
Proposed Update Unicode Standard Annex #29

UNICODE TEXT SEGMENTATION

Summary

This annex describes guidelines for determining default segmentation boundaries
between certain significant text elements: grapheme clusters (“user-perceived
characters”), words, and sentences. For line break boundaries, see [UAX14]

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as
other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode
Standard, but is published online as a separate document. The Unicode Standard
may require conformance to normative content in a Unicode Standard Annex, if so
specified in the Conformance chapter of that version of the Unicode Standard. The
version number of a UAX document corresponds to the version of the Unicode
Standard of which it forms a part.

Please submit corrigenda and other comments with the online reporting form [Feedback].
Related information that is useful in understanding this annex is found in Unicode
Standard Annex #41, “Common References for Unicode Standard Annexes.” For the
latest version of the Unicode Standard, see [Unicode]. For a list of current Unicode
Technical Reports, see [Reports]. For more information about versions of the Unicode
Standard, see [Versions]. For any errata which may apply to this annex, see [Errata].

Contents

1 Introduction
1.1 Notation

 Technical Reports

Version Unicode 5.2.0 (draft 2)
Authors Mark Davis (markdavis@google.com)
Date 2009-03-26
This Version http://www.unicode.org/reports/tr29/tr29-14.html
Previous Version http://www.unicode.org/reports/tr29/tr29-13.html
Latest Version http://www.unicode.org/reports/tr29/
Revision 14

rick@unicode.org
Text Box
L2/09-130

2 Conformance
3 Grapheme Cluster Boundaries

3.1 Default Grapheme Cluster Boundary Specification
4 Word Boundaries

4.1 Default Word Boundary Specification
5 Sentence Boundaries

5.1 Default Sentence Boundary Specification
6 Implementation Notes

6.1 Normalization
6.2 Replacing Ignore Rules
6.3 Regular Expressions
6.4 Random Access
6.5 Tailoring

7 Testing
Acknowledgments
References
Modifications

1 Introduction

This annex describes guidelines for determining default boundaries between certain
significant text elements: user-perceived characters, words, and sentences. The process
of boundary determination is also called segmentation.

A string of Unicode-encoded text often needs to be broken up into text elements
programmatically. Common examples of text elements include what users think of as
characters, words, lines (more precisely, where line breaks are allowed), and sentences.
The precise determination of text elements may vary according to orthographic
conventions for a given script or language. The goal of matching user perceptions cannot
always be met exactly because the text alone does not always contain enough
information to unambiguously decide boundaries. For example, the period (U+002E FULL

STOP) is used ambiguously, sometimes for end-of-sentence purposes, sometimes for
abbreviations, and sometimes for numbers. In most cases, however, programmatic text
boundaries can match user perceptions quite closely, although sometimes the best that
can be done is not to surprise the user.

Rather than concentrate on algorithmically searching for text elements (often called
segments), a simpler and more useful computation instead detects the boundaries (or
breaks) between those text elements. The determination of those boundaries is often
critical to performance, so it is important to be able to make such a determination as
quickly as possible. (For a general discussion of text elements, see Chapter 2, General
Structure, of [Unicode].)

The default boundary determination mechanism specified in this annex provides a
straightforward and efficient way to determine some of the most significant boundaries in
text: user-perceived characters, words, and sentences. Boundaries used in line breaking
(also called word wrapping) are found in [LineBreak].

The sheer number of characters in the Unicode Standard, together with its
representational power, place requirements on both the specification of text element
boundaries and the underlying implementation. The specification needs to allow the
designation of large sets of characters sharing the same characteristics (for example,

uppercase letters), while the implementation must provide quick access and matches to
those large sets. The mechanism also must handle special features of the Unicode
Standard, such as nonspacing marks and conjoining jamo.

The default boundary determination builds upon the uniform character representation of
the Unicode Standard, while handling the large number of characters and special
features such as nonspacing marks and conjoining jamo in an effective manner. As this
mechanism lends itself to a completely data-driven implementation, it can be tailored to
particular orthographic conventions or user preferences without recoding.

As in other Unicode algorithms, these specifications provide a logical description of the
processes: implementations can achieve the same results without using code or data
that follows these rules step-by-step. In particular, many production-grade
implementations will use a state-table approach. In that case, the performance does not
depend on the complexity or number of rules. Rather, performance is only affected by
the number of characters that may match after the boundary position in a rule that
applies.

1.1 Notation

A boundary specification summarizes boundary property values used in that
specification, then lists the rules for boundary determinations in terms of those property
values. The summary is provided as a list, where each element of the list is one of the
following:

 A literal character
 A range of literal characters
 All characters satisfying a given condition, using properties defined in the Unicode

Character Database [UCD]:
Non-Boolean property values are given as <property>=<property value>,
such as General_Category = Titlecase_Letter.
Boolean properties are given as <property>=true, such as Uppercase = true.
Other conditions are specified textually in terms of UCD properties.

 Boolean combinations of the above
 The two special identifiers sot and eot stand for start and end of text, respectively

For example, the following is such a list:

General_Category = Line Separator (Zl), or
General_Category = Paragraph Separator (Zp), or
General_Category = Control (Cc), or
General_Category = Format (Cf)
and not U+000D CARRIAGE RETURN (CR)
and not U+000A LINE FEED (LF)
and not U+200C ZERO WIDTH NON-JOINER (ZWNJ)
and not U+200D ZERO WIDTH JOINER (ZWJ)

In the table assigning the boundary property values, all of the values are intended to be
disjoint except for the special value Any. In case of conflict, rows higher in the table have
precedence in terms of assigning property values to characters. Data files containing
explicit assignments of the property values are found in [Props].

Boundary determination is specified in terms of an ordered list of rules, indicating the
status of a boundary position. The rules are numbered for reference and are applied in
sequence to determine whether there is a boundary at a given offset. That is, there is an
implicit “otherwise” at the front of each rule following the first. The rules are processed
from top to bottom. As soon as a rule matches and produces a boundary status
(boundary or no boundary) for that offset, the process is terminated.

Each rule consists of a left side, a boundary symbol (see Table 1), and a right side.
Either of the sides can be empty. The left and right sides use the boundary property
values in regular expressions. The regular expression syntax used is a simplified version
of the format supplied in Unicode Technical Standard #18, “Unicode Regular
Expressions” [RegEx].

Table 1. Boundary Symbols

An underscore (“_”) is used to indicate a space in examples.

These rules are constrained in three ways, to make implementations significantly simpler
and more efficient. These constraints have not been found to be limitations for natural
language use. In particular, the rules are formulated so that they can be efficiently
implemented, such as with a deterministic finite-state machine based on a small number
of property values.

1. Single boundaries. Each rule has exactly one boundary position. This restriction is
more a limitation on the specification methods, because a rule with multiple
boundaries could be expressed instead as multiple rules. For example:

“a b ÷ c d ÷ e f” could be broken into two rules “a b ÷ c d e f” and “a b c d ÷ e
f”
“a b × c d × e f” could be broken into two rules “a b × c d e f” and “a b c d × e
f”

2. Ignore degenerates. No special provisions are made to get marginally better
behavior for degenerate cases that never occur in practice, such as an A followed
by an Indic combining mark.

3. Limited negation. Negation of expressions is limited to instances that resolve to a
match against single characters, such as “¬(OLetter | Upper | Lower | Sep)”.

2 Conformance

There are many different ways to divide text elements corresponding to user-perceived
characters, words, and sentences, and the Unicode Standard does not restrict the ways
in which implementations can produce these divisions.

This specification defines default mechanisms; more sophisticated implementations can
and should tailor them for particular locales or environments. For example, reliable
detection of word break boundaries in languages such as Thai, Lao, Chinese, or
Japanese requires the use of dictionary lookup, analogous to English hyphenation. An

÷ Boundary (allow break here)
× No boundary (do not allow break here)
→Treat whatever on the left side as if it were what is on the right side

implementation therefore may need to provide means to override or subclass the default
mechanisms described in this annex. Note that tailoring can either add boundary
positions or remove boundary positions, compared to the defaults specified here.

Note: Locale-sensitive boundary specifications can be expressed in LDML [UTS35]
and be contained in the Unicode Common Locale Data Repository [CLDR]. The
repository already contains some tailorings, with more to follow.

To maintain canonical equivalence, all of the following specifications are defined on text
normalized in form NFD, as defined in Unicode Standard Annex #15, “Unicode
Normalization Forms” [UAX15]. A boundary exists in text not normalized in form NFD if
and only if it would occur at the corresponding position in NFD text. However, the default
rules have been written to provide equivalent results for non-NFD text and can be
applied directly. Even in the case of tailored rules, the requirement to use NFD is only a
logical specification; in practice, implementations can avoid normalization and achieve
the same results. For more information, see Section 6, Implementation Notes.

3 Grapheme Cluster Boundaries

It is important to recognize that what the user thinks of as a "character"—a basic unit of a
writing system for a language—may not be just a single Unicode code point. Instead, that
basic unit may be made up of multiple Unicode code points. To avoid ambiguity with the
computer use of the term character, this is called a user-perceived character. For
example, “G” + acute-accent is a user-perceived character: users think of it as a single
character, yet is actually represented by two Unicode code points. These user-perceived
characters are approximated by what is called a grapheme cluster, which can be
determined programmatically.

Grapheme cluster boundaries are important for collation, regular expressions, UI
interactions (such as mouse selection, arrow key movement, backspacing),
segmentation for vertical text, identification of boundaries for first-letter styling, and
counting “character” positions within text. Word boundaries, line boundaries, and
sentence boundaries should not occur within a grapheme cluster: in other words, a
grapheme cluster should be an atomic unit with respect to the process of determining
these other boundaries.

As far as a user is concerned, the underlying representation of text is not important, but it
is important that an editing interface present a uniform implementation of what the user
thinks of as characters. Grapheme clusters commonly behave as units in terms of mouse
selection, arrow key movement, backspacing, and so on. For example, when a
grapheme cluster is represented internally by a character sequence consisting of base
character + accent, then using the right arrow key would skip from the start of the base
character to the end of the last character of the cluster.

However, in some cases editing a grapheme cluster element by element may be
preferable. For example, on a given system the backspace key might delete by code
point, while the delete key may delete an entire cluster. Moreover, there is not a one-to-
one relationship between grapheme clusters and keys on a keyboard. A single key on a
keyboard may correspond to a whole grapheme cluster, a part of a grapheme cluster, or
a sequence of more than one grapheme cluster.

In those relatively rare circumstances where programmers need to supply end users with
user-perceived character counts, the counts should correspond to the number of

segments delimited by grapheme clusters. Grapheme clusters may also be used in
searching and matching; for more information, see Unicode Technical Standard #10,
“Unicode Collation Algorithm” [UTS10], and Unicode Technical Standard #18, “Unicode
Regular Expressions” [UTS18].

The Unicode Standard provides default algorithms for determining grapheme cluster
boundaries, with two variants: legacy grapheme clusters and extended grapheme
clusters. The extended grapheme cluster boundaries are recommended for general
processing, while the legacy grapheme cluster boundaries are maintained for backwards
compatibility with earlier versions of this specification.

These algorithms can be adapted to produce tailored grapheme clusters for specific
locales or other customizations, such as the contractions used in collation tailoring
tables. Below are some examples of the differences between these concepts. The
tailored examples are only for illustration: what constitutes a grapheme cluster will
depend on the customizations used by the particular tailoring in questions.

Table 1a. Sample Grapheme Clusters

Ex Characters Comments

Grapheme clusters (both legacy and extended)

g̈ U+0067 (g) LATIN SMALL LETTER G
U+0308 (̈) COMBINING DIAERESIS

combining character sequences

각 U+AC01 (각) HANGUL SYLLABLE GAG Hangul syllables such as gag (which
may be a single character, or a
sequence of combining jamo)

U+1100 (ᄀ) HANGUL CHOSEONG KIYEOK
U+1161 (ᅡ) HANGUL JUNGSEONG A
U+11A8 (ᆨ) HANGUL JONGSEONG KIYEOK

Extended grapheme clusters
நி U+0BA8 (ந) TAMIL LETTER NA

U+0BBF (◌ி) TAMIL VOWEL SIGN I

Tamil ni

เก U+0E40 (เ) THAI CHARACTER SARA E
U+0E01 (ก) THAI CHARACTER KO KAI

Thai ke

िष U+0937 (ष) DEVANAGARI LETTER SSA
U+093F (ि◌) DEVANAGARI VOWEL SIGN I

Devanagari ssi

Tailored grapheme clusters

ch U+0063 (c) LATIN SMALL LETTER C
U+0068 (h) LATIN SMALL LETTER H

Slovak ch digraph

kw U+006B (k) LATIN SMALL LETTER K
U+02B7 (ʷ) MODIFIER LETTER SMALL W

sequence with letter modifier

See also: Where is my Character?, NamedSequences.txt, and
NamedSequencesProv.txt.

A legacy grapheme cluster is defined as a base (such as A or カ) followed by zero or
more continuing characters. One way to think of this is as a sequence of characters that
form a "stack".

The base can be single characters, or be any sequence of Hangul Jamo characters that
form a Hangul Syllable, as defined by D118 in The Unicode Standard.

The continuing characters include nonspacing marks, plus the Join Controls (U+200C ()
ZERO WIDTH NON-JOINER and U+200D () ZERO WIDTH JOINER used in Indic
languages, and a few spacing combining marks to ensure canonical equivalence.
Additional cases need to be added for completeness, so that any string of text can be
divided up into a sequence of grapheme clusters. Some of these may be degenerate
cases, such as a control code, or an isolated combining mark.

An extended grapheme cluster is the same as a legacy grapheme cluster, with the
addition of some other characters. The continuing characters are extended to include all
spacing combining marks, such as the spacing (but dependent) vowel signs in Indic
scripts, as continuing characters. For example, this includes U+093F (ि◌) DEVANAGARI
VOWEL SIGN I. The definition also includes certain visual order Thai and Lao vowels
that may come before the base. The extended grapheme clusters should be used in
implementations in preference to legacy grapheme clusters, because they provide better
results for Indic scripts such as Tamil or Devanagari, and for Southeast Asian scripts
such as Thai and Lao.

For the rules defining the boundaries for grapheme clusters, see Table 2. For more
information on the composition of Hangul syllables, see Chapter 3, Conformance, of
[Unicode].

Note: The boundary between default Unicode grapheme clusters can be
determined by just the two adjacent characters. See Section 7, Testing, for a chart
showing the interactions of pairs of characters.

A key feature of default Unicode grapheme clusters (both legacy and extended) is that
they remain unchanged across all canonically equivalent forms of the underlying text.
Thus the boundaries remain unchanged whether the text is in NFC or NFD. Using a
grapheme cluster as the fundamental unit of matching thus provides a very clear and
easily explained basis for canonically equivalent matching. This is important for
applications from searching to regular expressions.

Another key feature is that default Unicode grapheme clusters are atomic units with
respect to the process of determining the Unicode default line, word, and sentence
boundaries.

िक्ष U+0915 (क) DEVANAGARI LETTER KA
U+094D (◌्) DEVANAGARI SIGN VIRAMA
U+0937 (ष) DEVANAGARI LETTER SSA
U+093F (ि◌) DEVANAGARI VOWEL SIGN I

Devanagari kshi

Grapheme clusters can be tailored to meet further requirements. Such tailoring is
permitted, but the possible rules are outside of the scope of this document. One example
of such a tailoring would be for the aksaras, or orthographic syllables, used in many Indic
scripts. Aksaras usually consist of a consonant, sometimes with an inherent vowel and
sometimes followed by an explicit, dependent vowel whose rendering may end up on any
side of the consonant letter base. Extended grapheme clusters include such simple
combinations.

However, aksaras may also include one or more additional prefixed consonants, typically
with a virama (halant) character between each consonant in the sequence. Such
consonant cluster aksaras are not incorporated into the default rules for extended
grapheme clusters, in part because not all such sequences are considered to be single
"characters" by users. Indic scripts vary considerably in how they handle the rendering of
such aksaras—in some cases stacking them up into combined forms known as
consonant conjuncts, and in other cases stringing them out horizontally, with visible
renditions of the halant on each consonant in the sequence. There is even greater
variability in how the typical liquid consonants (or "medials"), ya, ra, la, and wa, are
handled for display in combinations in aksaras. So tailorings for aksaras may need to be
script-, language-, font-, or context-specific to be useful.

Note: Font-based information may be required to determine the appropriate unit to
use for UI purposes, such as identification of boundaries for first-letter paragraph
styling. For example, such a unit could be a ligature formed of two grapheme
clusters, such as لا (Arabic lam + alef).

The Unicode definitions of grapheme clusters are defaults: not meant to exclude the use
of more sophisticated definitions of tailored grapheme clusters where appropriate. Such
definitions may more precisely match the user expectations within individual languages
for given processes. For example, “ch” may be considered a grapheme cluster in Slovak,
for processes such as collation. The default definitions are, however, designed to provide
a much more accurate match to overall user expectations for what the user perceives of
as characters than is provided by individual Unicode code points.

Note: The default Unicode grapheme clusters were previously referred to as
“locale-independent graphemes.” The term cluster is used to emphasize that the
term grapheme is used differently in linguistics. For simplicity and to align
terminology with Unicode Technical Standard #10, “Unicode Collation
Algorithm” [UTS10], the terms default and tailored are preferred over locale-
independent and locale-dependent, respectively.

Display of Grapheme Clusters. Grapheme clusters are not the same as ligatures. For
example, the grapheme cluster “ch” in Slovak is not normally a ligature and, conversely,
the ligature “fi” is not a grapheme cluster. Default grapheme clusters do not necessarily
reflect text display. For example, the sequence <f, i> may be displayed as a single glyph
on the screen, but would still be two grapheme clusters.

For information on the matching of grapheme clusters with regular expressions, see
Unicode Technical Standard #18, “Unicode Regular Expressions” [UTS18].

Degenerate Cases. The default specifications are designed to be simple to implement,
and provide an algorithmic determination of grapheme clusters. However, they do not
have to cover edge cases that will not occur in practice. For the purpose of
segmentation, they may also include degenerate cases that are not thought of as

grapheme clusters, such as an isolated control character or combining mark. In this, they
differ from the combining character sequences and extended combining character
sequences defined in [Unicode5.1].

For comparison, Table 1b shows the relationship between combining character
sequences and grapheme clusters, using regex notation. Note that given alternates
(X|Y), the first match is taken.

Table 1b. Combining character sequences and grapheme clusters

3.1 Default Grapheme Cluster Boundary Specification

The Grapheme_Cluster_Break property value assignments are explicitly listed in the
corresponding data file; see [Props]. The contents of this data file are summarized in
Table 2.

Table 2. Grapheme_Cluster_Break Property Values

Term Regex Notes

combining
character
sequence

base? (Mark | ZWJ | ZWNJ)+ A single base character is not a
combining character sequence.
However, a single combining
mark is a (degenerate)
combining character sequence.

extended
combining
character
sequence

extended_base? (Mark | ZWJ |
ZWNJ)+

extended_base includes Hangul
Syllables

legacy
grapheme
cluster

(CRLF
| (Hangul-syllable | !Control)

 Grapheme_Extend*
| .)

A single base character is a
grapheme cluster. Degenerate
cases include any isolated non-
base characters, and non-base
characters like controls.

extended
grapheme
cluster

(CRLF
| Prepend* (Hangul-syllable | !
Control)
 (Grapheme_Extend |
Spacing_Mark)*
| .)

Extended grapheme clusters add
prepending and spacing marks

Value Summary List of Characters

CR U+000D CARRIAGE RETURN (CR)

LF U+000A LINE FEED (LF)

Control General_Category = Line Separator (Zl), or
General_Category = Paragraph Separator (Zp), or
General_Category = Control (Cc), or
General_Category = Format (Cf)
and not U+000D CARRIAGE RETURN (CR)
and not U+000A LINE FEED (LF)
and not U+200C ZERO WIDTH NON-JOINER (ZWNJ)
and not U+200D ZERO WIDTH JOINER (ZWJ)

Extend Grapheme_Extend = true, or
U+0E30 (ะ) THAI CHARACTER SARA A
U+0E32 (า) THAI CHARACTER SARA AA
U+0E33 (ำ) THAI CHARACTER SARA AM
U+0E45 (ๅ) THAI CHARACTER LAKKHANGYAO
U+0EB0 (�) LAO VOWEL SIGN A
U+0EB2 (�) LAO VOWEL SIGN AA
U+0EB3 (�) LAO VOWEL SIGN AM

This includes:
General_Category = Nonspacing_Mark
General_Category = Enclosing_Mark
U+200C ZERO WIDTH NON-JOINER
U+200D ZERO WIDTH JOINER

plus a few Spacing Marks needed for canonical equivalence.

Prepend Logical_Order_Extension=True

This includes:
U+0E40 (เ) THAI CHARACTER SARA E
U+0E41 (แ) THAI CHARACTER SARA AE
U+0E42 (โ) THAI CHARACTER SARA O
U+0E43 (ใ) THAI CHARACTER SARA AI MAIMUAN
U+0E44 (ไ) THAI CHARACTER SARA AI MAIMALAI
U+0EC0 (�) LAO VOWEL SIGN E
U+0EC1 (�) LAO VOWEL SIGN EI
U+0EC2 (�) LAO VOWEL SIGN O
U+0EC3 (�) LAO VOWEL SIGN AY
U+0EC4 (�) LAO VOWEL SIGN AI

SpacingMark General_Category = Spacing Mark

Grapheme Cluster Boundary Rules

The same rules are used for the Unicode specification of boundaries for both legacy
grapheme clusters and extended grapheme clusters, with one exception. The extended
grapheme clusters add rules GB9a and GB9b, while the legacy grapheme clusters omit
it.

When citing the Unicode definition of grapheme clusters, it must be clear which of the
two alternatives are being specified: extended versus legacy.

and Grapheme_Cluster_Break ≠ Extend

L Hangul_Syllable_Type=L, that is:
U+1100 (ᄀ) HANGUL CHOSEONG KIYEOK
..U+1159 (ᅙ) HANGUL CHOSEONG YEORINHIEUH
U+115F (ᅟ) HANGUL CHOSEONG FILLER

V Hangul_Syllable_Type=V, that is:
U+1160 (ᅠ) HANGUL JUNGSEONG FILLER
..U+11A2 (ᆢ) HANGUL JUNGSEONG SSANGARAEA

T Hangul_Syllable_Type=T, that is:
U+11A8 (ᆨ) HANGUL JONGSEONG KIYEOK
..U+11F9 (ᇹ) HANGUL JONGSEONG YEORINHIEUH

LV Hangul_Syllable_Type=LV, that is:
U+AC00 (가) HANGUL SYLLABLE GA
U+AC1C (개) HANGUL SYLLABLE GAE
U+AC38 (갸) HANGUL SYLLABLE GYA
...

LVT Hangul_Syllable_Type=LVT, that is:
U+AC01 (각) HANGUL SYLLABLE GAG
U+AC02 (갂) HANGUL SYLLABLE GAGG
U+AC03 (갃) HANGUL SYLLABLE GAGS
U+AC04 (간) HANGUL SYLLABLE GAN
...

Any This is not a property value; it is used in the rules to represent
any code point.

Break at the start and end of text.
GB1. sot ÷

GB2. ÷ eot

Do not break between a CR and LF. Otherwise, break before and after controls.
GB3. CR × LF

Grapheme Cluster Boundaries can be easily tested by looking at immediately adjacent
characters. They can also be transformed into simple regular expressions, as well. For
more information, see Section 6.3 Regular Expressions.

4 Word Boundaries

Word boundaries are used in a number of different contexts. The most familiar ones are
selection (double-click mouse selection or “move to next word” control-arrow keys) and
the dialog option “Whole Word Search” for search and replace. They are also used in
database queries, to determine whether elements are within a certain number of words
of one another. Searching may also use word boundaries in determining matching items.
Word break boundaries are not restricted to whitespace and punctuation. Indeed, some
languages do not use spaces at all.

Word boundaries can also be used in intelligent cut and paste. With this feature, if the
user cuts a selection of text on word boundaries, adjacent spaces are collapsed to a
single space. For example, cutting “quick” from “The_quick_fox” would leave “The_ _fox”.
Intelligent cut and paste collapses this text to “The_fox”. Figure 1 gives an example of
word boundaries.

Figure 1. Word Boundaries

There is a boundary, for example, on either side of the word brown. These are the
boundaries that users would expect, for example, if they chose Whole Word Search.
Matching brown with Whole Word Search works because there is a boundary on either

GB4. (Control | CR | LF) ÷

GB5. ÷ (Control | CR | LF)

Do not break Hangul syllable sequences.
GB6. L × (L | V | LV | LVT)

GB7. (LV | V) × (V | T)

GB8. (LVT | T) × T

Do not break before extending characters.
GB9. × Extend

Only for extended grapheme clusters:
Do not break before SpacingMarks, or after Prepend characters.
GB9a. × SpacingMark

GB9b. Prepend ×

Otherwise, break everywhere.
GB10. Any ÷ Any

The quick (“brown”) fox can’t jump 32.3 feet, right?

side. Matching brow does not. Matching “brown” also works because there are
boundaries between the parentheses and the quotation marks.

Proximity tests in searching determines whether, for example, “quick” is within three
words of “fox”. That is done with the above boundaries by ignoring any words that do not
contain a letter, as in Figure 2. Thus, for proximity, “fox” is within three words of “quick”.
This same technique can be used for “get next/previous word” commands or keyboard
arrow keys. Letters are not the only characters that can be used to determine the
“significant” words; different implementations may include other types of characters such
as digits or perform other analysis of the characters.

Figure 2. Extracted Words

Word boundaries are related to line boundaries, but are distinct: there are some word
break boundaries that are not line break boundaries, and vice versa. A line break
boundary is usually a word break boundary, but there are exceptions such as a word
containing a SHY (soft hyphen): it will break across lines, yet is a single word.

As with the other default specifications, implementations may override (tailor) the results
to meet the requirements of different environments or particular languages. For some
languages, it may also be necessary to have different tailored word break rules for
selection versus Whole Word Search.

In particular, the characters with the Line_Break property values of Contingent_Break
(CB), Complex_Context (SA/South East Asian), and XX (Unknown) are assigned word
boundary property values based on criteria outside of the scope of this annex. That
means that satisfactory treatment of languages like Chinese or Thai requires special
handling.

4.1 Default Word Boundary Specification

The Word_Break property value assignments are explicitly listed in the corresponding
data file; see [Props]. The contents of this data file are summarized in Table 3.

Table 3. Word_Break Property Values

Thequickbrownfoxcan’tjump32.3feetright

Value Summary List of Characters

CR U+000D CARRIAGE RETURN (CR)

LF U+000A LINE FEED (LF)

Newline U+000B LINE TABULATION
U+000C FORM FEED (FF)
U+0085 NEXT LINE (NEL)
U+2028 LINE SEPARATOR
U+2029 PARAGRAPH SEPARATOR

Extend Grapheme_Extend = true, or
General_Category = Spacing Mark

Format General_Category = Format (Cf)
and not U+200B ZERO WIDTH SPACE (ZWSP)
and not U+200C ZERO WIDTH NON-JOINER (ZWNJ)
and not U+200D ZERO WIDTH JOINER (ZWJ)

Katakana Script = KATAKANA, or
any of the following:
U+3031 (〱) VERTICAL KANA REPEAT MARK
U+3032 (〲) VERTICAL KANA REPEAT WITH VOICED SOUND MARK
U+3033 (〳) VERTICAL KANA REPEAT MARK UPPER HALF
U+3034 (〴) VERTICAL KANA REPEAT WITH VOICED SOUND MARK
UPPER HALF
U+3035 (〵) VERTICAL KANA REPEAT MARK LOWER HALF
U+309B (゛) KATAKANA-HIRAGANA VOICED SOUND MARK
U+309C (゜) KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK
U+30A0 (��) KATAKANA-HIRAGANA DOUBLE HYPHEN
U+30FC (ー) KATAKANA-HIRAGANA PROLONGED SOUND MARK
U+FF70 (ｰ) HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND
MARK

ALetter Alphabetic = true, or
U+05F3 (׳) HEBREW PUNCTUATION GERESH
and Ideographic = false
and Word_Break ≠ Katakana
and LineBreak ≠ Complex_Context (SA)
and Script ≠ Hiragana
and Word_Break ≠ Extend

MidNumLet U+0027 (') APOSTROPHE
U+002E (.) FULL STOP
U+2018 (') LEFT SINGLE QUOTATION MARK
U+2019 (') RIGHT SINGLE QUOTATION MARK
U+2024 (․) ONE DOT LEADER
U+FE52 (﹒) SMALL FULL STOP

U+FF07 (＇) FULLWIDTH APOSTROPHE

U+FF0E (．) FULLWIDTH FULL STOP

MidLetter Any of the following:
U+00B7 (·) MIDDLE DOT
U+05F4 (״) HEBREW PUNCTUATION GERSHAYIM
U+2027 (‧) HYPHENATION POINT
U+003A (:) COLON (used in Swedish)
U+0387 (·) GREEK ANO TELEIA
U+FE13 (�) PRESENTATION FORM FOR VERTICAL COLON

Word Boundary Rules

U+FE55 (﹕) SMALL COLON

U+FF1A (：) FULLWIDTH COLON

MidNum Line_Break = Infix_Numeric, or
any of the following:
U+066C (،) ARABIC THOUSANDS SEPARATOR
U+FE50 (﹐) SMALL COMMA

U+FE54 (﹔) SMALL SEMICOLON

U+FF0C (，) FULLWIDTH COMMA

U+FF1B (；) FULLWIDTH SEMICOLON
and not U+003A (:) COLON
and not U+FE13 (�) PRESENTATION FORM FOR VERTICAL COLON
and not U+002E (.) FULL STOP

Numeric Line_Break = Numeric
and not U+066C (،) ARABIC THOUSANDS SEPARATOR

ExtendNumLet General_Category = Connector_Punctuation

Any This is not a property value; it is used in the rules to represent
any code point.

Break at the start and end of text.
WB1. sot ÷

WB2. ÷ eot

Do not break within CRLF.
WB3. CR × LF

Otherwise break before and after Newlines (including CR and LF)
WB3a. (Newline | CR | LF) ÷

WB3b. ÷ (Newline | CR | LF)

Ignore Format and Extend characters, except when they appear at the
beginning of a region of text.
(See Section 6.2, Replacing Ignore Rules.)
WB4. X (Extend | Format)* → X

Do not break between most letters.

Notes:

 It is not possible to provide a uniform set of rules that resolves all issues across
languages or that handles all ambiguous situations within a given language. The
goal for the specification presented in this annex is to provide a workable default;
tailored implementations can be more sophisticated.

 For Thai, Lao, Khmer, Myanmar, and other scripts that do not use typically use
spaces between words, a good implementation should not depend on the default
word boundary specification. It should use a more sophisticated mechanism, as is
also required for line breaking. Ideographic scripts such as Japanese and Chinese

WB5. ALetter × ALetter

Do not break letters across certain punctuation.
WB6. ALetter × (MidLetter | MidNumLet)

ALetter

WB7. ALetter (MidLetter | MidNumLet) × ALetter

Do not break within sequences of digits, or digits adjacent to letters
(“3a”, or “A3”).
WB8. Numeric × Numeric

WB9. ALetter × Numeric

WB10. Numeric × ALetter

Do not break within sequences, such as “3.2” or “3,456.789”.
WB11. Numeric (MidNum |

MidNumLet)
× Numeric

WB12. Numeric × (MidNum | MidNumLet)
Numeric

Do not break between Katakana.
WB13. Katakana × Katakana

Do not break from extenders.
WB13a. (ALetter | Numeric | Katakana |

ExtendNumLet)
× ExtendNumLet

WB13b. ExtendNumLet × (ALetter | Numeric |
Katakana)

Otherwise, break everywhere (including around ideographs).
WB14. Any ÷ Any

are even more complex. Where Hangul text is written without spaces, the same
applies. However, in the absence of a more sophisticated mechanism, the rules
specified in this annex supply a well-defined default.

 The correct interpretation of hyphens in the context of word boundaries is
challenging. It is quite common for separate words to be connected with a hyphen:
“out-of-the-box,” “under-the-table,” “Italian-American,” and so on. A significant
number are hyphenated names, such as “Smith-Hawkins.” When doing a Whole
Word Search or query, users expect to find the word within those hyphens. While
there are some cases where they are separate words (usually to resolve some
ambiguity such as “re-sort” as opposed to “resort”), it is better overall to keep the
hyphen out of the default definition. Hyphens include U+002D HYPHEN-MINUS,
U+2010 HYPHEN, possibly also U+058A (֊) ARMENIAN HYPHEN, and U+30A0
KATAKANA-HIRAGANA DOUBLE HYPHEN.

 Implementations may build on the information supplied by word boundaries. For
example, a spell-checker would first check that each word was valid according to
the above definition, checking the four words in “out-of-the-box.” If any of the words
failed, it could build the compound word and check if it as a whole sequence was in
the dictionary (even if all the components were not in the dictionary), such as with
“re-iterate.” Of course, spell-checkers for highly inflected or agglutinative languages
will need much more sophisticated algorithms.

 The use of the apostrophe is ambiguous. It is usually considered part of one word
(“can’t” or “aujourd’hui”) but it may also be considered as part of two words
(“l’objectif”). A further complication is the use of the same character as an
apostrophe and as a quotation mark. Therefore leading or trailing apostrophes are
best excluded from the default definition of a word. In some languages, such as
French and Italian, tailoring to break words when the character after the apostrophe
is a vowel may yield better results in more cases. This can be done by adding a
rule WB5a.

and defining appropriate property values for apostrophe and vowels. Apostrophe
includes U+0027 (') APOSTROPHE and U+2019 (’) RIGHT SINGLE QUOTATION MARK (curly
apostrophe). Finally, in some transliteration schemes, apostrophe is used at the
beginning of words, requiring special tailoring.

 To allow acronyms like “U.S.A.”, a tailoring may include U+002E FULL STOP in
ExtendNumLet.

 Certain cases such as colons in words (c:a) are included in the default even though
they may be specific to relatively small user communities (Swedish) because they
do not occur otherwise, in normal text, and so do not cause a problem for other
languages.

 For Hebrew, a tailoring may include a double quotation mark between letters,
because legacy data may contain that in place of U+05F4 (״) gershayim. This
can be done by adding double quotation mark to MidLetter. U+05F3 (׳) HEBREW

Break between apostrophe and vowels (French, Italian).
WB5a. apostrophe ÷ vowels

PUNCTUATION GERESH may also be included in a tailoring.

 Format characters are included if they are not initial. Thus <LRM><ALetter> will
break before the <letter>, but there is no break in <ALetter><LRM><ALetter> or
<ALetter><LRM>.

 Characters such as hyphens, apostrophes, quotation marks, and colon should be
taken into account when using identifiers that are intended to represent words of
one or more natural languages. See Section 2.4, Specific Character Adjustments,
of [UAX31]. Treatment of hyphens, in particular, may be different in the case of
processing identifiers than when using word break analysis for a Whole Word
Search or query, because when handling identifiers the goal will be to parse
maximal units corresponding to natural language “words,” rather than to find
smaller word units within longer lexical units connected by hyphens.

 Normally word breaking does not require breaking between different scripts.
However, adding that capability may be useful in combination with other extensions
of word segmentation. For example, in Korean the sentence "I live in Chicago." is
written as three segments delimited by spaces:

 나는 Chicago에 산다.

According to Korean standards, the grammatical suffixes, such as '에' meaning 'in',
are considered separate words. Thus the above sentence would be broken into the
following five words:

 나, 는, Chicago, 에, and 산다.

Separating the first two words requires a dictionary lookup, but for Latin text
("Chicago") the separation is trivial based on the script boundary.

 Modifier letters (Lm) are almost all included in the ALetter class, by virtue of their
Alphabetic property value. Thus, by default, modifier letters do not cause word
breaks and should be included in word selections. Modifier symbols (Sk) are not in
the ALetter class and so do cause word breaks by default.

 Some or all of the following characters may be tailored to be in MidNum, depending
on the environment, to allow for languages that use spaces as thousands
separators, such as €1 234,56.

0020 () SPACE
00A0 () NO-BREAK SPACE
2007 ( ) FIGURE SPACE

2008 ( ) PUNCTUATION SPACE

2009 () THIN SPACE

202F (�) NARROW NO-BREAK SPACE

5 Sentence Boundaries

Sentence boundaries are often used for triple-click or some other method of selecting or
iterating through blocks of text that are larger than single words. They are also used to
determine whether words occur within the same sentence in database queries.

Plain text provides inadequate information for determining good sentence boundaries.
Periods can signal the end of a sentence, indicate abbreviations, or be used for decimal

points, for example. Without much more sophisticated analysis, one cannot distinguish
between the two following examples of the sequence <?, ”, space, uppercase-letter>. In
the first example, they mark the end of a sentence, while in the second they do not.

Without analyzing the text semantically, it is impossible to be certain which of these
usages is intended (and sometimes ambiguities still remain). However, in most cases a
straightforward mechanism works well.

Note: As with the other default specifications, implementations are free to override
(tailor) the results to meet the requirements of different environments or particular
languages.

5.1 Default Sentence Boundary Specification

The Sentence_Break property value assignments are explicitly listed in the
corresponding data file; see [Props]. The contents of this data file are summarized in
Table 4.

Table 4. Sentence_Break Property Values

He said, “Are you going?” John shook his head.

“Are you going?” John asked.

Value Summary List of Characters

CR U+000D CARRIAGE RETURN (CR)

LF U+000A LINE FEED (LF)

Extend Grapheme_Extend = true, or
General_Category = Spacing Mark

Sep Any of the following characters:
U+0085 NEXT LINE (NEL)
U+2028 LINE SEPARATOR (LS)
U+2029 PARAGRAPH SEPARATOR (PS)

Format General_Category = Format (Cf)
and not U+200C ZERO WIDTH NON-JOINER (ZWNJ)
and not U+200D ZERO WIDTH JOINER (ZWJ)

Sp Whitespace = true
and Sentence_Break ≠ Sep
and Sentence_Break ≠ CR
and Sentence_Break ≠ LF

Lower Lowercase = true
and GRAPHEME EXTEND = false

Upper General_Category = Titlecase_Letter (Lt), or
Uppercase = true

OLetter Alphabetic = true, or
U+00A0 () NO-BREAK SPACE (NBSP), or
U+05F3 (׳) HEBREW PUNCTUATION GERESH
and Lower = false
and Upper = false
and Sentence_Break ≠ Extend

Numeric Linebreak = Numeric (NU)

ATerm U+002E (.) FULL STOP
2024 (․) ONE DOT LEADER
FE52 (﹒) SMALL FULL STOP

FF0E (．) FULLWIDTH FULL STOP

SContinue U+002C (,) COMMA
U+002D (-) HYPHEN-MINUS
U+003A (:) COLON
U+055D (՝) ARMENIAN COMMA
U+060C (،) ARABIC COMMA
U+060D (�) ARABIC DATE SEPARATOR
U+07F8 (�) NKO COMMA
U+1802 (᠂) MONGOLIAN COMMA
U+1808 (᠈) MONGOLIAN MANCHU COMMA
U+2013 (–) EN DASH
U+2014 (—) EM DASH
U+3001 (、) IDEOGRAPHIC COMMA
U+FE10 (�) PRESENTATION FORM FOR VERTICAL COMMA
U+FE11 (�) PRESENTATION FORM FOR VERTICAL IDEOGRAPHIC
COMMA

U+FE13 (�) PRESENTATION FORM FOR VERTICAL COLON
U+FE31 (︱) PRESENTATION FORM FOR VERTICAL EM DASH
U+FE32 (�) PRESENTATION FORM FOR VERTICAL EN DASH
U+FE50 (﹐) SMALL COMMA
U+FE51 (﹑) SMALL IDEOGRAPHIC COMMA
U+FE55 (﹕) SMALL COLON
U+FE58 (�) SMALL EM DASH
U+FE63 (﹣) SMALL HYPHEN-MINUS
U+FF0C (，) FULLWIDTH COMMA
U+FF0D (－) FULLWIDTH HYPHEN-MINUS

Sentence Boundary Rules

U+FF1A (：) FULLWIDTH COLON
U+FF64 (､) HALFWIDTH IDEOGRAPHIC COMMA

STerm STerm = true

Close General_Category = Open_Punctuation (Po), or
General_Category = Close_Punctuation (Pe), or
Linebreak = Quotation (QU)
and not U+05F3 (׳) HEBREW PUNCTUATION GERESH
and ATerm = false
and STerm = false

Any This is not a property value; it is used in the rules to
represent any code point.

Break at the start and end of text.
SB1. sot ÷

SB2. ÷ eot

Do not break within CRLF.
SB3. CR × LF

Break after paragraph separators.
SB4. Sep | CR | LF ÷

Ignore Format and Extend characters, except when they appear at the
beginning of a region of text. (See Section 6.2, Replacing Ignore Rules.)
SB5. X (Extend | Format)* → X

Do not break after ambiguous terminators like period, if they are immediately
followed by a number or lowercase letter, if they are between uppercase letters,
if the first following letter (optionally after certain punctuation) is lowercase, or
if they are followed by “continuation” punctuation such as comma, colon, or
semicolon. For example, a period may be an abbreviation or numeric period,
and thus may not mark the end of a sentence.
SB6. ATerm × Numeric

SB7. Upper ATerm × Upper

Notes:

 Rules SB6-8 are designed to forbid breaks within strings such as

They permit breaks in strings such as

They cannot detect cases such as “...Mr. Jones...”; more sophisticated tailoring
would be required to detect such cases.

 Rules SB9-11 are designed to allow breaks after sequences of the following form,
but not within them:

 (STerm | ATerm) Close* Sp* (Sep | CR | LF)?

6 Implementation Notes

6.1 Normalization

The boundary specifications are stated in terms of text normalized according to

SB8. ATerm Close* Sp* × (¬(OLetter | Upper | Lower |
Sep | CR | LF | STerm | ATerm))
* Lower

SB8a. (STerm | ATerm) Close* Sp* × (SContinue | STerm | ATerm)

Break after sentence terminators, but include closing punctuation, trailing
spaces, and a paragraph separator (if present). [See note below.]
SB9. (STerm | ATerm) Close* × (Close | Sp | Sep | CR | LF)

SB10. (STerm | ATerm) Close* Sp* × (Sp | Sep | CR | LF)

SB11. (STerm | ATerm) Close* Sp* (Sep |
CR | LF)?

÷

Otherwise, do not break.
SB12. Any × Any

c.d
3.4
U.S.

... the resp. leaders are ...
... etc.)’ ‘(the ...

 She said “See spot run.” John shook his head. ...
... etc. 它们指...
...理数字. 它们指...

Normalization Form NFD (see Unicode Standard Annex #15, “Unicode Normalization
Forms” [UAX15]). In practice, normalization of the input is not required. To ensure that
the same results are returned for canonically equivalent text (that is, the same boundary
positions will be found, although those may be represented by different offsets), the
grapheme cluster boundary specification has the following features:

 There is never a break within a sequence of nonspacing marks.
 There is never a break between a base character and subsequent nonspacing

marks.

The specification also avoids certain problems by explicitly assigning the Extend property
value to certain characters, such as U+09BE (া) BENGALI VOWEL SIGN AA, to deal with
particular compositions.

The other default boundary specifications never break within grapheme clusters, and
they always use a consistent property value for each grapheme cluster as a whole.

6.2 Replacing Ignore Rules

An important rule for the default word and sentence specifications ignores Extend and
Format characters. The main purpose of this rule is to always treat a grapheme cluster
as a single character—that is, as if it were simply the first character of the cluster. Both
word and sentence specifications do not distinguish between L, V, T, LV, and LVT: thus it
does not matter whether there is a sequence of these or a single one. In addition, there
is a specific rule to disallow breaking within CRLF. Thus ignoring Extend is sufficient to
disallow breaking within a grapheme cluster. Format characters are also ignored by
default, because these characters are normally irrelevant to such boundaries.

The “Ignore” rule is then equivalent to making the following changes in the rules:

Replace the “Ignore” rule by the following, to disallow breaks within sequences
(except after CRLF and related characters):

Original → Modified

X (Extend | Format)
*→X

→ (¬Sep) × (Extend | Format)

In all subsequent rules, insert (Extend | Format)* after every boundary property
value, except in negations (such as ¬(OLetter | Upper ...). (It is not necessary to
do this after the final property, on the right side of the break symbol.) For
example:

Original → Modified

X Y × Z W → X (Extend | Format)* Y (Extend | Format)* × Z
(Extend | Format)* W

X Y × → X (Extend | Format)* Y (Extend | Format)* ×

An alternate expression that resolves to a single character is treated as a whole.

The Ignore rules should not be overridden by tailorings, with the possible exception of
remapping some of the Format characters to other classes.

6.3 Regular Expressions

The preceding rules can be converted into regular expressions that will produce the
same results. The regular expression must be evaluated starting at a known boundary
(such as the start of the text) and take the longest match (except in the case of sentence
boundaries, where the shortest match needs to be used).

The conversion into a regular expression is fairly straightforward for the grapheme
cluster boundaries of Table 1 . For example, they can be transformed into the following
regular expression:

(CR LF)
| (Prepend*
 (L+ | (L* ((V | LV) V* | LVT) T*) | T+ | [^ Control CR LF])
 (Extend | SpacingMark)*
)
| .

Such a regular expression can also be turned into a fast, deterministic finite-state
machine. Similar regular expressions are possible for Word boundaries. Line and
Sentence boundaries are more complicated, and more difficult to represent with regular
expressions. For more information on Unicode Regular Expressions, see Unicode
Technical Standard #18, “Unicode Regular Expressions” [UTS18].

6.4 Random Access

Random access introduces a further complication. When iterating through a string from
beginning to end, a regular expression or state machine works well. From each boundary
to find the next boundary is very fast. By constructing a state table for the reverse
direction from the same specification of the rules, reverse iteration is possible.

However, suppose that the user wants to iterate starting at a random point in the text, or
detect whether a random point in the text is a boundary. If the starting point does not
provide enough context to allow the correct set of rules to be applied, then one could fail
to find a valid boundary point. For example, suppose a user clicked after the first space
after the question mark in “Are_you_there? _ _ No,_I’m_not”. On a forward iteration
searching for a sentence boundary, one would fail to find the boundary before the “N”,
because the “?” had not been seen yet.

A second set of rules to determine a “safe” starting point provides a solution. Iterate
backward with this second set of rules until a safe starting point is located, then iterate

For example:
Original → Modified

(STerm | ATerm) → (STerm | ATerm) (Extend | Format)*

not → (STerm (Extend | Format)* | ATerm (Extend |
Format)*)

forward from there. Iterate forward to find boundaries that were located between the safe
point and the starting point; discard these. The desired boundary is the first one that is
not less than the starting point. The safe rules must be designed so that they function
correctly no matter what the starting point is, so they have to be conservative in terms of
finding boundaries, and only find those boundaries that can be determined by a small
context (a few neighboring characters).

Figure 3. Random Access

This process would represent a significant performance cost if it had to be performed on
every search. However, this functionality can be wrapped up in an iterator object, which
preserves the information regarding whether it currently is at a valid boundary point. Only
if it is reset to an arbitrary location in the text is this extra backup processing performed.
The iterator may even cache local values that it has already traversed.

6.5 Tailoring

Rule-based implementation can also be combined with a code-based or table-based
tailoring mechanism. For typical state machine implementations, for example, a Unicode
character is typically passed to a mapping table that maps characters to boundary
property values. This mapping can use an efficient mechanism such as a trie. Once a
boundary property value is produced, it is passed to the state machine.

The simplest customization is to adjust the values coming out of the character mapping
table. For example, to mark the appropriate quotation marks for a given language as
having the sentence boundary property value Close, artificial property values can be
introduced for different quotation marks. A table can be applied after the main mapping
table to map those artificial character property values to the real ones. To change
languages, a different small table is substituted. The only real cost is then an extra array
lookup.

For code-based tailoring a different special range of property values can be added. The
state machine is set up so that any special property value causes the state machine to
halt and return a particular exception value. When this exception value is detected, the
higher-level process can call specialized code according to whatever the exceptional
value is. This can all be encapsulated so that it is transparent to the caller.

For example, Thai characters can be mapped to a special property value. When the state
machine halts for one of these values, then a Thai word break implementation is invoked
internally, to produce boundaries within the subsequent string of Thai characters. These
boundaries can then be cached so that subsequent calls for next or previous boundaries
merely return the cached values. Similarly Lao characters can be mapped to a different
special property value, causing a different implementation to be invoked.

7 Testing

There is no requirement that Unicode-conformant implementations implement these
default boundaries. As with the other default specifications, implementations are also
free to override (tailor) the results to meet the requirements of different environments or
particular languages. For those who do implement the default boundaries as specified in
this annex, and wish to check that that their implementation matches that specification,
three test files have been made available in [Tests29].

These tests cannot be exhaustive, because of the large number of possible
combinations; but they do provide samples that test all pairs of property values, using a
representative character for each value, plus certain other sequences.

A sample HTML file is also available for each that shows various combinations in chart
form, in [Charts29]. The header cells of the chart consist of a property value, followed by
a representative code point number. The body cells in the chart show the break status:
whether a break occurs between the row property value and the column property value.
If the browser supports tool-tips, then hovering the mouse over the code point number
will show the character name, General_Category, Line_Break, and Script property
values. Hovering over the break status will display the number of the rule responsible for
that status.

Note: Testing two adjacent characters is insufficient for determining a boundary,
except for the case of the default grapheme clusters.

The chart may be followed by some test cases. These test cases consist of various
strings with the break status between each pair of characters shown by blue lines for
breaks and by whitespace for non-breaks. Hovering over each character (with tool-tips
enabled) shows the character name and property value; hovering over the break status
shows the number of the rule responsible for that status.

Due to the way they have been mechanically processed for generation, the test rules do
not match the rules in this annex precisely. In particular:

1. The rules are cast into a more regex-style.
2. The rules “sot ÷”, “÷ eot”, and “÷ Any” are added mechanically and have artificial

numbers.
3. The rules are given decimal numbers without prefix, so rules such as WB13a are

given a number using tenths, such as 13.1.
4. Where a rule has multiple parts (lines), each one is numbered using hundredths,

such as
 21.01) × $BA
 21.02) × $HY
 ...

5. Any “treat as” or “ignore” rules are handled as discussed in this annex, and thus
reflected in a transformation of the rules not visible in the tests.

The mapping from the rule numbering in this annex to the numbering for the test rules is
summarized in Table 5.

Table 5. Numbering of Rules

Rule in This Annex Test Rule Comment

Acknowledgments

Mark Davis is the author of the initial version and has added to and maintained the text of
this annex.

Thanks to Julie Allen, Asmus Freytag, Ted Hopp, Andy Heninger, Michael Kaplan, Steve
Tolkin, Ken Whistler, and Eric Mader for their feedback on this annex, including earlier
versions.

References

For references for this annex, see Unicode Standard Annex #41, “Common References
for Unicode Standard Annexes.”

Modifications

The following summarizes modifications from the previous versions of this annex.

Revision 14.

 Proposed Update for Unicode 5.2.0
 Draft 2
 Revised 6.3 Regular Expressions
 Added a pointer from 3.1 Default Grapheme Cluster Boundary Specification
 Many (unmarked) small wording changes.
 Changed property of ZWSP to XX (Any) in 4.1 Default Word Boundary

Specification

Revision 13.

 Updated for Unicode 5.1.0.
 Revised the contents of SContinue.
 Added Newline, and rules WB3a and WB3b.
 Added Prepend, and rule GB9b.
 Note that the GraphemeBreakTest now tests extended grapheme clusters, since

those are more inclusive.
 Major revision of the 3 Grapheme Cluster Boundaries, to reflect UTC decisions.

xx1 0.1 start of text
xx2 0.2 end of text
SB8a 8.1

letter styleWB13a 13.1
WB13b 13.2
GB10

999 any
WB14

Includes use of the name extended grapheme cluster, and significant reordering
and enhancement of the text.

 Added note on breaking between scripts in 4.1 Default Word Boundary
Specification.

 Added note on modifier letters.
 Added note on SB9-11.
 Added SContinue (sentence-continue) to improve sentence segmentation.
 Added MidNumLet to improve word segmentation, by allowing certain characters to

"bridge" both numbers and alphabetic words.
 Added informative note on the use of space in numbers.
 Made changes to property values for Word/Sentence break.
 Added CR, LF, Extend, Control as needed under Word and Sentence boundaries.

This caused all rules containing Sep to be changed.
 Clarified use of "Any".
 Updated MidLetter to include U+2018.
 Fixed items that were noted in proof for 5.0.0.

Revision 12 being a proposed update, only changes between versions 13 and 11 are
noted here.

Revision 11.

 Removed NBSP from ALetter.
 Added note on problem with Sentence Break rules SB8 and SB11.
 Changed table format, minor edits.
 Cleaned up description of how to handle Ignore Rules
 Added more details on the test file formats (for the html files).
 Added note about identifiers and natural language.
 Added reference to LDML/CLDR.
 Modified GC treatment to use the equivalent (but more straightforward) use of

Extend* in Section 4, Word Boundaries, and Section 5, Sentence Boundaries. (This
is equivalent because breaks are not allowed within Hangul syllables by the other
rules anyway.) Also unify the application of Extend* and Format*. This combines
two rules into one in each set of rules (former 3 and 4 in Word Boundaries, 4 and 5
in Sentence Boundaries).

 Clarified how to apply “ignore” rules in Section 6.2, Grapheme Cluster and Format
Rules, and combined Extend and Format

 Added “Do not break within CRLF” to Section 4, Word Boundaries, and Section
5, Sentence Boundaries.

 Added 8a in Section 5, Sentence Boundaries, to address an edge condition and fix
a typo in #10.

 Replaced “user character” by “user-perceived character”.
 Reformed ALetter in Section 4, Word Boundaries, to depend on LineBreak. Fixed

references within properties.
 Removed Rule 0 of Section 4, Word Boundaries.
 Clarified discussion of NFD, spelling checkers, and cleaned up language around

“engines” and “state machines” versus “implementations”.

Revision 10 being a proposed update, only changes between versions 11 and 9 are
noted here.

Revision 9.

 Reworded introduction slightly, moved last half of Notation into the introduction.
 Added line above each boundary property value table pointing to the data files for

the precise definition of the properties.
 Added note to clarify that grapheme clusters are not broken in word or sentence

boundaries.
 Clarified examples in “1. Single boundaries”.
 Added pointer to UTS #10
 Change the “and not” formulation for clarity.

 “and not X = true”→ “and X = false”

 “and not X = Y”→ “and X ≠ Y”

Revision 8.

 Modified the tables so as to make the property values orthogonal.
 Added Joiner/Non-Joiner.
 Added additional katakana characters.
 Removed MidNumLet, and added ExtendedNumLet (with corresponding changes

to the rules).
 Moved the test files to the references.
 Fixed up the property file references.

Revision 7.

 Incorporated corrigendum for Hangul_Syllable_Type=L explanation, and adjusted
for the change in status of the Joiner characters.

 Added override for CB, SA, SG, and XX in wordbreak.
 Added “Any” entries, and note about precedence.
 Added NBSP, and removed GRAPHEME EXTEND = true from the “alphabetics”.
 Added data files with explicit property values.

Revision 6.

 Changed Term to be the 4.0.1 UCD property STerm. Note: the new property
provides minor corrections as well.

Revision 4.

 Updated boilerplate.

 Use the Grapheme_Extend property. Dropped note on Other_Grapheme_Extend,
because those changes are in UCD 4.0.0

 Deleted note on relation to 3.0 text. Replace reference to 3.2 with one to 4.0.

 Replaced the lists of Korean chars by reference to the Hangul_Syllable_Type, with
the lists kept as examples. Added reference to the UCD.

 Simplified ALetter and OLetter, because some characters are changing from Sk to
Lm, and thus get included; other Sk are not really candidates for words.

 Subtracted characters from certain classes so they wouldn’t overlap:
 CR and LF from Control in Grapheme Break

 Soft hyphen from MidLetter in Word Break (because it is Cf in 4.0)

 ATerm, Term and GERESH from Close in Sentence Break

 Added note about finite-state machine; highlighted notes about adjacent
characters.

 Fixed the term “interior” (didn’t match the rules); and some character names.

Revision 3.

 Removal of two open issues, resolved by UTC
 Changed name of “character class” to “property value” for consistency
 Other_Grapheme_Extend now includes characters for canonical closure
 Minor changes to some other property values
 Some additional notes on tailoring words for French, Italian, and Hebrew
 Added Section 7, Testing.
 Minor editing.

Revision 2.

 Simplified grapheme cluster.
 Handled format characters appropriately.
 Removed Hiragana × Hiragana from word break, as well as prefix/posfix for

numbers (because they should not block Whole-Word Search).
 Modified sentence break to catch edge conditions.
 Added conformance section, with more warnings throughout that these

specifications need to be tailored for different languages/orthographic conventions.
 Tightened up the specifications of the character classes.
 Clarified the rule process.
 Added explanations of the interaction with normalization.
 Added an implementation section (incorporating the previous Random Access

section).

Copyright © 2000-2009Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied
warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and
consequential damages in connection with or arising out of the use of the information or programs contained or
accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

