, where Fold is defined as the
default fold operation (excluding the Turkic-specific foldi
b = NFKC(Fold(a));
c = NFKC(Fold(b));
if (c != b) add mapping from a to c
to the set of mappings that constitute the FC_NFKC_Closur

Note: The FC_NFKC_Closure value is omitted in the data f
it is the same as the code point itself.

NFD_Quick_Check
NFKD_Quick_Check
NFC_Quick_Check
NFKC_Quick_Check

E N For property values, see Decompositions and Normalizati
(Abbreviated names: NFD_QC, NFKD_QC, NFC_QC, NFKC_

NFKC_And_Casefolded B I Characters which are identical to the NFKC normalization
of their case folding. This property is used in XXX. For mo
information, see DXXX in Section 3.13, "Default Case
Algorithms" in [Unicode].

Generated from: (cp = NFKC(toCaseFold(NFKC(cp)))

Definition needs more checking.

PropList.txt
ASCII_Hex_Digit B N ASCII characters commonly used for the representation of

hexadecimal numbers.
Bidi_Control B N Format control characters which have specific functions in

Unicode Bidirectional Algorithm [UAX9].

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

19 of 50 4/13/2009 11:56 AM

Dash B I Punctuation characters explicitly called out as dashes in t
Unicode Standard, plus their compatibility equivalents. Mo
these have the General_Category value Pd, but some have
General_Category value Sm because of their use in
mathematics.

Deprecated B N For a machine-readable list of deprecated characters. No
characters will ever be removed from the standard, but th
usage of deprecated characters is strongly discouraged.

Diacritic B I Characters that linguistically modify the meaning of anoth
character to which they apply. Some diacritics are not
combining characters, and some combining characters ar
diacritics.

Extender B I Characters whose principal function is to extend the value
shape of a preceding alphabetic character. Typical of thes
length and iteration marks.

Hex_Digit B I Characters commonly used for the representation of
hexadecimal numbers, plus their compatibility equivalent

Hyphen (Stabilized as of 3.2) B I Dashes which are used to mark connections between piec
words, plus the Katakana middle dot. The Katakana midd
functions like a hyphen, but is shaped like a dot rather th
dash.

Ideographic B I Characters considered to be CJKV (Chinese, Japanese, Kor
and Vietnamese) ideographs.

IDS_Binary_Operator B N Used in Ideographic Description Sequences.
IDS_Trinary_Operator B N Used in Ideographic Description Sequences.
Join_Control B N Format control characters which have specific functions fo

control of cursive joining and ligation.
Logical_Order_Exception B N There are a small number of characters that do not use lo

order. These characters require special handling in most
processing.

Noncharacter_Code_Point B N Code points permanently reserved for internal use.
Other_Alphabetic B C Used in deriving the Alphabetic property.
Other_Default_Ignorable_Code_Point B C Used in deriving the Default_Ignorable_Code_Point proper
Other_Grapheme_Extend B C Used in deriving the Grapheme_Extend property.
Other_ID_Continue B C Used for backward compatibility of ID_Continue.
Other_ID_Start B C Used for backward compatibility of ID_Start.
Other_Lowercase B C Used in deriving the Lowercase property.
Other_Math B C Used in deriving the Math property.
Other_Uppercase B C Used in deriving the Uppercase property.
Pattern_Syntax B N Used for pattern syntax as described in UAX #31: Unicode

Identifier and Pattern Syntax [UAX31].Pattern_White_Space B N
Quotation_Mark B I Punctuation characters that function as quotation marks.
Radical B N Used in Ideographic Description Sequences.
Soft_Dotted B N Characters with a "soft dot", like i or j. An accent placed o

these characters causes the dot to disappear. An explicit
above can be added where required, such as in Lithuanian

STerm B I Sentence Terminal. Used in UAX #29: Unicode Text
Segmentation [UAX29].

Terminal_Punctuation B I Punctuation characters that generally mark the end of tex
units.

Unified_Ideograph B N Used in Ideographic Description Sequences.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

20 of 50 4/13/2009 11:56 AM

Variation_Selector B N Indicates characters that are Variation Selectors. For detai
the behavior of these characters, see
StandardizedVariants.html, Section 16.4, "Variation Select
in [Unicode], and the Unicode Ideographic Variation Datab
[UTS37].

White_Space B N Separator characters and control characters which should
treated by programming languages as "white space" for th
purpose of parsing elements.

Note: ZERO WIDTH SPACE and ZERO WIDTH NO-BREAK SP
are not included, because their functions are restricted to
line-break control. Their names are unfortunately mislead
in this respect.

Note: There are other senses of "whitespace" that encomp
different set of characters.

UnicodeData.txt
Name (<none>) M N (1) These names match exactly the names published in th

code charts of the Unicode Standard. The derived Hangul
Syllable names are omitted from this file; see Jamo.txt for
derivation.

General_Category (Cn) E N (2) This is a useful breakdown into various character type
which can be used as a default categorization in
implementations. For the property values, see General
Category Values.

Canonical_Combining_Class (0) N N (3) The classes used for the Canonical Ordering Algorithm
the Unicode Standard. This property could be considered
an enumerated property or a numeric property: the princi
use of the property is in terms of the numeric values. For
property value names associated with different numeric v
see DerivedCombiningClass.txt and Canonical Combining
Class Values.

Bidi_Class (L, AL, R) E N (4) These are the categories required by the Unicode
Bidirectional Algorithm. For the property values, see
Bidirectional Class Values. For more information, see UAX
The Unicode Bidirectional Algorithm [UAX9].

The default property values depend on the code point, an
given explained in DerivedBidiClass.txt

Decomposition_Type (None)
Decomposition_Mapping (<code
point>)

E
S

N (5) This field contains both values, with the type in angle
brackets. The decomposition mappings exactly match the
decomposition mappings published with the character na
in the Unicode Standard. For more information, see Chara
Decomposition Mappings.

Note: The decomposition mapping is omitted in the data
the decomposition mapping is the same as the code poin
itself.

Numeric_Type (None)
Numeric_Value (NaN)

E
N

N (6) If the character h
in Chapter 4 in [Unic
Numeric_Type=Deci
is represented with a

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

21 of 50 4/13/2009 11:56 AM

the discussion of decimal digits in Chapter 4 in [Unicode]
E
N

N (7) If the character has the digit property, but is not a dec
digit property value Numeric_Type=Digit, then the
Numeric_Value of that digit is represented with an intege
value in fields 7 and 8, and field 6 is null. This covers dig
that need special handling, such as the compatibility
superscript digits.

E
N

N (8) If the character has the numeric property, as specified
Chapter 4 in [Unicode], the property value
Numeric_Type=Numeric, then the Numeric_Value of that
character is represented with a positive or negative intege
rational number in this field, and fields 6 and 7 are null. T
includes fractions such as, for example, "1/5" for U+2155
VULGAR FRACTION ONE FIFTH.

Some characters have these properties based on values fr
the Unihan.txt data file. See Numeric_Type, Han.

Bidi_Mirrored (N) B N (9) If the character is a "mirrored" character in bidirectiona
text, this field has the value "Y"; otherwise "N". See Sectio
"Bidi Mirrored—Normative" of [Unicode]. Do not confuse t
with the Bidi_Mirroring_Glyph property.

Unicode_1_Name (<none>) M I (10) Old name as published in Unicode 1.0. This name is
provided when it is significantly different from the curren
name for the character. The value of field 10 for control
characters does not always match the Unicode 1.0 names
Instead, field 10 contains ISO 6429 names for control
functions, for printing in the code charts.

ISO_Comment (<none>) M I (11) ISO 10646 comment field. It appears in parentheses
10646 names list, or contains an asterisk to mark an Ann
note.

Simple_Uppercase_Mapping
(<code point>)

S N (12) Simple uppercase mapping (single character result).
If a character is part of an alphabet with case distinctions
has a simple uppercase equivalent, then the uppercase
equivalent is in this field. The simple mappings have a sin
character result, where the full mappings may have
multi-character results. For more information, see Case a
Case Mapping.

Note: The simple uppercase is omitted in the data file if t
uppercase is the same as the code point itself.

Simple_Lowercase_Mapping
(<code point>)

S N (13) Simple lowercase mapping (single character result).

Note: The simple lowercase is omitted in the data file if th
lowercase is the same as the code point itself.

Simple_Titlecase_Mapping
(<code point>)

S N (14) Simple titlecase mapping (single character result).

Note: The simple titlecase may be omitted in the data file
the titlecase is the same as the uppercase. If this field is n
then the Simple_Titlecase_Mapping is the same as the
Simple_Uppercase_Mapping for this character.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

22 of 50 4/13/2009 11:56 AM

5.2 Derived Extracted Properties

A number of Unicode character properties have been separated out, reformatted, and listed in range
format, one property per file. These files are located under the extracted directory of the UCD. The
exact list of derived extracted files and the extracted properties they represent are given in the
Extracted Properties table below Table 7.

The derived extracted files are provided purely as a reformatting of data for properties specified in
other data files. In case of any inadvertant mismatch between the primary data files specifying those
properties and these lists of extracted properties, the primary data files are taken as definitive.

Table 7. Extracted Properties

File Status Property Extracted from
DerivedBidiClass.txt N Bidi_Class UnicodeData.txt, field 4
DerivedBinaryProperties.txt N Bidi_Mirrored UnicodeData.txt, field 9
DerivedCombiningClass.txt N Canonical_Combining_Class UnicodeData.txt, field 3
DerivedDecompositionType.txt N/I Decomposition_Type the <tag> in

UnicodeData.txt, field 5
DerivedEastAsianWidth.txt I East_Asian_Width EastAsianWidth.txt, field 1
DerivedGeneralCategory.txt N General_Category UnicodeData.txt, field 2
DerivedJoiningGroup.txt N Joining_Group ArabicShaping.txt, field 2
DerivedJoiningType.txt N Joining_Type ArabicShaping.txt, field 1
DerivedLineBreak.txt N Line_Break LineBreak.txt, field 1
DerivedNumericType.txt N Numeric_Type UnicodeData.txt, fields 6

through 8
DerivedNumericValues.txt N Numeric_Value UnicodeData.txt, field 8

For the extraction of Decomposition_Type, characters with canonical decomposition mappings in field
5 of UnicodeData.txt have no tag. For those characters, the extracted value is
Decomposition_Type=Canonical. For characters with compatibility decomposition mappings, there are
explicit tags in field 5, and the value of Decomposition_Type is equivalent to those tags. The value
Decomposition_Type=Canonical is normative. Other values for Decomposition_Type are informative.

Numeric_Value is extracted based on the actual numeric value of the data in field 8 of UnicodeData.txt.

Numeric_Type is extracted as follows. If fields 6, 7, and 8 in UnicodeData.txt are all non-empty, then
Numeric_Type=Decimal. Otherwise, if fields 7 and 8 are both non-empty, then Numeric_Type=Digit.
Otherwise, if field 8 is non-empty, then Numeric_Type=Numeric. The default value is
Numeric_Type=None.

5.3 Property Summary

The following table Table 8
provides a summary list of the Unicode character properties, excluding most of those specific to
Unihan.txt. The properties are roughly organized into groups based on their usage. This grouping is
primarily for documentation convenience and except for contributory properties, has no normative
implications. The link on each property leads its description in the Property Table above.

Table 8. Property Summary Table

General Normalization CJK
Name Canonical_Combining_Class Ideographic
Name_Alias Decomposition_Mapping Unified_Ideograph
Block Composition_Exclusion Radical
Age Full_Composition_Exclusion IDS_Binary_Operator

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

23 of 50 4/13/2009 11:56 AM

General_Category Decomposition_Type IDS_Trinary_Operator
Script FC_NFKC_Closure Unicode_Radical_Stroke
White_Space NFC_Quick_Check Miscellaneous
Alphabetic NFKC_Quick_Check Math
Hangul_Syllable_Type NFD_Quick_Check Quotation_Mark
Noncharacter_Code_Point NFKD_Quick_Check Dash
Default_Ignorable_Code_Point Expands_On_NFC Hyphen
Deprecated Expands_On_NFD STerm
Logical_Order_Exception Expands_On_NFKC Terminal_Punctuation
Variation_Selector Expands_On_NFKD Diacritic
Case Shaping and Rendering Extender
Uppercase Join_Control Grapheme_Base
Lowercase Joining_Group Grapheme_Extend
Lowercase_Mapping Joining_Type Grapheme_Link (deprecated)
Titlecase_Mapping Line_Break Unicode_1_Name
Uppercase_Mapping Grapheme_Cluster_Break ISO_Comment
Case_Folding Sentence_Break Contributory Properties
Simple_Lowercase_Mapping Word_Break Other_Alphabetic
Simple_Titlecase_Mapping East_Asian_Width Other_Default_Ignorable_Code_Point
Simple_Uppercase_Mapping Bidirectional Other_Grapheme_Extend
Simple_Case_Folding Bidi_Class Other_ID_Start
Soft_Dotted Bidi_Control Other_ID_Continue
Cased
Case_Ignorable
NFKC_And_Casefolded
Identifiers Bidi_Mirrored Other_Lowercase
ID_Continue Bidi_Mirroring_Glyph Other_Math
ID_Start Numeric Other_Uppercase
XID_Continue Numeric_Value Jamo_Short_Name
XID_Start Numeric_Type
Pattern_Syntax Hex_Digit
Pattern_White_Space ASCII_Hex_Digit

5.3.1 Contributory Properties

Contributory properties contain sets of exceptions used in the generation of other properties derived
from them. The contributory properties specifically concerned with identifiers and casing contribute to
the maintenance of stability guarantees for properties and/or to invariance relationships between
related properties. Other contributory properties are simply defined as a convenience for property
derivation.

Most contributory properties have names using the pattern "Other_XXX" and are used to derive the
corresponding "XXX" property. For example, the Other_Alphabetic property is used in the derivation of
the Alphabetic property.

Contributory properties are typically defined in PropList.txt and the corresponding derived property is
then listed in DerivedCoreProperties.txt.

Jamo_Short_Name
is an unusual contributory property, both in terms of its name and how it is used. It is defined in its own

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

24 of 50 4/13/2009 11:56 AM

property file, Jamo.txt, and is used to derive the Name property value for Hangul syllable characters,
according to the rules spelled out in Section 3.12, "Conjoining Jamo Behavior" in [Unicode].

Contributory
is considered to be a distinct status for a Unicode character property. Contributory properties are
neither normative nor informative. This distinct status is marked in the property table.

Contributory properties are incomplete by themselves and are not intended for independent use. For
example, an API returning Unicode property values should implement the derived core properties such
as Alphabetic or Default_Ignorable_Code_Point, rather than the corresponding contributory properties,
Other_Alphabetic or Other_Default_Ignorable_Code_Point.

5.4 Case and Case Mapping

Case for bicameral scripts and case mapping of characters are complicated topics in the Unicode
Standard—both because of their inherent algorithmic complexity and because of the number of
characters and special edge cases involved.

This section provides a brief roadmap to discussions about these topics, and specifications and
definitions in the standard, as well as explaining which case-related properties are defined in the UCD.

Section 3.13, "Default Case Algorithms" in [Unicode] provides formal definitions for a number of
case-related concepts (cased, case-ignorable, ...), for case conversion (toUppercase(X), ...), and for
case detection (isUppercase(X), ...). It also provides the formal definition of caseless matching for the
standard, taking normalization into account.

Section 4.2, "Case—Normative", in [Unicode] introduces case and case mapping properties. Table 4-1,
"Sources for Case Mapping Information", in [Unicode describes the kind of case-related information
that is available in various data files of the UCD. The table below Table 9 lists those data files again,
giving the explicit list of case-related properties defined in each. The link on each property leads its
description in the Property Table above.

Table 9. UCD Files and Case Properties

File Name Case Properties
UnicodeData.txt Simple_Uppercase_Mapping, Simple_Lowercase_Mapping,

Simple_Titlecase_Mapping
SpecialCasing.txt Uppercase_Mapping, Lowercase_Mapping, Titlecase_Mapping
CaseFolding.txt Simple_Case_Folding, Case_Folding
DerivedCoreProperties.txt Uppercase, Lowercase, Cased, Case_Ignorable
DerivedNormalizationProps.txt NFKC_And_Casefolded
PropList.txt Soft_Dotted, Other_Uppercase, Other_Lowercase

For compatibility with existing parsers, UnicodeData.txt only contains case mappings for characters
where they constitute one-to-one mappings; it also omits information about context-sensitive case
mappings. Information about these special cases can be found in the separate data file,
SpecialCasing.txt, expressed as separate properties.

Section 5.18, "Case Mappings", in [Unicode] discusses various implementation issues for handling
case, including language-specific case mapping, as for Greek and for Turkish. That section also
describes case folding in particular detail.

The special casing conditions associated with case mapping for Greek, Turkish, and Lithuanian are
specified in an additional field in SpecialCasing.txt. For example, the lowercase mapping for sigma in
Greek varies according to its position in a word. The condition list does not constitute a formal
character property in the UCD, because it is a statement about the context of occurrence of casing
behavior for a character or characters, rather than a semantic attribute of those characters. Note that
Versions of the UCD from Version 3.2.0 to Version 5.0.0 did list property aliases for
Special_Case_Condition (scc), but this was determined to be an error when the UCD was analyzed for

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

25 of 50 4/13/2009 11:56 AM

representation in XML; consequently, the Special_Case_Condition property aliases were removed as
of Version 5.1.0.

Caseless matching is of particular concern for a number of text processing algorithms, so is also
discussed at some length in UAX #31: Unicode Identifier and Pattern Syntax [UAX31] and in UTS #10:
Unicode Collation Algorithm [UTS10].

Further information about locale-specific casing conventions can be found in the Unicode Common
Locale Data Repository [CLDR].

5.5 Property Value Lists

The following subsections give summaries of property values for certain Enumeration properties. Other
property values are documented in other, topically-specific annexes; for example, the Line_Break
property values are documented in UAX #14: Unicode Line Breaking Algorithm [UAX14] and the
various segmentation-related property values are documented in UAX #29: Unicode Text
Segmentation [UAX29].

5.5.1 General Category Values

The General_Category property of a code point provides for the most general classification of that code
point. It is usually determined based on the primary characteristic of the assigned character for that
code point. For example, is the character a letter, a mark, a number, punctuation, or a symbol, and if
so, of what type? Other General_Category values define the classification of code points which are not
assigned to regular graphic characters, including such statuses as private-use, control, surrogate code
point, and reserved unassigned.

Many characters have multiple uses, and not all such cases can be captured entirely by the
General_Category value. For example, the General_Category value of Latin, Greek, or Hebrew letters
does not attempt to cover (or preclude) the numerical use of such letters as Roman numerals or in
other numerary systems. Conversely, the General_Category of ASCII digits 0..9 as Nd (decimal digit)
neither attempts to cover (or preclude) the occasional use of these digits as letters in various
orthographies. The General_Category is simply the first-order, most usual categorization of a
character.

For more information about the General_Category property, see Chapter 4 in [Unicode].

The values in the General_Category field in UnicodeData.txt make use of the short, abbreviated
property value aliases for General_Category. For convenience in reference, the General_Category
Values table below Table 10
lists all the abbreviated and long value aliases for General_Category values, reproduced from
PropertyValueAliases.txt, along with a brief description of each category.

Table 10. General_Category Values

Abbr Long Description
Lu Uppercase_Letter an uppercase letter
Ll Lowercase_Letter a lowercase letter
Lt Titlecase_Letter a digraphic character, with first part uppercase
Lm Modifier_Letter a modifier letter
Lo Other_Letter other letters, including syllables and ideographs
Mn Nonspacing_Mark a nonspacing combining mark (zero advance width)
Mc Spacing_Mark a spacing combining mark (positive advance width)
Me Enclosing_Mark an enclosing combining mark
Nd Decimal_Number a decimal digit
Nl Letter_Number a letterlike numeric character
No Other_Number a numeric character of other type
Pc Connector_Punctuation a connecting punctuation mark, like a tie

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

26 of 50 4/13/2009 11:56 AM

Pd Dash_Punctuation a dash or hyphen punctuation mark
Ps Open_Punctuation an opening punctuation mark (of a pair)
Pe Close_Punctuation a closing punctuation mark (of a pair)
Pi Initial_Punctuation an initial quotation mark
Pf Final_Punctuation a final quotation mark
Po Other_Punctuation a punctuation mark of other type
Sm Math_Symbol a symbol of primarily mathematical use
Sc Currency_Symbol a currency sign
Sk Modifier_Symbol a non-letterlike modifier symbol
So Other_Symbol a symbol of other type
Zs Space_Separator a space character (of various non-zero widths)
Zl Line_Separator U+2028 LINE SEPARATOR only
Zp Paragraph_Separator U+2029 PARAGRAPH SEPARATOR only
Cc Control a C0 or C1 control code
Cf Format a format control character
Cs Surrogate a surrogate code point
Co Private_Use a private-use character
Cn Unassigned a reserved unassigned code point or a noncharacter

Note that the value gc=Cn does not actually occur in UnicodeData.txt, because that data file does not
list unassigned code points.

Characters with the quotation-related General_Category values Pi or Pf may behave like opening
punctuation (gc=Ps) or closing punctuation (gc=Pe), depending on usage and quotation conventions.

The symbol "L&" is used to stand for any combination of uppercase, lowercase or titlecase letters (Lu,
Ll, or Lt), in the first part of comments in the data files. The LC value for the General_Category
property, as documented in PropertyValueAliases.txt also stands for uppercase, lowercase or titlecase
letters.

The Unicode Standard does not assign non-default property values to control characters (gc=Cc),
except for certain well-defined exceptions involving the Unicode Bidirectional Algorithm, the Unicode
Line Breaking Algorithm, and Unicode Text Segmentation. Also, implementations will usually assign
behavior to certain line breaking control characters—most notably U+000D and U+000A (CR and
LF)—according to platform conventions. See Section 5.8, "Newline Guidelines" in [Unicode] for more
information.

5.5.2 Bidirectional Class Values

The values in the Bidi_Class field in UnicodeData.txt make use of the short, abbreviated property value
aliases for Bidi_Class. For convenience in reference, the Bidi_Class Values table below Table 11 lists
all the abbreviated and long value aliases for Bidi_Class values, reproduced from
PropertyValueAliases.txt, along with a brief description of each category.

Table 11. Bidi_Class Values

Abbr Long Description
L Left_To_Right any strong left-to-right character
LRE Left_To_Right_Embedding U+202A: the LR embedding control
LRO Left_To_Right_Override U+202D: the LR override control
R Right_To_Left any strong right-to-left (non-Arabic-type) character
AL Arabic_Letter any strong right-to-left (Arabic-type) character
RLE Right_To_Left_Embedding U+202B: the RL embedding control
RLO Right_To_Left_Override U+202E: the RL override control

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

27 of 50 4/13/2009 11:56 AM

PDF Pop_Directional_Format U+202C: terminates an embedding or override control
EN European_Number any ASCII digit or Eastern Arabic-Indic digit
ES European_Separator plus and minus signs
ET European_Terminator a terminator in a numeric format context, includes currency

signs
AN Arabic_Number any Arabic-Indic digit
CS Common_Separator commas, colons, and slashes
NSM Nonspacing_Mark any nonspacing mark
BN Boundary_Neutral most format characters, control codes, or noncharacters
B Paragraph_Separator various newline characters
S Segment_Separator various segment-related control codes
WS White_Space spaces
ON Other_Neutral most other symbols and punctuation marks

Please refer to UAX #9: The Unicode Bidirectional Algorithm [UAX9] for an an explanation of the
significance of these values when formatting bidirectional text.

5.5.3 Character Decomposition Mapping

The value of the Decomposition_Mapping property for a character is provided in field 5 of
UnicodeData.txt. This is a string property, consisting of a sequence of one or more Unicode code
points. The default value of the Decomposition_Mapping property is the code point of the character
itself. The use of the default value for a character is indicated by leaving field 5 empty in
UnicodeData.txt. Informally, the value of the Decomposition_Mapping property for a character is known
simply as its decomposition mapping. When a character's decomposition mapping is other than the
default value, the decomposition mapping is printed out explicitly in the names list for the Unicode code
charts.

The prefixed tags supplied with a subset of the decomposition mappings generally indicate formatting
information. Where no such tag is given, the mapping is canonical. Conversely, the presence of a
formatting tag also indicates that the mapping is a compatibility mapping and not a canonical mapping.
In the absence of other formatting information in a compatibility mapping, the tag is used to distinguish
it from canonical mappings.

In some instances a canonical mapping or a compatibility mapping may consist of a single character.
For a canonical mapping, this indicates that the character is a canonical equivalent of another single
character. For a compatibility mapping, this indicates that the character is a compatibility equivalent of
another single character.

The compatibility formatting tags used in the UCD are listed in the table below: Table 12.

Table 12. Compatibility Formatting Tags

Tag Description
 Font variant (for example, a blackletter form)
<noBreak> No-break version of a space or hyphen
<initial> Initial presentation form (Arabic)
<medial> Medial presentation form (Arabic)
<final> Final presentation form (Arabic)
<isolated> Isolated presentation form (Arabic)
<circle> Encircled form
<super> Superscript form
<sub> Subscript form
<vertical> Vertical layout presentation form

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

28 of 50 4/13/2009 11:56 AM

<wide> Wide (or zenkaku) compatibility character
<narrow> Narrow (or hankaku) compatibility character
<small> Small variant form (CNS compatibility)
<square> CJK squared font variant
<fraction> Vulgar fraction form
<compat> Otherwise unspecified compatibility character

Note:
There is a difference between decomposition and the Decomposition_Mapping property. The
Decomposition_Mapping property is a string property whose values (mappings) are defined in
UnicodeData.txt, while the decomposition (also termed "full decomposition") is defined in Section 3.7,
"Decomposition" in [Unicode] to use those mappings recursively.

The canonical decomposition is formed by recursively applying the canonical mappings, then
applying the Canonical Ordering Algorithm.

The compatibility decomposition is formed by recursively applying the canonical and compatibility
mappings, then applying the Canonical Ordering Algorithm.

Starting from Unicode 2.1.9, the decomposition mappings in UnicodeData.txt can be used to derive the
full decomposition of any single character in canonical order, without the need to separately apply the
Canonical Ordering Algorithm. However, canonical ordering of combining character sequences must
still be applied in decomposition when normalizing source text which contains any combining marks.

The normalization of Hangul conjoining jamos and of Hangul syllables depends on algorithmic
mapping, as specified in Section 3.12, "Conjoining Jamo Behavior" in [Unicode]. That algorithm
specifies the full decomposition of all precomposed Hangul syllables, but effectively it is equivalent to
the recursive application of pairwise decomposition mappings, as for all other Unicode characters.
Formally, the Decomposition_Mapping property value for a Hangul syllable is the pairwise
decomposition and not the full decomposition.

Each character with the Hangul_Syllable_Type value LVT will have a Decomposition_Mapping
consisting of a character with an LV value and a character with a T value. Thus for U+CE31 the
Decomposition_Mapping is <U+CE20, U+11B8>, rather than <U+110E, U+1173, U+11B8>.

5.5.4 Canonical Combining Class Values

The values in the Canonical_Combining_Class field in UnicodeData.txt are numerical values used in
the Canonical Ordering Algorithm. Some of those numerical values also have explicit symbolic labels
as property value aliases, to make their intended application more understandable. For convenience in
reference, the Canonical_Combining_Class Values table below Table 13 lists all the long symbolic
aliases for Canonical_Combining_Class values, reproduced from PropertyValueAliases.txt, along with
a brief description of each category.

Table 13. Canonical_Combining_Class Values

Value Long Description
0 Not_Reordered Spacing and enclosing marks; also many vowel and consonant

signs, even if nonspacing
1 Overlay Marks which overlay a base letter or symbol
7 Nukta Diacritic nukta marks in Brahmi-derived scripts
8 Kana_Voicing Hiragana/Katakana voicing marks
9 Virama Viramas
10 Start of fixed position classes
199 End of fixed position classes
200 Attached_Below_Left Marks attached at the bottom left
202 Attached_Below Marks attached directly below

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

29 of 50 4/13/2009 11:56 AM

204 Marks attached at the top right
208 Marks attached to the left
210 Marks attached to the right
212 Marks attached at the top left
214 Marks attached directly above
216 Attached_Above_Right Marks attached at the top right
218 Below_Left Distinct marks at the bottom left
220 Below Distinct marks directly below
222 Below_Right Distinct marks at the bottom right
224 Left Distinct marks to the left
226 Right Distinct marks to the right
228 Above_Left Distinct marks at the top left
230 Above Distinct marks directly above
232 Above_Right Distinct marks at the top right
233 Double_Below Distinct marks subtending two bases
234 Double_Above Distinct marks extending above two bases
240 Iota_Subscript Greek iota subscript only

Some of the Canonical_Combining_Class values in the table are not currently used for any characters
but are specified here for completeness. Some values do not have long symbolic aliases, but these two
sets are not congruent. Do not assume that absence of a long symbolic alias implies non-use of a
particular Canonical_Combining_Class. See DerivedCombiningClass.txt for a complete listing of the
use of Canonical_Combining_Class values for any particular version of the UCD.

Combining marks with ccc=224 (Left) follow their base character in storage, as for all combining marks,
but are rendered visually on the left side of them. Note that For all past versions of the UCD and
continuing with this version of the UCD, only two tone marks used in certain notations for Hangul
syllables have ccc=224. Those marks are actually rendered visually on the left side of the preceding
grapheme cluster, in the case of Hangul syllables resulting from sequences of conjoining jamos.

Those few instances of combining marks with ccc=Left should be distinguished from the far more
numerous examples of left-side vowel signs and vowel letters in Brahmi-derived scripts. The
Canonical_Combining_Class value is zero (Not_Reordered) for both ordinary, left-side (reordrant)
vowel signs such as U+093F DEVANAGARI VOWEL SIGN I and for Thai-style left-side
(Logical_Order_Exception=Yes) vowel letters such as U+0E40 THAI CHARACTER SARA E. The
"Not_Reordered" of ccc=Not_Reordered refers to the behavior of the character in terms of the
Canonical Ordering Algorithm as part of the definition of Unicode Normalization; it does not refer to any
issues of visual reordering of glyphs involved in display and rendering. See Section 3.11, "Canonical
Ordering Behavior" in [Unicode].

5.5.5 Decompositions and Normalization

Decomposition is specified in Chapter 3, Conformance of [Unicode]. UAX #15, Unicode Normalization
Forms [UAX15] specifies the interaction between decomposition and normalization. That annex
specifies how the decompositions defined in UnicodeData.txt are used to derive normalized forms of
Unicode text.

A number of derived properties related to Unicode normalization are called the "Quick_Check"
properties. These are defined to enable various optimizations for implementations of normalization, as
explained in Section 14, "Detecting Normalization Forms", in UAX #15, Unicode Normalization Forms
[UAX15]. The values for the four Quick_Check properties for all code points are listed in
DerivedNormalizationProps.txt. The interpretations of the possible property values are summarized in
the table below: Table 14.

Table 14. Quick_Check Property Values

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

30 of 50 4/13/2009 11:56 AM

Property Value Description
NFC_QC, NFKC_QC,
NFD_QC, NFKD_QC

No Characters that cannot ever occur in the respective
normalization form.

NFC_QC, NFKC_QC Maybe Characters that may occur in the respective
normalization, depending on the context.

NFC_QC, NFKC_QC,
NFD_QC, NFKD_QC

Yes All other characters. This is the default value for
Quick_Check properties.

5.6 Property and Property Value Aliases

Both Unicode character properties themselves and their values are given symbolic aliases. The formal
lists of aliases are provided so that well-defined symbolic values are available for XML formats of the
UCD data, for regular expression property tests, and for other programmatic textual descriptions of
Unicode data. The aliases for properties are defined in PropertyAliases.txt. The aliases for property
values are defined in PropertyValueAliases.txt.

Table 15. Alias Files in the UCD

File Name Status Description
PropertyAliases.txt N Names and abbreviations for properties
PropertyValueAliases.txt N Names and abbreviations for property values

Aliases are defined as ASCII-compatible identifiers, using only uppercase or lowercase A-Z, digits, and
underscore "_". Case is not significant when comparing aliases, but the preferred form used in the data
files for longer aliases is to titlecase them.

Aliases may be translated in appropriate environments, and additional aliases may be useful in certain
contexts. There is no requirement that only the aliases defined in the alias files of the UCD be used
when referring to Unicode character properties or their values; however, their use is recommended for
interoperability in data formats or in programmatic contexts.

5.6.1 Property Aliases

In PropertyAliases.txt, the first field specifies an abbreviated symbolic name for the property, and the
second field specifies the long symbolic name for the property. These are the preferred aliases.
Additional aliases for a few properties are specified in the third or subsequent fields.

Aliases for normative and informative properties defined in Unihan.txt are included in
PropertyAliases.txt, beginning with Version 5.2.

The long symbolic name alias is self-descriptive, and is treated as the official name of a Unicode
character property. For clarity it is used whenever possible when referring to that property in this annex
and elsewhere in the Unicode Standard. For example: "The Line_Break property is discussed in UAX
#14, Unicode Line Breaking Algorithm [UAX14]."

The abbreviated symbolic name alias is short and less mnemonic, but is useful for expressions such as
"lb=BA" in data or in other contexts where the meaning is clear.

The property aliases specified in PropertyAliases.txt constitute a unique name space. When using
these symbolic values, no alias for one property will match an alias for another property.

5.6.2 Property Value Aliases

In PropertyValueAliases.txt, the first field contains the abbreviated alias for a Unicode property, the
second field specifies an abbreviated symbolic name for a value of that property, and the third field
specifies the long symbolic name for that value of that property. These are the preferred aliases.
Additional aliases for some property values may be specified in the fourth or subsequent fields. For
example, for binary properties, the abbreviated alias for the True value is "Y", and the long alias is
"Yes", but each entry also specifies "T" and "True" as additional aliases for that value, as shown in the

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

31 of 50 4/13/2009 11:56 AM

table below: Table 16.

Table 16. Binary Property Value Aliases

Long Abbreviated Other Aliases
Yes Y True, T
No N False, F

Not every property value has an associated alias. Property value aliases are typically supplied for
catalog and enumeration properties, which have well-defined, enumerated values. It does not make
sense to specify property value aliases, for example, for the Numeric_Value property, whose value
could be any number, or for a string property such as Simple_Lowercase_Mapping, whose values are
mappings from one code point to another.

The Canonical_Combining_Class property requires special handling in PropertyValueAliases.txt. The
values of this property are numeric, but they comprise a closed, enumerated set of values. The more
important of those values are given symbolic name aliases. In PropertyValueAliases.txt, the second
field provides the numeric value, while the third field contains the abbreviated symbolic name alias and
the fourth field contains the long symbolic name alias for that numeric value. For example:

ccc; 230; A ; Above
ccc; 232; AR ; Above_Right

Taken by themselves, property value aliases do not constitute a unique name space. The abbreviated
aliases, in particular, are often re-used as aliases for values for different properties. All of the binary
property value aliases, for example, make use of the same "Y", "Yes", "T", "True" symbols. Property
value aliases may also overlap the symbols used for property aliases. For example, "Sc" is the
abbreviated alias for the "Currency_Symbol" value of the General_Category value, but it is also the
abbreviated alias for the Script property. However, the aliases for values for any single property are
always unique within the context of that property. What That means is that expressions that combine a
property alias and a property value alias, such as "lb=BA" or "gc=Sc" always refer unambiguously just
to one value of one given property, and will not match any other value of any other property.

The property value alias entries for three properties, Age, Block, and Joining_Group, make use of a
special metavalue "n/a" in the field for the abbreviated alias. This should be understood as meaning
that no abbreviated alias is defined for that value for that property, rather than as an alias per se.

In a few cases, because of longstanding legacy practice in referring to values of a property by short
identifiers, the abbreviated alias and the long alias are the same. This can be seen, for example, in
some property value aliases for the Line_Break property and the Grapheme_Cluster_Break property.

5.7 Matching Rules

When matching Unicode character property names and values, it is strongly recommended that all
Property and Property Value Aliases
be recognized. For best results in matching, rather than using exact binary comparisons, the following
loose matching rules should be observed.

Numeric Property Values

For all numeric properties, and for properties such as Unicode_Radical_Stroke which are constructed
from combinations of numeric values, use loose matching rule UAX44-LM1 when comparing property
values.

UAX44-LM1. Apply numeric equivalences.

"01.00" is equivalent to "1".
"1.666667" in the UCD is a repeating fraction, and equivalent to "10/6" or "5/3".

Character Names

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

32 of 50 4/13/2009 11:56 AM

Unicode character names constitute a special case. Formally, they are values of the Name property.
While each Unicode character name for an assigned character is guaranteed to be unique, names are
assigned in such a way that the presence or absence of spaces cannot be used to distinguish them.
Furthermore, implementations sometimes create identifiers from Unicode character names by inserting
underscores for spaces. For best results in comparing Unicode character names, use loose matching
rule UAX44-LM2.

UAX44-LM2.
Ignore case, whitespace, underscore ('_'), and all medial hyphens except the hyphen in U+1180
HANGUL JUNGSEONG O-E.

"zero-width space" is equivalent to "ZERO WIDTH SPACE" or "zerowidthspace"

"character -a" is not equivalent to "character a"

Symbolic Values

Property aliases and property value aliases are symbolic values. When comparing them, use loose
matching rule UAX44-LM3.

UAX44-LM3. Ignore case, whitespace, underscore ('_'), and hyphens.

"linebreak" is equivalent to "Line_Break" or "Line-break"
"lb=BA" is equivalent to "lb=ba" or "LB=BA"

Loose matching is generally appropriate for the property values of Catalog, Enumeration, and Binary
properties, which have symbolic aliases defined for their values. Loose matching should not be done
for the property values of String properties, which do not have symbolic aliases defined for their values;
exact matching for String property values is important, as case distinctions or other distinctions in those
values may be significant.

5.8 Invariants

Property values in the UCD may be subject to correction in subsequent versions of the standard, as
errors are found. Also, some multi-valued properties such as Line_Break or Word_Break may have
additional values defined for them. However, some property values and some aspects of the file
formats are considered invariant. This section documents such invariants.

5.8.1 Character Property Invariants

All formally guaranteed invariants for properties or property values are described in the Unicode
Character Encoding Stability Policy [Stability]. That policy and the list of invariants it enumerates are
maintained outside the context of the Unicode Standard per se. They are not part of the standard, but
rather are constraints on what can and cannot change in the standard between versions, and on what
decisions the Unicode Technical Committee can and cannot take regarding the standard.

In addition to the formally guaranteed invariants described in the Unicode Character Encoding Stability
Policy, this section notes a few additional points regarding character property invariants in the UCD.

Some character properties are simply considered immutable: once assigned, they are never changed.
For example, a character's name is immutable, because of its importance in exact identification of the
character. The Canonical_Combining_Class and Decomposition_Mapping of a character are
immutable, because of their important to the stability of the Unicode Normalization Algorithm [UAX15].

The list of immutable character properties is shown in the table below: Table 17.

Table 17. Immutable Properties

Property Name Abbr Name
Name na
Jamo_Short_Name jsn

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

33 of 50 4/13/2009 11:56 AM

Canonical_Combining_Class ccc
Decomposition_Mapping dm
Pattern_Syntax Pat_Syn
Pattern_White_Space Pat_WS

In some cases, a property is not immutable, but the list of possible values that it can have is considered
invariant. For example, while at least some General_Category values are subject to change and
correction, the enumerated set of possible values that the General_Category property can have is fixed
and cannot be added to in the future.

All characters other than those of General_Category M* are guaranteed to have
Canonical_Combining_Class=0. Currently it is also true that all characters other than those of
General_Category Mn have Canonical_Combining_Class=0. However, the more constrained
statement is not a guaranteed invariant; it is possible that some new character of General_Category
Me or Mc could be given a non-zero value for Canonical_Combining_Class in the future.

In Unicode 4.0 and thereafter, the General_Category value Decimal_Number (Nd), and the
Numeric_Type value Decimal
(de) are defined to be co-extensive; that is, the set of characters having General_Category=Nd will
always be the same as the set of characters having NumericType=de.

5.8.2 UCD File Format Invariants

There are also some constraints on allowable change in the file formats for UCD files. In general, the
file format conventions
are changed as little as possible, to minimize the impact on implementations which parse the
machine-readable data files. However, some of the constraints on allowable file format change go
beyond conservatism in format and instead have the status of invariants. These guarantees apply in
particular to UnicodeData.txt, the very first data file associated with the UCD.

The number and order of the fields in UnicodeData.txt is fixed. Any additional information about
character properties to be added to the UCD in the future will appear in separate data files, rather than
being added as an additional field to UnicodeData.txt or by reinterpretation of any of the existing fields.

5.8.3 Invariants in Implementations

Applications may wish to take the various character property and file format invariants into account
when choosing how to implement character properties.

The Canonical_Combining_Class offers a good example. The character property invariants regarding
Canonical_Combining_Class guarantee that values, once assigned, will never change, and that all
values used will be in the range 0..255. This means that the Canonical_Combining_Class can be safely
implemented in an unsigned byte and that any value stored in a table for an existing character will not
need to be updated dynamically for a later version.

In practice, for Canonical_Combining_Class far fewer than 256 values are used. Unicode 3.0 used 53
values; Unicode 3.1 through Unicode 4.1 used 54 values; and Unicode 5.0 through Unicode 5.1 used
55 values. New, non-zero Canonical_Combining_Class values are seldom added to the standard. (For
details about this history, see DerivedCombiningClass.txt.) Implementations may take advantage of this
fact for compression, because only the ordering of the non-zero values, and not their absolute values,
matters for the Canonical Ordering Algorithm. In principle, it would be possible for up to 256 values to
be used in the future, but the chances of the actual number of values exceeding 128 are remote at this
point. There are implementation advantages in restricting the number of internal class values to
128—for example, the ability to use signed bytes without implicit widening to ints in Java.

5.9 Validation

This section still needs more work. The table should be restructured. Two possibilities are to have a
complete list of all the properties, each with an explicit syntax specified for them (along the lines now
done in UAX #38 for the Unihan properties), or to refactor the discussion as follows: First provide a

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

34 of 50 4/13/2009 11:56 AM

section classifying the value domains for properties into pattern types, providing a table which lists all
the properties associated with each pattern type, and then give another table that shows the regex
used for each pattern type. That would be much easier both to understand and and to validate.

The table below appears to have errors and omissions in it still. Age is underspecified, and should be
done more tightly. The expression for Unicode_1_Name is probably too tight, by contrast. The
ISO_Comment field is incorrect. And the regex for the Block and the Script properties should not be the
same. There may be other problems, as well.

The property values for many of the Unicode character properties have a regular syntax that makes it
possible to validate the values in the UCD data files by means of regular expressions. Regular
expressions for a number of the Catalog, String and Miscellaneous type properties in the UCD are
provided in the table below Table 18. These expressions use Perl syntax, but may be of course be
converted to other formal conventions for use with other regular expression engines.

Table 18. Regular Expressions for Property Values

Abbr Name Regex for Allowable Values
age Age /([0-9]+\.[0-9]|unassigned)/
nv Numeric_Value /-?[0-9]+\.[0-9]+/ Field 2

/-?[0-9]+(\[0-9]+)?/ Field 3
blk Block /[a-zA-Z0-9]+([_\][a-zA-Z0-9]+)*/
sc Script
dm Decomposition_Mapping /[\x{0}-\x{10FFFF}]+/
FC_NFKC FC_NFKC_Closure
cf Case_Folding /[\x{0}-\x{10FFFF}]+/
lc Lowercase_Mapping
tc Titlecase_Mapping
uc Uppercase_Mapping
sfc Simple_Case_Folding /[\x{0}-\x{10FFFF}]/
slc Simple_Lowercase_Mapping
stc Simple_Titlecase_Mapping
suc Simple_Uppercase_Mapping
bmg Bidi_Mirroring_Glyph /[\x{0}-\x{10FFFF}]?/
isc ISO_Comment /([A-Z0-9]+(([-\]|\ -|-\

)[A-Z0-9]+)*|\<CONTROL\>)?/
na1 Unicode_1_Name /([A-Z0-9]+(([-\]|\ -|-\)[A-Z0-9]+)*(\

\((CR|FF|LF|NEL)\))?)?/
na Name /([A-Z0-9]+(([-\]|\ -|-\

)[A-Z0-9]+)*|\<CONTROL\>)?/
5.10 Deprecation

In the Unicode Standard, the term deprecation is used somewhat differently than it is in some other
standards. Deprecation is used to mean that a character or other feature is strongly discouraged from
use. This should not, however, be taken as indicating that anything has been removed from the
standard, nor that anything is planned for removal from the standard. Any such change is constrained
by the Unicode Consortium Stability Policies [Stability].

For the Unicode Character Database, there are two important types of deprecation to be noted. First,
an encoded character may be deprecated. Second, a character property may be deprecated.

When an encoded character is strongly discouraged from use, it is given the property value
Deprecated=True. The Deprecated
property is a binary property defined specifically to carry this information about Unicode characters.
Note that Very few characters are ever formally deprecated this way; it is not enough that a character

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

35 of 50 4/13/2009 11:56 AM

be uncommon, obsolete, disliked, or not preferred. Only those few characters which have been
determined by the UTC to have serious architectural defects or which have been determined to cause
significant implementation problems are ever deprecated. Note that Even in the most severe cases,
such as the deprecated format control characters (U+206A..U+206F), an encoded character is never
removed from the standard. Furthermore, although deprecated characters are strongly discouraged
from use, and should be avoided in favor of other, more appropriate mechanisms, they may occur in
data. Conformant implementations of Unicode processes such a Unicode normalization must handle
even deprecated characters correctly.

In the Unicode Character Database, a character property itself may also become strongly
discouraged—usually because it no longer serves the purpose it was originally defined for. In such
cases, the property is labelled "deprecated" in the Property Table. For example, see the
Grapheme_Link property.

6 Test Files

The UCD contains a number of test data files. Those provide data in standard formats which can be
used to test implementations of Unicode algorithms. The test data files distributed with this version of
the UCD are listed in the table below Table 19.

Table 19. Unicode Algorithm Test Data Files

File Name Specification Status Unicode Algorithm
NormalizationTest.txt [UAX15] N Unicode Normalization Algorithm
LineBreakTest.txt [UAX14] N Unicode Line Breaking Algorithm
GraphemeBreakTest.txt [UAX29] N Grapheme Cluster Boundary Determination
WordBreakTest.txt [UAX29] N Word Boundary Determination
SentenceBreakTest.txt [UAX29] N Sentence Boundary Determination

The normative status of these test files reflects their use to determine the correctness of
implementations claiming conformance to the respective algorithms listed in the table. There is no
requirement that any particular Unicode implementation also implement the Unicode Line Breaking
Algorithm, for example, but if
it implements that algorithm correctly, it should be able to replicate the test case results specified in the
data entries in LineBreakTest.txt.

6.1 NormalizationTest.txt

This file contains data which can be used to test an implementation of the Unicode Normalization
Algorithm. (See [UAX15].)

The data file has a Unicode string in the first field (which may consist of just a single code point). The
next four fields then specify the expected output results of converting that string to Unicode
Normalization Forms NFC, NFD, NFKC, and NFKD, respectively. There are many tricky edge cases
included in the input data, to ensure that implementations have correctly implemented some of the
more complex subtleties of the Unicode Normalization Algorithm.

The header section of NormalizationTest.txt provides additional information regarding the normalization
invariant relations that any conformant implementation should be able to replicate.

The Unicode Normalization Algorithm is not tailorable. Conformant implementations should be
expected to produce results as specified in NormalizationTest.txt and should not deviate from those
results.

6.2 Segmentation Test Files and Documentation

LineBreakTest.txt, located in the auxiliary directory of the UCD, contains data which can be used to test
an implementation of the Unicode Line Breaking Algorithm. (See [UAX14].) The header of that file
specifies the data format and the use of the test data to specify line break opportunities. Note that
non-ASCII characters are used in this test data as field delimiters.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

36 of 50 4/13/2009 11:56 AM

There is an associated documentation file, LineBreakTest.html, which displays the results of the Line
Breaking Algorithm in an interactive chart form, with a documented listing of the rules.

The Unicode text segmentation test data files are also located in the auxiliary directory of the UCD.
They contain data which can be used to test an implementation of the segmentation algorithms
specified in [UAX29]. The headers of those file specify the data format and the use of the test data to
specify text segmentation opportunities. Note that non-ASCII characters are used in this test data as
field delimiters.

There are also associated documentation files, which display the results of the segmentation
algorithms in an interactive chart form, with a documented listing of the rules:

GraphemeBreakTest.html

SentenceBreakTest.html
WordBreakTest.html

Unlike the Unicode Normalization Algorithm, the Unicode Line Breaking Algorithm and the various text
segmentation algorithms are tailorable, and there is every expectation that implementations will tailor
these algorithms to produce results as needed. The test data files only test the default behavior of the
algorithms. Testing of tailored implementations will need to modify and/or extend the test cases as
appropriate to match any documented tailoring.

7 UCD Change History

This section summarizes the changes to the UCD—including its documentation files—and is organized
by Unicode versions. The summary includes changes extending all the way back to Unicode 2.0.0,
taken from the obsoleted UCD.html documentation file, which predates the creation of this annex. The
intent is for this first consolidated version of the annex to preserve that complete prior history from
UCD.html. Subsequent versions of the annex will provide only an abbreviated UCD change history
section containing only the delta change information from each preceding version.

Starting from Unicode 4.0.1, references in the change history are often made to a Public Review Issue
(PRI). See http://www.unicode.org/review/resolved-pri.html for more information about each of those
cases.

Changes documented prior to Unicode 4.0 only covered UnicodeData.txt. From Unicode 4.0 onward,
the documentation of changes includes modifications of other files as well.

Unicode 5.2.0

General:

TBD

Common file changes:

TBD

Changes in specific files:

UnicodeData.txt

U+2071 and U+207F were changed from gc=Ll to gc=Lm.

Unicode 5.1.0

General:

Added UCD in XML to the release, in a new subdirectory "ucdxml".

UCD.html:

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

37 of 50 4/13/2009 11:56 AM

Added clarification regarding the Decomposition_Mapping for Hangul syllables.

Added specific documentation about First/Last convention for ranges in UnicodeData.txt.
Improved introduction to General Category Values.

Added reference to UTR #23 and updated other references.
Added note regarding abbreviation of Quick Check property names.

Added notes regarding omissions of foldings where the value is the same as the code point itself.
Applied correction for erratum about derivation of Default_Ignorable_Code_Point.

Added the section on Validation
of property values, with string property validation, default values, and boolean values.
Removed Special_Case_Condition. (The property values were never defined clearly enough to
be applied.)
Corrected typos for PropList and Composition_Exclusion.

Updated property type for Jamo_Short_Name to Miscellaneous (M).
Added clarification of property type for Canonical_Combining_Class.

Updated listing of default values for UnicodeData fields.
Moved documentation of Grapheme_Link from PropList.txt to DerivedCoreProperties.txt section.

Updated references to Unihan.html, to refer to UAX #38, instead. Removed invalid bookmarks on
Unihan property tags.

Changes in specific files:

Appropriate data files were updated to include the 1,624 new characters added in Unicode 5.1.

UnicodeData.txt
The 5 Arabic characters that surround numeral sequences (U+0600..U+0603, U+06DD)
were changed from Bidirectional_Class=AL to AN. This has the effect of putting the
surrounding sign and the numeral sequence in the same directional run, making them
easier to implement correctly.
11 directional quotation marks (U+2018..U+201F, U+301D..U+301F) were changed to
Bidi_Mirrored=N. This constituted a partial reversion of the change for Version 5.0 related to
PRI #91.
U+05BE was changed from gc=Po to gc=Pd.

U+02EC and U+0374 were changed from gc=Sk to gc=Lm.
U+A802 was changed from gc=Mc to gc=Mn.

10 compatibility ideographs were given numeric values.
Unihan.txt

Two existing unified ideographs, U+6F06 and U+9621, were given numeric values.
One new provisional property was added. Corrections and additions to other properties
were made. See [UAX38] for the modification history.

ArabicShaping.txt
A new joining group, BURUSHASKI YEH BARREE, was added.

BidiMirroring.txt
Removed glyph mappings for the 11 characters that were changed to Bidi_Mirrored=N.

Updated glyph mappings for U+2278 and U+2279 to [BEST FIT].
Blocks.txt

Added 17 new block definitions.
DerivedNumericValues.txt

A third field was added to this file, expressing the extracted numeric value as a whole
integer, if possible, or as a rational fraction, for example, 1/6.

LineBreak.txt
There were numerous updates to linebreaking properties. See the Modification History in
UAX #14 for details. Also see PRI #105.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

38 of 50 4/13/2009 11:56 AM

NamedSequences.txt

Lithuanian named sequences were approved and moved to this file from
NamedSequencesProv.txt.

NamedSequencesProv.txt
A new, complete set of named sequences for Tamil consonants and syllables were added
to this file.

PropertyAliases.txt
Added entry for Jamo_Short_Name.

Added corrected alias for Simple_Case_Folding.
Removed entry for Special_Case_Condition.

PropertyValueAliases.txt
Appropriate aliases were added for new Block and Script values.

For Block aliases, new values "ASCII", "Latin_1", and "Greek" were added for common use.
Appropriate aliases were added for new Word_Break and Sentence_Break values.

Explicit Y/N, T/F aliases were added for all binary properties.
Additional aliases using underscores were added for aliases that used hyphen-minus.

Some titlecased aliases were added for consistency.
PropList.txt

The middle dots (U+00B7, U+0387) were added to identifiers by changing them to
Other_ID_Continue=Y. See PRI #100.
For consistency, the halfwidth Katakana sound marks (U+FF9E, U+FF9F) were added to
Grapheme_Extend by making them Other_Grapheme_Extend=Y.

The tag characters (U+E0001, U+E0020..U+E007F) were changed to Deprecated=Y.

Other_Math values were adjusted for a number of mathematical symbols.
U+05BE was changed to Dash=Y, consistent with the change in its General Category.

Scripts.txt
11 new Script values were added: Sundanese, Lepcha, Ol_Chiki, Vai, Saurashtra,
Kayah_Li, Rejang, Lycian, Carian, Lydian, and Cham.

U+0374 and U+0385 were changed from Greek to Common, because of canonical
equivalence issues.
U+0CF1 and U+0CF2 were changed from Kannada to Common, because of their use in
Vedic texts.
Roman numeral compatibility characters, U+2160..U+2183, were changed from Common to
Latin.

A circled Hangul character, U+327E, was changed from Common to Hangul.
Squared Katakana compatibility characters, U+32D0..U+32FE and U+3300..U+3357, were
changed from Common to Katakana.

SpecialCasing.txt
Clarified the use of language tags for specification of casing contexts.

StandardizedVariants.txt
Updated documentation to note the existence of ideographic variation sequences and the
Ideographic Variation Database (IVD).

GraphemeBreakProperty.txt
Added Prepend class (for Logical_Order_Exception=Y).

Added SpacingMark class (for most gc=Mc).
SentenceBreakProperty.txt

Added Extend and SContinue classes.
Split U+0009 and U+000A off from Sep class into CR and LF classes.

Removed U+00A0 from OLetter class.
WordBreakProperty.txt

Added CR, LF, Newline, Extend, and MidNumLet classes.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

39 of 50 4/13/2009 11:56 AM

Moved U+0027 and U+2019 from MidLetter class to MidNumLet class.

Moved U+002E from MidNum class to MidNumLet class.
Added U+060C and U+066C to MidNum class.

Text Boundary Test Files
The existing test files, GraphemeBreakTest.txt, SentenceBreakTest.txt, and
WordBreakTest.txt were substantially extended.
A new test file, LineBreakTest.txt, was added, with test cases for UAX #14.

Unicode 5.0.0

UCD.html:

Added new properties.
Updated property invariants for combining classes.

Reorganized order of sections in the document for clarity.

Common file changes:

In many data files an explicit default property assignment range was added (in a machine-readable
comment line), to assist implementations in assigning values for code points not otherwise listed in the
data file.

Changes in specific files:

Appropriate data files were updated to include the 1,369 new characters added in Unicode 5.0.

Two new data files, NameAliases.txt and NamedSequencesProv.txt, were added to the UCD.

UnicodeData.txt

Note that Except for the changes involving U+0294 LATIN LETTER GLOTTAL STOP, changes
made to General_Category and Bidirectional_Class impacted primarily a handful of archaic
letters.

U+10341 GOTHIC LETTER NINETY was changed from gc=Lo to gc=Nl. This change also
impacted a numeric field, for consistency.
U+103D0 OLD PERSIAN WORD DIVIDER was changed from gc=So to gc=Po, and from
bc=ON to bc=L.

U+103D1..U+103D5 were changed from bc=ON to bc=L.
U+23B4..U+23B6 were changed from various punctuation assignments to gc=So.

U+2132 TURNED CAPITAL F was changed from gc=So to gc=Lu, and from bc=ON to
bc=L.
U+2183 ROMAN NUMERAL REVERSED ONE HUNDRED was changed from gc=Nl to
gc=Lu.
U+0294 LATIN LETTER GLOTTAL STOP was changed from gc=Ll to gc=Lo.

Casing assignments were added for several characters for new case pairs.
Case mappings were removed for U+0294 LATIN LETTER GLOTTAL STOP and updated
for U+0241 LATIN CAPITAL LETTER GLOTTAL STOP.

30 characters were changed to Bidi_Mirrored=Y. These consisted of compatibility paired
punctuation and some quotation marks. See PRI #80 and PRI #91.

Unihan.txt

4 new provisional properties were added, and extensive corrections and additions to other
properties were made. See Unihan.html for the modification history.

ArabicShaping.txt
New joining classes were added for N'Ko.

BidiMirroring.txt

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

40 of 50 4/13/2009 11:56 AM

30 entries were added, to give glyph mappings for characters changed to Bidi_Mirrored=Y.
See PRI #80 and PRI #91.

Blocks.txt

Added 9 new block definitions.
DerivedCoreProperties.txt

The deprecated derived property, Grapheme_Link, was added to this file.
LineBreak.txt

There were numerous updates to linebreaking properties. See the Modification History in
UAX #14 for details. Also see PRI #88.

NamedSequences.txt

6 named sequences for Gurmukhi and one for Latin were removed.
PropertyValueAliases.txt

Appropriate aliases were added for new Block and Script values.
PropList.txt

The Grapheme_Link property was deprecated and moved to DerivedCoreProperties.txt as
derivable. U+034F COMBINING GRAPHEME JOINER was removed from the derivation.
U+1D6A4 MATHEMATICAL ITALIC SMALL DOTLESS I and U+1D6A5 MATHEMATICAL
ITALIC SMALL DOTLESS J were added to Other_Math.
U+1039F UGARITIC WORD DIVIDER and U+103D0 OLD PERSIAN WORD DIVIDER were
added to Terminal_Punctuation.

Scripts.txt
5 new Script values were added: Balinese, Cuneiform, Phoenician, Phags-pa, and Nko.

A new Script value Unknown was added and made the default for unassigned characters.
See PRI #87.
3 Mongolian punctuation characters used by Phags-pa were changed to Script=Common.

U+1DBF MODIFIER LETTER SMALL THETA was changed from Script=Latin to
Script=Greek.

U+2132 TURNED CAPITAL F was changed from Script=Common to Script=Latin.
StandardizedVariants.txt

6 standardized variation sequences were added for Phags-pa.
WordBreakProperty.txt

U+2132 TURNED CAPITAL F was added to ALetter.
220 characters from the Myanmar, Khmer, Tai Le, and New Tai Lue scripts were removed
from ALetter, because those scripts do not cusomarily use spaces between words and
require special handling.

Unicode 4.1.0

General:

Added a new subdirectory "auxiliary". In Version 4.1.0 it contains data files for properties
associated with UAX #29: Text Boundaries [UAX29].

UCD.html:

Added description of new directory and release structure, including files in the auxiliary
subdirectory.

Removed exception for field numbering in LineBreak.txt and EastAsianWidth.txt.
Added new properties, and changed some of the documentation of the identifier properties.

Removed the material that is now to be in Unihan.html.
Removed the listing of default Bidi_Class values, referring now to DerivedBidiClass.txt.

Replaced direct links to UAXes with links to references section.

Common file changes:

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

41 of 50 4/13/2009 11:56 AM

All remaining files not corrected for Unicode 4.0.1 have had their headers updated to explicitly point to
Terms of Use. The headers have also been synchronized somewhat to share a more common format
for file version, date, and pointers to documentation. The major exception is UnicodeData.txt, which for
legacy reasons, has no header.

Changes in specific files:

Appropriate data files were updated to include the 1,273 new characters added in Unicode 4.1.0.

The description of the Unihan properties was separated out from UCD.html, extensively revised, and
moved into a new documentation file, Unihan.html.

UnicodeData.txt

The Bidi_Class value of U+202F was changed from bc=WS to bc=CS. See PRI #45.
The Bidi_Class value of U+FF0F was changed from bc=ES to bc=CS. See PRI #44.

The Bidi_Class value of U+2212 MINUS SIGN and 9 other characters similar to either a
minus sign or a plus sign were changed to bc=ES. See PRI #57.

U+30FB KATAKANA MIDDLE DOT and U+FF65 HALFWIDTH KATAKANA MIDDLE DOT
were changed from gc=Pc to gc=Po. See PRI #55.
Case mappings were added for Georgian capitals (Asomtavruli) to map them to the newly
added Nuskhuri alphabet.

U+A015 YI SYLLABLE WU was changed from gc=Lo to gc=Lm.
9 Ethiopic digits were changed from gc=Nd to gc=No.

The Numeric_Type of U+1034A GOTHIC LETTER NINE HUNDRED was changed from
nt=None to nt=Nu, and it was given a Numeric_Value of 900.

Uppercase and titlecase mappings were added for U+019A LATIN SMALL LETTER L WITH
BAR and U+0294 LATIN LETTER GLOTTAL STOP to map them to newly added capital
letters.

Unihan.txt

Extensive additions and corrections were made for this data file. See Unihan.html for the
modification history.

ArabicShaping.txt
The Joining_Group of U+06C2 ARABIC LETTER HEH GOAL WITH HAMZA ABOVE was
changed to jg=Heh_Goal.

BidiMirroring.txt
The Bidi_Mirroring_Glyph value for U+2A2D was corrected.

Blocks.txt
Added 20 new block definitions.

LineBreak.txt
The Line_Break property of all conjoining jamos was updated from lb=ID to make use of
Hangul-specific Line_Break property values, aligned with the Hangul_Syllable_Type
property.

Many other corrections were made to the Line_Break property of characters, particularly for
punctuation marks specific to Runic, Mongolian, Tibetan and various Indic scripts. See the
Modification History in UAX #14 for details.

PropertyAliases.txt
Properties and aliases were added for UAX #29, Text Boundaries:
Grapheme_Cluster_Break, Word_Break, and Sentence_Break.
Properties and aliases were added for: Other_ID_Continue, Pattern_White_Space, and
Pattern_Syntax.

An alias was added for White_Space: "space", for compatibility with POSIX.
PropertyValueAliases.txt

Property value aliases were added for all new properties, and for new values added to
existing catalog properties (blocks and scripts).

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

42 of 50 4/13/2009 11:56 AM

Property value aliases were added for compatibility with POSIX: "cntrl", "digit", and "punct".

PropList.txt
3 new properties were added: Other_ID_Continue, Pattern_White_Space, and
Pattern_Syntax.
U+30A0 KATAKANA-HIRAGANA DOUBLE HYPHEN was given the Dash property.

U+A015 YI SYLLABLE WU was given the Extender property.
Golden number runes (U+16EE..U+16F0), Roman numerals (U+2160..U+2183), and
U+1034A GOTHIC LETTER NINE HUNDRED were removed from Other_Alphabetic.

Circled Latin letters (U+24B6..U+24E9) were added to Other_Alphabetic. These changes to
Other_Alphabetic were to better align Alphabetic and casing properties. The derived
property Alphabetic is now a superset of the derived properties Lowercase and Uppercase,
for compatibility with POSIX-style character classes.

3 musical symbol combining flags (U+1D170..U+1D172) were added to
Other_Grapheme_Extend to fix an inconsistency in the data.
U+200B ZERO WIDTH SPACE was removed from Other_Default_Ignorable_Code_Point.

Scripts.txt
8 new Script values were added: Buginese, Coptic, New_Tai_Lue, Glagolitic, Tifinagh,
Syloti_Nagri, Old_Persian, and Kharoshthi.
The Script value Katakana_Or_Hiragana (Hrkt) was removed.

The Script for the 14 Coptic letters in the Greek and Coptic block were updated to sc=Copt.
10 characters (punctuation and extenders) shared by Katakana and Hiragana were
changed from sc=Hrkt to sc=Zyyy.

SpecialCasing.txt
The case mapping contexts defined in this file were updated.

A number of clarifying changes were made to comments in the header of this data file.

Unicode 4.0.1

UCD.html:

Added documentation for two new properties.
Added the property types Catalog and Miscellaneous.

Described loose matching of property names and values.
Added to documentation of file format.

Common file changes:

Some property values have different casing (upper versus lower) for consistency between the data files
and the PropertyValueAlias file. There are some additional changes in comments:

Nearly all files changed headers to explicitly point to Terms of Use.

Labels for code points without names now have a more uniform style, such as <reserved-1234>.
Where characters with a default value are not listed, that information is indicated in the total code
point counts.
The full property name and property value name (for enumerated properties) is usually supplied
in a comment.

Changes in specific files:

UnicodeData.txt
Changed the General_Category value of Zero Width Space (U+200B) from Zs to Cf. For
background information, see PRI #21.
Bidi Conformance was made much clearer and more rigorous, also resulting in a number of
property changes. In particular, the Bidi_Class changes impact number and date formatting
with the following characters: +, -, /

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

43 of 50 4/13/2009 11:56 AM

A review of Bidi_Class=BN and Default_Ignorable_Code_Point characters resulted in a
number of changes; for details, see PRI #28.
Some other Bidi_Class tweaks were made for consistency.

Braille symbols were changed to being strong Left-to-right, to reflect usage.
The Bidi_Class and other property values of the Join_Control characters were not changed,
but their role in combining characters sequences was. For more information, see
http://www.unicode.org/versions/Unicode4.0.1/.

Removed an extraneous space at the end of the name field for two characters.
Unihan.txt

There was a major revision of the Unihan data file, to bring it up-to-date for Unicode 4.0. (It
was not released in Version 4.0.0, because of the time required to complete and check
corrections to the data file.) This update rolls in fixes for nearly all known errors in the prior
version of the file and adds a very large amount of other informative data. For details, see
the header of that file.
Added three new tags: kHanyuPinlu, kGSR, and kIRG_USource.

Completed data for kCihaiT, kCowles, kGradeLevel, and kLau.
The kMandarin field has been corrected and its order restored to a "frequency" order.

ArabicShaping.txt
Moved one entry into code point order.

Blocks.txt
Corrected name of the Cyrillic Supplement block.

DerivedCoreProperties.txt
ZWNJ/ZWJ (U+200C..U+200D) now have the Grapheme_Extend property.

DerivedNormalizationProps.txt
The particular values associated with the Quick Check properties for characters were not
changed, but a revision was made in how the Quick Check properties are expressed in the
file, to bring it more into line with the model for other properties. This resulted in a significant
change in the format of the data file and the explicit separation of Yes, No, and Maybe
values. In addition, the actual aliases for the property values changed in the data file.

Index.txt

Updated to correspond to the character index published as part of the Unicode Standard,
Version 4.0.

LineBreak.txt

Many changes for consistency and to better match best practice in existing line break
implementations. See the Modification History in UAX #14 for details.

PropertyAliases.txt

Addition of some property categories, with the order of property aliases adjusted for clarity.
Addition of alias entries for the new STerm and Variation_Selector properties.

PropertyValueAliases.txt
Addition of specific values and aliases for age.

Addition of second alias for the Cyrillic Supplement block.
Addition of second alias for the Inseparable value of the Line Break property.

Revision of the all the Normalization Quick Check properties, to replace the
pseudo-property "qc" with actual specific properties with explicit enumerated value aliases.

Addition of Katakana_Or_Hiragana script alias.
Fixed None, so it is used uniformly in first aliases instead of being the only n/a.

PropList.txt
Major revision of the Other_Math property to align the derived Math property with the
explanation given in UTR #25.

Extension of the list of characters with the Soft_Dotted property.
Significant update of the list of characters with the Terminal_Punctuation property.

Addition of a new STerm property, to simplify the description used in UAX #29.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

44 of 50 4/13/2009 11:56 AM

Addition of the Variation_Selector property.

Reassignment of the list of characters with the Other_Default_Ignorable_Code_Point
property, to enable simpler derivation.

Addition of ZWNJ/ZWJ (U+200C..U+200D) to Other_Grapheme_Extend.
Scripts.txt

Significant revision of script assignments, to assign specific script values to many
characters that previously had the Common script value.
Addition of the Katakana_Or_Hiragana script value, with list of characters for it.

The Script=Common values are now listed explicitly.
SpecialCasing.txt

Correction of typo in comments.

Unicode 4.0.0

General:

For details on changes made to the UCD for Unicode 4.0.0, see Section D.4, "Changes from Unicode
Version 3.2 to Version 4.0" in Appendix D of The Unicode Standard, Version 4.0.

The Hyphen property is now Stabilized.

Two Khmer characters were deprecated and four others were strongly discouraged.

Common file changes:

Default property values were more precisely defined, for code points not explicitly listed in the data
files.

Changes in specific files:

UnicodeData.txt

Numeric_Type=Decimal was aligned with General_Category=Nd.
The General_Category value of the modifier letters U+02B9..U+02BA, U+02C6..U+02CF
was changed to Lm.

Unihan.txt
CJK numeric values were added.

A new Unicode_Radical_Stroke property was defined.
ArabicShaping.txt

U+06DD ARABIC END OF AYAH was changed to Join_Type=Non_Joining.
Blocks.txt

Added new block definitions.
DerivedCoreProperties.txt

Modifed the derivation of Grapheme_Extend to remove halfwidth katakana marks and most
gc=Mc (except as needed to preserve canonical equivalences).

HangulSyllableType.txt

A new data file, defining the Hangul_Syllable_Type property.
LineBreak.txt

Modified to add lb=NL and lb=WJ values.
PropList.txt

Other_Default_Ignorable_Code_Point was extended to include Hangul filler characters, soft
hyphen (U+00AD), the combining grapheme joiner (U+034F), and zero width space
(U+200B).

U+06DD ARABIC END OF AYAH and U+070F SYRIAC ABBREVIATION MARK were
removed from Other_Default_Ignorable_Code_Point.

PropertyValueAliases.txt

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

45 of 50 4/13/2009 11:56 AM

Added property value aliases for new blocks and scripts.

Added property value aliases for other new properties.
Added property value aliases NL and WJ for Line_Break.

Scripts.txt
Added Script property values for newly encoded scripts.

Added a Script property value for Braille.
SpecialCasing.txt

Fixes were made for Turkish and Lithuanian.

Unicode 3.2.0

General:

For details on changes made to the UCD for Unicode 3.2.0, see Section D.3, "Changes from Unicode
Version 3.1 to Version 3.2" in Appendix D of The Unicode Standard, Version 4.0.

Added a new subdirectory "extracted". It contains the data files for Derived Extracted Properties.

Changes in specific files:

Appropriate data files were updated to include the 1,016 new characters added in Unicode 3.2.0.

UnicodeData.txt

Updated ISO 6429 names for control functions to match the currently published version of
that standard.

Changed the General_Category value for Mongolian free variation selectors
(U+180B..U+180D) from Cf to Mn.
Changed the General_Category value for U+0B83 TAMIL SIGN VISARGA (aytham) from
Mc to Lo.

Changed the General_Category value for U+06DD ARABIC END OF AYAH from Me to Cf.
Changed the General_Category value for U+17D7 KHMER SIGN LEK TOO from Po to Lm.

Changed the General_Category value for U+17DC KHMER SIGN AVAKRAHASANYA from
Po to Lo.

Changed canonical decomposition for U+F951 from 96FB to 964B (see Corrigendum #3:
U+F951 Normalization).

PropertyAliases.txt

A new data file, defining aliases for properties.
PropertyValueAliases.txt

A new data file, defining aliases for property values.

Unicode 3.1.1

Changes in specific files:

UnicodeData.txt
Modification of the ISO 10646 annotation (in the ISO_Comment field) regarding Greek
tonos, affecting entries for U+0301 and U+030D.

Unicode 3.1.0

General:

For details on changes made to the UCD for Unicode 3.1.0, see Section D.2, "Changes from Unicode
Version 3.0 to Version 3.1" in Appendix D of The Unicode Standard, Version 4.0.

Changes in specific files:

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

46 of 50 4/13/2009 11:56 AM

Appropriate data files were updated to include the 2,237 new entries, to cover new individual
characters and the new ranges of Unified CJK Ideographs encoded in Unicode 3.1.0.

UnicodeData.txt
Changed the General_Category value of U+16EE..U+16F0 (Runic golden numbers) from
No to Nl.

Unicode 3.0.1

General:

Added 5- and 6-digit representation of code points past U+FFFF.

Changes in specific files:

UnicodeData.txt

Added Private Use range definitions for Planes 15 and 16.
Minor additions for the 10646 annotations (ISO_Comment field).

Unicode 3.0.0

Modifications made for Version 3.0.0 of UnicodeData.txt include many new characters and a number of
property changes. These are summarized in Appendix D of The Unicode Standard, Version 3.0.

Unicode 2.1.9

Modifications made for Version 2.1.9 of UnicodeData.txt include:

Corrected combining class for U+05AE HEBREW ACCENT ZINOR.

Corrected combining class for U+20E1 COMBINING LEFT RIGHT ARROW ABOVE.
Corrected combining class for U+0F35 and U+0F37 to 220.

Corrected combining class for U+0F71 to 129.
Added a decomposition for U+0F0C TIBETAN MARK DELIMITER TSHEG BSTAR.

Added decompositions for several Greek symbol letters: U+03D0..U+03D2, U+03D5, U+03D6,
U+03F0..U+03F2.
Removed decompositions from the conjoining jamo block: U+1100..U+11F8.

Changes to decomposition mappings for some Tibetan vowels for consistency in normalization.
(U+0F71, U+0F73, U+0F77, U+0F79, U+0F81).
Updated the decomposition mappings for several Vietnamese characters with two diacritics
(U+1EAC, U+1EAD, U+1EB6, U+1EB7, U+1EC6, U+1EC7, U+1ED8, U+1ED9), so that the
recursive decomposition can be generated directly in canonically reordered form (not a normative
change).
Updated the decomposition mappings for several Arabic compatibility characters involving
shadda (U+FC5E..U+FC62, U+FCF2..U+FCF4), and two Latin characters (U+1E1C, U+1E1D),
so that the decompositions are generated directly in canonically reordered form (not a normative
change).
Changed Bidi_Class values for: U+00A0 NO-BREAK SPACE, U+2007 FIGURE SPACE, U+2028
LINE SEPARATOR.
Changed Bidi_Class values for extenders of General_Category Lm: U+3005, U+3021..U+3035,
U+FF9E, U+FF9F.

Changed the General_Category and Bidi_Class values for the Greek numeral signs: U+0374,
U+0375.
Corrected the General_Category value for U+FFE8 HALFWIDTH FORMS LIGHT VERTICAL.

Added Unicode 1.0 names for many Tibetan characters (informative).

Unicode 2.1.8

Modifications made for Version 2.1.8 of UnicodeData.txt include:

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

47 of 50 4/13/2009 11:56 AM

Added combining class 240 for U+0345 COMBINING GREEK YPOGEGRAMMENI so that
decompositions involving iota subscript are derivable directly in canonically reordered form; this
also has a bearing on simplification of casing of polytonic Greek.
Changes were made in decompositions related to Greek tonos. These result from the clarification
that monotonic Greek "tonos" should be equated with U+0301 COMBINING ACUTE, rather than
with U+030D COMBINING VERTICAL LINE ABOVE. (All Greek characters in the Greek block
involving "tonos"; some Greek characters in the polytonic Greek in the 1FXX block.)
Changed decompositions involving dialytika tonos. (U+0390, U+03B0)

Changed ternary decompositions to binary. (U+0CCB, U+FB2C, U+FB2D) These changes
simplify normalization.
Removed canonical decomposition for the generic candrabindu (U+0310).

Corrected error in canonical decomposition for U+1FF4.
Added compatibility decompositions to clarify collation tables. (U+2100, U+2101, U+2105,
U+2106, U+1E9A)
A series of General_Category changes to assist the convergence of the Unicode definition of
identifier with ISO TR 10176:

So > Lo: U+0950, U+0AD0, U+0F00, U+0F88..U+0F8B
Po > Lo: U+0E2F, U+0EAF, U+3006

Lm > Sk: U+309B, U+309C
Po > Pc: U+30FB, U+FF65

Ps/Pe > Mn: U+0F3E, U+0F3F
A series of Bidi_Class changes for consistency:

L > ET: U+09F2, U+09F3
ON > L: U+3007

L > ON: U+0F3A..U+0F3D, U+037E, U+0387
Add case mapping: U+01A6 ↔ U+0280

Updated symmetric swapping value for guillemets: U+00AB, U+00BB, U+2039, U+203A.
Changes to combining class values. Most Indic fixed position class nonspacing marks were
changed to combining class 0. This fixes some inconsistencies in how canonical reordering would
apply to Indic scripts, including Tibetan. Indic interacting top/bottom fixed position classes were
merged into single (non-zero) classes as part of this change. Tibetan subjoined consonants are
changed from combining class 6 to combining class 0. Thai pinthu (U+0E3A) moved to combining
class 9. Moved two Devanagari stress marks into generic above and below combining classes
(U+0951, U+0952).

Corrected the placement of semicolon near the symmetric swapping field. This affected U+FA0E
and other scattered positions to U+FA29.

Version 2.1.7

This version was for internal change tracking only, and never publicly released.

Version 2.1.6

This version was for internal change tracking only, and never publicly released.

Unicode 2.1.5

Modifications made for Version 2.1.5 of UnicodeData.txt include:

Changed decomposition for U+FF9E and U+FF9F so that correct collation weighting will
automatically result from the canonical equivalences.
Removed canonical decompositions for U+04D4, U+04D5, U+04D8, U+04D9, U+04E0, U+04E1,
U+04E8, U+04E9 (the implication being that no canonical equivalence is claimed between these
8 characters and similar Latin letters), and updated 4 canonical decompositions for U+04DB,
U+04DC, U+04EA, U+04EB to reflect the implied difference in the base character.
Added Pi and Pf as General_Category values and assigned these values to the relevant

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

48 of 50 4/13/2009 11:56 AM

quotation marks, based on the Unicode Technical Corrigendum on Quotation Characters.

Updated many Bidi_Class values, following the advice of the ad hoc committee on bidi, to make
the Bidi_Class values of compatibility characters more consistent.

Changed General_Category values of several Tibetan characters: U+0F3E, U+0F3F,
U+0F88..U+0F8B to make them non-combining, reflecting the combined opinion of Tibetan
experts.
Added case mapping for U+03F2.

Corrected case mapping for U+0275.
Added titlecase mappings for U+03D0, U+03D1, U+03D5, U+03D6, U+03F0.. U+03F2.

Corrected compatibility label for U+2121.
Add specific entries for all the CJK compatibility ideographs, U+F900..U+FA2D, so the canonical
decomposition for each can be carried in the database.

Version 2.1.4

This version was for internal change tracking only, and never publicly released.

Version 2.1.3

This version was for internal change tracking only, and never publicly released.

Unicode 2.1.2

Modifications made in updating UnicodeData.txt to Version 2.1.2 for the Unicode Standard, Version 2.1
(from Version 2.0) include:

Added two characters (U+20AC and U+FFFC).

Amended Bidi_Class values for U+0026, U+002E, U+0040, U+2007.
Corrected case mappings for U+018E, U+019F, U+01DD, U+0258, U+0275, U+03C2, U+1E9B.

Changed combining order class for U+0F71.
Corrected canonical decompositions for U+0F73, U+1FBE.

Changed decomposition for U+FB1F from compatibility to canonical.
Added compatibility decompositions for U+FBE8, U+FBE9, U+FBF9..U+FBFB.

Corrected compatibility decompositions for U+2469, U+246A, U+3358.

Version 2.1.1

This version was for internal change tracking only, and never publicly released.

Unicode 2.0.0

The modifications made in updating UnicodeData.txt for the Unicode Standard, Version 2.0 include:

Changed decompositions for Greek characters with tonos to use U+030D.
Removed entries for the Unicode 1.1 Hangul Syllables block (U+3400..U+4DFF); mapping to the
characters in the new Hangul Syllables block are in a separate table.

Marked compatibility decompositions with additional tags.
Changed old tag names for clarity.

Revision of decompositions to use first-level decomposition, instead of maximal decomposition.
Correction of all known errors in decompositions from earlier versions.

Added control code names (as comments in the Unicode_1_Name field).
Added Hangul Jamo decompositions.

Added Number category to match properties list in book.
Fixed General_Category values of Koranic Arabic marks.

Fixed General_Category values of precomposed characters to match decomposition where
possible.

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

49 of 50 4/13/2009 11:56 AM

Added Hebrew cantillation marks and the Tibetan script.

Added place holders for ranges such as CJK Ideographic Area and the Private Use Area.
Added General_Category values Me, Sk, Pc, Nl, Cs, Cf, and rectified a number of mistakes in the
database.

Acknowledgments

Mark Davis and Ken Whistler are the authors of the initial version and have added to and maintained
the text of this annex. Julie Allen and Asmus Freytag provided editorial suggestions for improvement of
the text. Over the years, many members of the UTC have participated in the review of the UCD and its
documentation.

References

For references for this annex, see Unicode Standard Annex #41, “Common References for Unicode
Standard Annexes.”

Modifications

The following summarizes modifications from previous revisions of this annex.

Revision 3

Proposed update for Unicode 5.2.0.
Completely reorganized and rewritten, to include all the content from the obsoleted UCD.html.

[Temporary] Added review note at top of text, and modified review notes to use css "reviewnote"
class. Added "changedspan" to modifications section.

Added Section 5.10 re deprecation.
Added subsection in Section 4.2 re line termination conventions.

Added Contributory as a formal status and updated the Property Table accordingly.
Added note in Section 5.3.1 to indicate that contributory properties are neither normative nor
informative.

Updated documentation for default values.
Cleaned up description of numeric properties.

Tweaked the description of NamesList.html.
Miscellaneous minor point edits.

Updated summary statement of the document.
Centered tables.

Added numbers to tables and adjusted text referencing tables accordingly.
Started population of 5.2.0 UCD data file change list.

Added clarifications about exceptional format issues for Unihan.txt.
Updated references to Section 4.8, "Named—Normative" for derived names and for code point
labels.

Added mention of property aliases from Unihan.txt to Section 5.6.1.
Added documentation for new derived properties: Cased, Case_Ignorable, and
NFKC_And_Casefolded.
Added strong pointers to Section 3.5 and Chapter 4 of [Unicode] in the Introduction.

Added new section 2.3.1, "Changes to Properties Between Releases".
Updated default values for East_Asian_Width.

Clarified the applicability of comments in cases where properties have multiple default values.
Restructured Section 5.1 documentation of columns in the property table, for better text flow.

Revision 2

UAX #44: Unicode Character Database http://www.unicode.org/reports/tr44/tr44-3.html

50 of 50 4/13/2009 11:56 AM

Initial approved version for Unicode 5.1.0.

Revision 1

Initial draft.

Copyright © 2000-2009
Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind, and assumes no liability
for errors or omissions. No liability is assumed for incidental and consequential damages in connection with or arising out of the use of the
information or programs contained or accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

