
 Technical Reports

Proposed Update Unicode Standard Annex #31

UNICODE IDENTIFIER AND PATTERN SYNTAX

Version Unicode 5.2.0 draft 4
Authors Mark Davis (markdavis@google.com)
Date 2009-07-09
This Version http://www.unicode.org/reports/tr31/tr31-10.html
Previous
Version

http://www.unicode.org/reports/tr31/tr31-9.html

Latest
Version

http://www.unicode.org/reports/tr31/

Revision 10

Summary

This annex describes specifications for recommended defaults for the use of
Unicode in the definitions of identifiers and in pattern-based syntax. It also
supplies guidelines for use of normalization with identifiers.

This is a draft document which may be updated, replaced, or superseded by
other documents at any time. Publication does not imply endorsement by the
Unicode Consortium. This is not a stable document; it is inappropriate to cite this
document as other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode
Standard, but is published online as a separate document. The Unicode
Standard may require conformance to normative content in a Unicode
Standard Annex, if so specified in the Conformance chapter of that version
of the Unicode Standard. The version number of a UAX document
corresponds to the version of the Unicode Standard of which it forms a part.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this annex is
found in Unicode Standard Annex #41, “Common References for Unicode
Standard Annexes.” For the latest version of the Unicode Standard, see
[Unicode]. For a list of current Unicode Technical Reports, see [Reports]. For
more information about versions of the Unicode Standard, see [Versions]. For
any errata which may apply to this annex, see [Errata].

Page 1 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

rick@unicode.org
Text Box
L2/09-131R

Contents

1 Introduction
1.1 Conformance

2 Default Identifier Syntax
2.1 Combining Marks
2.2 Modifier Letters
2.3 Layout and Format Control Characters
2.4 Specific Character Adjustments
2.5 Backward Compatibility

3 Alternative Identifier Syntax
4 Pattern Syntax
5 Normalization and Case

5.1 NFKC Modifications
Acknowledgments
References
Modifications

1 Introduction

A common task facing an implementer of the Unicode Standard is the provision
of a parsing and/or lexing engine for identifiers, such as programming language
variables or domain names. To assist in the standard treatment of identifiers in
Unicode character-based parsers and lexical analyzers, a set of specifications is
provided here as a recommended default for the definition of identifier syntax.

These guidelines follow the typical pattern of identifier syntax rules in common
programming languages, by defining an ID_Start class and an ID_Continue class
and using a simple BNF rule for identifiers based on those classes; however, the
composition of those classes is more complex and contains additional types of
characters, due to the universal scope of the Unicode Standard.

This annex also provides guidelines for the user of normalization and case
insensitivity with identifiers, expanding on a section that was originally in Unicode
Standard Annex #15, “Unicode Normalization Forms” [UAX15].

The specification in this annex provides a definition of identifiers that is
guaranteed to be backward compatible with each successive release of Unicode,
but also allows any appropriate new Unicode characters to become available in
identifiers. In addition, Unicode character properties for stable pattern syntax are
provided. The resulting pattern syntax is backward compatible and forward
compatible over future versions of the Unicode Standard. These properties can
either be used alone or in conjunction with the identifier characters.

Figure 1 shows the disjoint categories of code points defined in this annex. (The
sizes of the boxes are not to scale.):

Page 2 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

Figure 1. Code Point Categories for Identifier Parsing

ID_Start
Characters

Pattern_Syntax
Characters

Unassigned Code Points
ID

Nonstart
Characters

Pattern_White_Space
Characters

Other Assigned

Code Points

The set consisting of the union of ID_Start and ID Nonstart characters is known
as Identifier Characters and has the property ID_Continue. The ID Nonstart set is
defined as the set difference ID_Continue minus ID_Start. While lexical rules are
traditionally expressed in terms of the latter, the discussion here is simplified by
referring to disjoint categories.

Stability. There are certain features that developers can depend on for stability:

Identifier characters, Pattern_Syntax characters, and Pattern_White_Space
are disjoint: they will never overlap.

•

The Identifier characters are always a superset of the ID_Start characters.•
The Pattern_Syntax characters and Pattern_White_Space characters are
immutable and will not change over successive versions of Unicode.

•

The ID_Start and ID Nonstart characters may grow over time, either by the
addition of new characters provided in a future version of Unicode or (in
rare cases) by the addition of characters that were in Other. However,
neither will ever decrease.

•

In successive versions of Unicode, the only allowed changes of characters from
one of the above classes to another are those listed with a plus sign (+) in Table
1.

Table 1. Permitted Changes in Future Versions

 ID_Start ID Nonstart Other Assigned
Unassigned + + +

Page 3 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

Other Assigned + +
ID Nonstart +

The Unicode Consortium has formally adopted a stability policy on identifiers. For
more information, see [Stability].

Programming Languages. Each programming language standard has its own
identifier syntax; different programming languages have different conventions for
the use of certain characters such as $, @, #, and _ in identifiers. To extend such
a syntax to cover the full behavior of a Unicode implementation, implementers
may combine those specific rules with the syntax and properties provided here.

Each programming language can define its identifier syntax as relative to the
Unicode identifier syntax, such as saying that identifiers are defined by the
Unicode properties, with the addition of “$”. By addition or subtraction of a small
set of language specific characters, a programming language standard can easily
track a growing repertoire of Unicode characters in a compatible way. See also
Section 2.5, Backward Compatibility.

Similarly, each programming language can define its own whitespace characters
or syntax characters relative to the Unicode Pattern_White_Space or
Pattern_Syntax characters, with some specified set of additions or subtractions.

Systems that want to extend identifiers so as to encompass words used in
natural languages, or narrow identifiers for security may do so as described in
Section 2.3, Layout and Format Control Characters, Section 2.4, Specific
Character Adjustments, and Section 5, Normalization and Case.

To preserve the disjoint nature of the categories illustrated in Figure 1, any
character added to one of the categories must be subtracted from the others.

Note: In many cases there are important security implications that may
require additional constraints on identifiers. For more information, see
[UTR36].

1.1 Conformance

The following describes the possible ways that an implementation can claim
conformance to this specification.

UAX31-C1. An implementation claiming conformance to this
specification at any Level shall identify the version of this
specification and the version of the Unicode Standard.

UAX31-C2. An implementation claiming conformance to Level 1 of this
specification shall describe which of the following it
observes:

Page 4 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

R1 Default Identifiers•
R1a Restricted Format Characters•
R1b Stable Identifiers•
R2 Alternative Identifiers•
R3 Pattern_White_Space and Pattern_Syntax Characters•
R4 Equivalent Normalized Identifiers•
R5 Equivalent Case-Insensitive Identifiers•
R6 Filtered Normalized Identifiers•
R7 Filtered Case-Insensitive Identifiers•

2 Default Identifier Syntax

The formal syntax provided here captures the general intent that an identifier
consists of a string of characters beginning with a letter or an ideograph, and
followed by any number of letters, ideographs, digits, or underscores. It provides
a definition of identifiers that is guaranteed to be backward compatible with each
successive release of Unicode, but also adds any appropriate new Unicode
characters.

D1. Default Identifier Syntax

<identifier> := <ID_Start> <ID_Continue>*

Identifiers are defined by the sets of lexical classes defined as properties in the
Unicode Character Database. These properties are shown in Table 2.

Table 2. Lexical Classes for Identifiers

Properties Alternates General Description of Coverage
ID_Start XID_Start Characters having the Unicode

General_Category of uppercase letters (Lu),
lowercase letters (Ll), titlecase letters (Lt),
modifier letters (Lm), other letters (Lo), letter
numbers (Lu), minus Pattern_Syntax and
Pattern_White_Space code points, plus stability
extensions. Note that “other letters” includes
ideographs.

Page 5 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

In set notation, this is [[:L:][:Nl:]--
[:Pattern_Syntax:]--[:Pattern_White_Space:]]
plus stability extensions.

ID_Continue XID_Continue All of the above, plus characters having the
Unicode General_Category of nonspacing
marks (Mn), spacing combining marks (Mc),
decimal number (Nd), connector punctuations
(Pc), plus stability extensions, minus
Pattern_Syntax and Pattern_White_Space code
points.

In set notation, this is [[:L:][:Nl:][:Mn:][:Mc:]
[:Nd:][:Pc:]--[:Pattern_Syntax:]--
[:Pattern_White_Space:]] plus stability
extensions.

These are also known simply as Identifier
Characters, because they are a superset of the
ID_Start characters.

The innovations in the identifier syntax to cover the Unicode Standard include the
following:

Incorporation of proper handling of combining marks.•
Allowance for layout and format control characters, which should be
ignored when parsing identifiers.

•

The XID_Start and XID_Continue properties are improved lexical classes
that incorporate the changes described in Section 5.1, NFKC Modifications.
They are recommended for most purposes, especially for security, over the
original ID_Start and ID_Continue properties.

•

2.1 Combining Marks

Combining marks are accounted for in identifier syntax: a composed character
sequence consisting of a base character followed by any number of combining
marks is valid in an identifier. Combining marks are required in the representation
of many languages, and the conformance rules in Chapter 3, Conformance, of
[Unicode] require the interpretation of canonical-equivalent character sequences.
The simplest way to do this is to require identifiers in the NFC format (or
transform them into that format); see Section 5, Normalization and Case.

Page 6 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

Enclosing combining marks (such as U+20DD..U+20E0) are excluded from the
definition of the lexical class ID_Continue, because the composite characters
that result from their composition with letters are themselves not normally
considered valid constituents of these identifiers.

2.2 Modifier Letters

Modifier letters (General_Category=Lm) are also included in the definition of the
syntax classes for identifiers. Modifier letters are often part of natural language
orthographies and are useful for making word-like identifiers in formal languages.
On the other hand, modifier symbols (General_Category=Sk), which are seldom
a part of language orthographies, are excluded from identifiers. For more
discussion of modifier letters and how they function, see [Unicode].

Implementations that tailor identifier syntax for special purposes may wish to take
special note of modifier letters, as in some cases modifier letters have
appearances, such as raised commas, which may be confused with common
syntax characters such as quotation marks.

2.3 Layout and Format Control Characters

Certain Unicode characters are known as Default_Ignorable_Code_Points.
These include variation selectors and control-like characters used to control
joining behavior, bidirectional ordering control, and alternative formats for display
(having the General_Category value of Cf).The recommendation is to not permit
them in identifiers except in special cases, listed below. The use of default-
ignorable characters in identifiers is problematical because the effects they
represent are normally just stylistic or otherwise out of scope for identifiers. It is
also possible to misapply these characters such that users can create strings that
look the same but actually contain different characters, which can create security
problems. In such environments, identifiers should also be limited to characters
that are case-folded and normalized with NFKC. For more information, see
Section 5, Normalization and Case and UTR# 36: Unicode Security
Considerations [UTR36].

For the above reasons, default-ignorable characters are normally excluded from
Unicode identifiers. However, visible distinctions created by certain format
characters (particularly the Join_Control characters) are necessary because they
make required distinctions in certain languages. A blanket exclusion of these
characters makes it impossible to create identifiers based on certain words or
phrases in those languages. Identifier systems that attempt to provide more
natural representations of terms in modern, customary use should consider
allowing these characters, but limit them to particular contexts where they are
necessary.

Note: The term modern customary usage includes characters that are in
common use in newspapers, journals, lay publications; on street signs; in
commercial signage; and as part of common geographic names and company
names, and so on. It does not include technical or academic usage such as in
mathematical expressions, using archaic scripts or words, or pedagogical use
(such as illustration of half-forms or joining forms in isolation).

Page 7 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

The goals for such a restriction of format characters to particular contexts are to:

Allow the use of these characters where required in normal text•
Exclude as many cases as possible where no visible distinction results•
Be simple enough to be easily implemented with standard mechanisms
such as regular expressions

•

Thus for such circumstances, an implementation may choose to allow the
following Join_Control characters, but only in very limited contexts as specified in
A1, A2, and B below:

U+200C ZERO WIDTH NON-JOINER [ZWNJ]
U+200D ZERO WIDTH JOINER [ZWJ]

Implementations may further restrict the contexts in which these characters may
be used. For more information, see UTR# 36: Unicode Security Considerations
[UTR36].

Performance. Parsing identifiers can be a performance-sensitive task. However,
these characters are quite rare in practice, thus the regular expressions (or
equivalent processing) only rarely would need to be invoked. Thus these tests
should not add any significant performance cost overall.

Comparison. Typically the identifiers with and without these characters should
not compare as equivalent. However, in certain language-specific cases, such as
in Sinhala, they should compare as equivalent. See Section 2.4, Specific
Character Adjustments.

The characters and their contexts are given by conditions A1, A2, and B below.
There are two global conditions as well:

Script Restriction. In each of the following cases, the specified sequence
must only consist of characters from a single script (after ignoring Common
and Inherited script characters).

Normalization. In each of the following cases, the specified sequence
must be in NFC format. (To test an identifier that is not required to be in
NFC, first transform into NFC format and then test the condition.)

A1. Allow ZWNJ in the following context:

Breaking a cursive connection. That is, in the context based on the
Joining_Type property, consisting of:

A Left-Joining or Dual-Joining character, followed by zero or more
Transparent characters, followed by a ZWNJ, followed by zero or more
Transparent characters, followed by a Right-Joining or Dual-Joining
character

•

Page 8 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

This corresponds to the following regular expression (in Perl-style syntax): /
$LJ $T* ZWNJ $T* $RJ/
where:

•

$T = [:Joining_Type=Transparent:]
$RJ = [[:Joining_Type=Dual_Joining:][:Joining_Type=Right_Joining:]]
$LJ = [[:Joining_Type=Dual_Joining:][:Joining_Type=Left_Joining:]]

Example: For example, consider Farsi <Noon, Alef, Meem, Heh, Alef, Farsi
Yeh>. Without a ZWNJ, it translates to "names", as shown in the first row; with a
ZWNJ between Heh and Alef, it means "a letter". , as shown in the second row of
Figure 2 illustrates this.

Figure 2. Farsi Example with ZWNJ

A2. Allow ZWNJ in the following context:

In a conjunct context. That is, a sequence of the form:

A Letter, followed by a Virama, followed by a ZWNJ, followed by an Letter•
This corresponds to the following regular expression (in Perl-style syntax): /
$L $V ZWNJ/
where:

•

$L = [:General_Category=Letter:]
$V = [:Canonical_Combining_Class=Virama:]

Example: For example, the Malayalam word for eyewitness is shown in Figure
3. The form without the ZWNJ in the second row is incorrect in this case.

Page 9 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

Figure 3. Malayalam Example with ZWNJ

B. Allow ZWJ in the following context:

In a conjunct context. That is, a sequence of the form:

A Letter, followed by a Virama, followed by a ZWJ•
This corresponds to the following regular expression (in Perl-style syntax): /
$Let $V ZWJ/
where:

•

$Let = [:General_Category=Letter:]
$V = [:Canonical_Combining_Class=Virama:]

Example: For example, the Sinhalaese word for the country 'Sri Lanka' is
shown in A in the first row of Figure 4, which uses both a space character and a
ZWJ. Removing the space gives results in the text in B in shown in the second
row of Figure 4, which is still readable legible, but removing the ZWJ completely
modifies the appearance of the 'Sri' cluster and gives results in the unacceptable
text appearance shown in C in the third row of Figure 4.

Figure 4. Sinhala Example with ZWJ

Page 10 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

2.4 Specific Character Adjustments

Specific identifier syntaxes can be treated as tailorings (or profiles) of the generic
syntax based on character properties. For example, SQL identifiers allow an
underscore as an identifier continue, but not as an identifier start; C identifiers
allow an underscore as either an identifier continue or an identifier start. Specific
languages may also want to exclude the characters that have a
Decomposition_Type other than Canonical or None, or to exclude some subset
of those, such as those with a Decomposition_Type equal to Font.

There are circumstances in which identifiers are expected to more fully
encompass words or phrases used in natural languages. In these cases, a profile
should consider whether the characters in Table 3 should be allowed in
identifiers, and perhaps others, depending on the languages in question. In some
environments even spaces are allowed in identifiers, such as in SQL: SELECT *
FROM Employee Pension.

Table 3. Candidate Characters for Inclusion in Identifiers

0027 (') APOSTROPHE
002D (-) HYPHEN-MINUS
002E (.) FULL STOP
003A (:) COLON
00B7 (·) MIDDLE DOT
058A (֊) ARMENIAN HYPHEN
05F3 (׳) HEBREW PUNCTUATION GERESH
05F4 (״) HEBREW PUNCTUATION GERSHAYIM
0F0B (་) TIBETAN MARK INTERSYLLABIC TSHEG
200C (�) ZERO WIDTH NON-JOINER*
200D (�) ZERO WIDTH JOINER*
2010 (‐) HYPHEN
2019 (’) RIGHT SINGLE QUOTATION MARK
2027 (‧) HYPHENATION POINT
30A0 (=) KATAKANA-HIRAGANA DOUBLE HYPHEN
30FB (・) KATAKANA MIDDLE DOT

* The characters marked with an asterisk in Table 3 are Join_Control characters,
are discussed in Section 2.3, Layout and Format Control Characters.

In identifiers that allow for unnormalized characters, the compatibility equivalents
of these the characters listed in Table 3 may also be appropriate. For more
information on characters that may occur in words, see Section 4, Word
Boundaries, in [UAX29].

Some characters are not in modern customary use, and thus implementations
may want to exclude them from identifiers. These include characters in historic
and obsolete scripts, scripts used mostly liturgically, and regional scripts used
only in very small communities or with very limited current usage. The set of
characters in Table 4 provides candidates of these, plus some inappropriate
technical blocks. This is the recommendation as of Unicode 5.2; as new scripts
or blocks are added to future versions of Unicode, additional characters may be
added to this list. Note that scripts may move between Table 4 and Table 5
based on new information as to usage.

Page 11 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

[Ed Note: Please review this list for Unicode 5.2. Note that Vai and Bamum have
roughly similar usage, and should either both be in Table 4 (candidate
exclusions) or both be in Table 5 (recommended scripts). The same is true for
Javanese and Balinese.]

Table 4. Candidate Characters for Exclusion from Identifiers

Property Notation Description
[:script=Bugi:] Buginese
[:script=Buhd:] Buhid
[:script=Cari:] Carian
[:script=Copt:] Coptic
[:script=Cprt:] Cypriot
[:script=Dsrt:] Deseret
[:script=Glag:] Glagolitic
[:script=Goth:] Gothic
[:script=Hano:] Hanunoo
[:script=Ital:] Old_Italic
[:script=Khar:] Kharoshthi
[:script=Linb:] Linear_B
[:script=Lyci:] Lycian
[:script=Lydi:] Lydian
[:script=Ogam:] Ogham
[:script=Osma:] Osmanya
[:script=Phag:] Phags_Pa
[:script=Phnx:] Phoenician
[:script=Rjng:] Rejang
[:script=Runr:] Runic
[:script=Shaw:] Shavian
[:script=Sund:] Sundanese
[:script=Sylo:] Syloti_Nagri
[:script=Syrc:] Syriac
[:script=Tagb:] Tagbanwa
[:script=Tglg:] Tagalog
[:script=Ugar:] Ugaritic

Page 12 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

[:script=Xpeo:] Old_Persian
[:script=Xsux:] Cuneiform
[:script=Avst:] Avestan
[:script=Egyp:] Egyptian Hieroglyphs
[:script=Samr:] Samaritan
[:script=Lisu:] Lisu
[:script=Bamu:] Bamum
[:script=Java:] Javanese
[:script=Armi:] Imperial Aramaic
[:script=Sarb:] Old South Arabian
[:script=Prti:] Inscriptional Parthian
[:script=Phli:] Inscriptional Pahlavi
[:script=Orkh:] Old Turkic
[:script=Kthi:] Kaithi
[[:Extender=True:] &

[:Joining_Type=Join_Causing:]]

U+0640 (ـ) ARABIC TATWEEL
U+07FA () NKO
LAJANYALAN

[:Default_Ignorable_Code_Point:] Default Ignorable Code Points
See Section 2.3 Layout and
Format Control Characters

[:block=Combining_Diacritical_Marks_for_Symbols:]
[:block=Musical_Symbols:]
[:block=Ancient_Greek_Musical_Notation:]
[:block=Phaistos_Disc:]

This is the recommendation as of Unicode 5.1; as new scripts or blocks are
added to future versions of Unicode, additional characters may be added to this
list.

For comparison, the other scripts (listed in Table 5) are generally recommended
for use in identifiers. They are in widespread current use, or are regional scripts
with large communities of users, or have significant revival efforts. This is the
recommendation as of Unicode 5.2; as new scripts are added to future versions
of Unicode, additional characters may be added to this list. Note that scripts may
move between Table 4 and Table 5 based on new information as to usage.

[Editorial Note: please review this list for Unicode 5.2. See also the editorial note
above Table 4.]

Page 13 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

Table 5. Recommended Scripts

Property Notation Description
[:script=Zyyy:] Common
[:script=Qaai:] Inherited
[:script=Arab:] Arabic
[:script=Armn:] Armenian
[:script=Bali:] Balinese
[:script=Beng:] Bengali
[:script=Bopo:] Bopomofo
[:script=Cans:] Canadian_Aboriginal
[:script=Cham:] Cham
[:script=Cher:] Cherokee
[:script=Cyrl:] Cyrillic
[:script=Deva:] Devanagari
[:script=Ethi:] Ethiopic
[:script=Geor:] Georgian
[:script=Grek:] Greek
[:script=Gujr:] Gujarati
[:script=Guru:] Gurmukhi
[:script=Hani:] Han
[:script=Hang:] Hangul
[:script=Hebr:] Hebrew
[:script=Hira:] Hiragana
[:script=Knda:] Kannada
[:script=Kana:] Katakana
[:script=Kali:] Kayah_Li
[:script=Khmr:] Khmer
[:script=Laoo:] Lao
[:script=Latn:] Latin
[:script=Lepc:] Lepcha
[:script=Limb:] Limbu
[:script=Mlym:] Malayalam

Page 14 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

[:script=Mong:] Mongolian
[:script=Mymr:] Myanmar
[:script=Talu:] New_Tai_Lue
[:script=Nkoo:] Nko
[:script=Olck:] Ol_Chiki
[:script=Orya:] Oriya
[:script=Saur:] Saurashtra
[:script=Sinh:] Sinhala
[:script=Tale:] Tai_Le
[:script=Taml:] Tamil
[:script=Telu:] Telugu
[:script=Thaa:] Thaana
[:script=Thai:] Thai
[:script=Tibt:] Tibetan
[:script=Tfng:] Tifinagh
[:script=Vaii:] Vai
[:script=Yiii:] Yi
[:script=Mtei:] Meetei Mayek
[:script=Lana:] Tai Tham
[:script=Tavt:] Tai Viet

This is the recommendation as of Unicode 5.1; as new scripts are added to
future versions of Unicode, they may be added to this list.

There are a few special cases. The Common and Inherited script values
[[:script=Zyyy:][:script=Qaai:]] are used widely with other scripts, rather than
being scripts per se. The Unknown script [:script=Zzzz:] is used for Unassigned
characters. Braille [:script=Brai:] consists only of symbols, and
Katakana_Or_Hiragana [:script=Hrkt:] is empty (used historically in Unicode, but
no longer.) With respect to the scripts Balinese, Cham, Ol Chiki, Vai, Kayah Li,
and Saurashtra, there may be large communities of people speaking an
associated language, but the script itself is not not in widespread use. However,
there are significant revival efforts. Bopomofo is used primarily in education.

For programming language identifiers, normalization and case have a number of
important implications. For a discussion of these issues, see Section 5,
Normalization and Case.

Page 15 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

2.5 Backward Compatibility

Unicode General_Category values are kept as stable as possible, but they can
change across versions of the Unicode Standard. The bulk of the characters
having a given value are determined by other properties, and the coverage
expands in the future according to the assignment of those properties. In
addition, the Other_ID_Start property provides a small list of characters that
qualified as ID_Start characters in some previous version of Unicode solely on
the basis of their General_Category properties, but that no longer qualify in the
current version. These are called grandfathered characters. This list consists of
four characters:

U+2118 (℘) SCRIPT CAPITAL P
U+212E (℮) ESTIMATED MARK
U+309B (゛) KATAKANA-HIRAGANA VOICED SOUND MARK
U+309C (゜) KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK

Similarly, the Other_ID_Continue property adds a small list of characters that
qualified as ID_Continue characters in some previous version of Unicode solely
on the basis of their General_Category properties, but that no longer qualify in
the current version. This list consists of eleven characters:

U+1369 (፩) ETHIOPIC DIGIT ONE...U+1371 (፱) ETHIOPIC DIGIT NINE
U+00B7 (·) MIDDLE DOT
U+0387 (·) GREEK ANO TELEIA

The Other_ID_Start and Other_ID_Continue properties are thus designed to
ensure that the Unicode identifier specification is backward compatible. Any
sequence of characters that qualified as an identifier in some version of Unicode
will continue to qualify as an identifier in future versions.

If a specification tailors the Unicode recommendations for identifiers, then this
technique can also be used to maintain backwards compatibility across versions.

R1 Default Identifiers

To meet this requirement, an implementation shall use definition D1
and the properties ID_Start and ID_Continue (or XID_Start and
XID_Continue) to determine whether a string is an identifier.

Alternatively, it shall declare that it uses a profile and define that
profile with a precise specification of the characters that are added to
or removed from the above properties and/or provide a list of
additional constraints on identifiers.

R1a Restricted Format Characters

Page 16 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

 To meet this requirement, an implementation shall define a profile
for R1 which allows format characters as described in Section 2.3,
Layout and Format Control Characters. An implementation may
further restrict the context for ZWJ or ZWNJ, such as by limiting the
scripts, if a clear specification for such a further restriction is
supplied.

R1bStable Identifiers
 To meet this requirement, an implementation shall guarantee that

identifiers are stable across versions of the Unicode Standard: that is,
once a string qualifies as an identifier, it does so in all future
versions.

This is typically achieved by using grandfathered characters.•

3 Alternative Identifier Syntax

The disadvantage of working with the lexical classes defined previously is the
storage space needed for the detailed definitions, plus the fact that with each
new version of the Unicode Standard new characters are added, which an
existing parser would not be able to recognize. In other words, the
recommendations based on that table are not upwardly compatible.

This problem can be addressed by turning the question around. Instead of
defining the set of code points that are allowed, define a small, fixed set of code
points that are reserved for syntactic use and allow everything else (including
unassigned code points) as part of an identifier. All parsers written to this
specification would behave the same way for all versions of the Unicode
Standard, because the classification of code points is fixed forever.

The drawback of this method is that it allows “nonsense” to be part of identifiers
because the concerns of lexical classification and of human intelligibility are
separated. Human intelligibility can, however, be addressed by other means,
such as usage guidelines that encourage a restriction to meaningful terms for
identifiers. For an example of such guidelines, see the XML 1.1 specification by
the W3C [XML1.1].

By increasing the set of disallowed characters, a reasonably intuitive
recommendation for identifiers can be achieved. This approach uses the full
specification of identifier classes, as of a particular version of the Unicode
Standard, and permanently disallows any characters not recommended in that
version for inclusion in identifiers. All code points unassigned as of that version
would be allowed in identifiers, so that any future additions to the standard would
already be accounted for. This approach ensures both upwardly compatible
identifier stability and a reasonable division of characters into those that do and
do not make human sense as part of identifiers.

Page 17 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

With or without such fine-tuning, such a compromise approach still incurs the
expense of implementing large lists of code points. While they no longer change
over time, it is a matter of choice whether the benefit of enforcing somewhat word
-like identifiers justifies their cost.

Alternatively, one can use the properties described below and allow all
sequences of characters to be identifiers that are neither Pattern_Syntax nor
Pattern_White_Space. This has the advantage of simplicity and small tables, but
allows many more “unnatural” identifiers.

R2Alternative Identifiers

To meet this requirement, an implementation shall define identifiers
to be any non-empty string of characters that contains no character
having any of the following property values:

Pattern_White_Space=True•
Pattern_Syntax=True•
General_Category=Private_Use, Surrogate, or Control•
Noncharacter_Code_Point=True•

Alternatively, it shall declare that it uses a profile and define that
profile with a precise specification of the characters that are added to
or removed from the sets of code points defined by these properties.

In its profile, a specification can define identifiers to be more in accordance with
the Unicode identifier definitions at the time the profile is adopted, while still
allowing for strict immutability. For example, an implementation adopting a profile
after a particular version of Unicode is released (such as Unicode 5.0) could
define the profile as follows:

All characters satisfying R1 Default Identifiers according to Unicode 5.01.
Plus all code points unassigned in Unicode 5.0 that do not have the
property values specified in R2 Alternative Identifiers.

2.

This technique allows identifiers to have a more natural format—excluding
symbols and punctuation already defined—yet also provides absolute code point
immutability.

Specifications should also include guidelines and recommendations for those
creating new identifiers. Although R2 Alternative Identifiers permits a wide range
of characters, as a best practice identifiers should be in the format NFKC, without
using any unassigned characters. For more information on NFKC, see Unicode
Standard Annex #15, “Unicode Normalization Forms” [UAX15].

Page 18 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

4 Pattern Syntax

There are many circumstances where software interprets patterns that are a
mixture of literal characters, whitespace, and syntax characters. Examples
include regular expressions, Java collation rules, Excel or ICU number formats,
and many others. In the past, regular expressions and other formal languages
have been forced to use clumsy combinations of ASCII characters for their
syntax. As Unicode becomes ubiquitous, some of these will start to use non-
ASCII characters for their syntax: first as more readable optional alternatives,
then eventually as the standard syntax.

For forward and backward compatibility, it is advantageous to have a fixed set of
whitespace and syntax code points for use in patterns. This follows the
recommendations that the Unicode Consortium has made regarding completely
stable identifiers, and the practice that is seen in XML 1.1 [XML1.1]. (In
particular, the Unicode Consortium is committed to not allocating characters
suitable for identifiers in the range U+2190..U+2BFF, which is being used by
XML 1.1.)

With a fixed set of whitespace and syntax code points, a pattern language can
then have a policy requiring all possible syntax characters (even ones currently
unused) to be quoted if they are literals. Using this policy preserves the freedom
to extend the syntax in the future by using those characters. Past patterns on
future systems will always work; future patterns on past systems will signal an
error instead of silently producing the wrong results. Consider the following
scenario, for example.

Example 1:

In version 1.0 of program X, '≈' is a reserved syntax character; that is, it
does not perform an operation, and it needs to be quoted. In this example,
'\' quotes the next character; that is, it causes it to be treated as a literal
instead of a syntax character. In version 2.0 of program X, '≈' is given a real
meaning—for example, “uppercase the subsequent characters”.

The pattern abc...\≈...xyz works on both versions 1.0 and 2.0, and
refers to the literal character because it is quoted in both cases.

•

The pattern abc...≈...xyz works on version 2.0 and uppercases the
following characters. On version 1.0, the engine (rightfully) has no
idea what to do with ≈. Rather than silently fail (by ignoring ≈ or
turning it into a literal), it has the opportunity to signal an error.

•

As of [Unicode4.1], two Unicode character properties can be used for are
defined to provide for stable syntax: Pattern_White_Space and Pattern_Syntax.
Particular pattern languages may, of course, override these recommendations,
(for example, by adding or removing other characters for compatibility in with
ASCII) usage.

For stability, the values of these properties are absolutely invariant, not changing
with successive versions of Unicode. Of course, this does not limit the ability of

Page 19 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

the Unicode Standard to add encode more symbol or whitespace characters, but
the syntax and whitespace characters code points recommended for use in
patterns will not change.

When generating rules or patterns, all whitespace and syntax code points that
are to be literals require quoting, using whatever quoting mechanism is available.
For readability, it is recommended practice to quote or escape all literal
whitespace and default ignorable code points as well.

Example 2:

Consider the following example, where the items in angle brackets indicate
literal characters:

a<SPACE>b => x<ZERO WIDTH SPACE>y + z;

Because <SPACE> is a Pattern_White_Space character, it requires quoting.
Because <ZERO WIDTH SPACE> is a default ignorable character, it should also be
quoted for readability. So if in this example, if \uXXXX is used for hex
expression a code point literal, but is resolved before quoting, and if single
quotes are used for quoting, this example might be expressed as:

'a\u0020b' => 'x\u200By' + z;

R3Pattern_White_Space and Pattern_Syntax Characters

To meet this requirement, an implementation shall use
Pattern_White_Space characters as all and only those characters
interpreted as whitespace in parsing, and shall use Pattern_Syntax
characters as all and only those characters with syntactic use.

Alternatively, it shall declare that it uses a profile and define that
profile with a precise specification of the characters that are added to
or removed from the sets of code points defined by these properties.

All characters other than those defined by except those that
have these properties are available for use as identifiers or
literals.

•

5 Normalization and Case

This section discusses issues that must be taken into account when considering
normalization and case folding of identifiers in programming languages or
scripting languages. Using normalization avoids many problems where
apparently identical identifiers are not treated equivalently. Such problems can
appear both during compilation and during linking—in particular across different

Page 20 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

programming languages. To avoid such problems, programming languages can
normalize identifiers before storing or comparing them. Generally if the
programming language has case-sensitive identifiers, then Normalization Form C
is appropriate; whereas, if the programming language has case-insensitive
identifiers, then Normalization Form KC is more appropriate.

Implementations that take normalization and case into account have two choices:
to treat variants as equivalent, or to disallow variants.

R4Equivalent Normalized Identifiers

To meet this requirement, an implementation shall specify the
Normalization Form and shall provide a precise specification of the
characters that are excluded from normalization, if any. If the
Normalization Form is NFKC, the implementation shall apply the
modifications in Section 5.1, NFKC Modifications, given by the
properties XID_Start and XID_Continue. Except for identifiers
containing excluded characters, any two identifiers that have the same
Normalization Form shall be treated as equivalent by the
implementation.

R5Equivalent Case-Insensitive Identifiers

To meet this requirement, an implementation shall specify either
simple or full case folding, and adhere to the Unicode specification for
that folding. Any two identifiers that have the same case-folded form
shall be treated as equivalent by the implementation.

R6Filtered Normalized Identifiers

To meet this requirement, an implementation shall specify the
Normalization Form and shall provide a precise specification of the
characters that are excluded from normalization, if any. If the
Normalization Form is NFKC, the implementation shall apply the
modifications in Section 5.1, NFKC Modifications, given by the
properties XID_Start and XID_Continue. Except for identifiers
containing excluded characters, allowed identifiers must be in the
specified Normalization Form.

R7Filtered Case-Insensitive Identifiers

Page 21 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

To meet this requirement, an implementation shall specify either
simple or full case folding, and adhere to the Unicode specification for
that folding. Except for identifiers containing excluded characters,
allowed identifiers must be in the specified Normalization Form.

For R6, this involves removing from identifiers any characters in the set
[:NFKC_QuickCheck=No:] (or equivalently, removing [:^isNFKC:]). For R7, this
involves removing from identifiers any characters in the set [:^isCaseFolded:].

Note: In mathematically oriented programming languages that make
distinctive use of the Mathematical Alphanumeric Symbols, such as
U+1D400 MATHEMATICAL BOLD CAPITAL A, an application of NFKC must filter
characters to exclude characters with the property value
Decomposition_Type=Font. For related information, see Unicode Technical
Report #30, “Character Foldings.”

5.1 NFKC Modifications

Where programming languages are using NFKC to fold differences between
characters, they need the following modifications of the identifier syntax from the
Unicode Standard to deal with the idiosyncrasies of a small number of
characters. These modifications are reflected in the XID_Start and XID_Continue
properties.

Characters that behave like combining marks. Certain characters are
not formally combining characters, although they behave in most respects
as if they were. In most cases, the mismatch does not cause a problem, but
when these characters have compatibility decompositions, they can cause
identifiers not to be closed under Normalization Form KC. In particular, the
following four characters are included in XID_Continue and not XID_Start:

1.

U+0E33 THAI CHARACTER SARA AM

U+0EB3 LAO VOWEL SIGN AM

U+FF9E HALFWIDTH KATAKANA VOICED SOUND MARK

U+FF9F HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK
Irregularly decomposing characters. U+037A GREEK YPOGEGRAMMENI and
certain Arabic presentation forms have irregular compatibility
decompositions and are excluded from both XID_Start and XID_Continue.
It is recommended that all Arabic presentation forms be excluded from
identifiers in any event, although only a few of them must be excluded for
normalization to guarantee identifier closure.

2.

With these amendments to the identifier syntax, all identifiers are closed under all
four Normalization Forms. Identifiers are also closed under case operations (with
one exception). This means that for any string S:

Page 22 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

isIdentifier

(S)
implies

isIdentifier(toNFD(S))

isIdentifier(toNFC(S))

isIdentifier(toNFKD(S))

isIdentifier(toNFKC(S))

Normalization
Closure

isIdentifier(toLowercase

(S))

isIdentifier(toUppercase

(S))

isIdentifier(toFoldedcase

(S))

Case Closure

With these amendments to the identifier syntax, all identifiers are closed under all
four Normalization Forms. This means that for any string S, the implications
shown in Figure 5 hold.

Figure 5. Normalization Closure

isIdentifier(S) →
isIdentifier(toNFD(S))
isIdentifier(toNFC(S))
isIdentifier(toNFKD(S))
isIdentifier(toNFKC(S))

Identifiers are also closed under case operations. For any string S (with
exceptions involving a single character), the implications shown in Figure 6 hold.

Figure 6. Case Closure

isIdentifier(S) →
isIdentifier(toLowercase(S))
isIdentifier(toUppercase(S))
isIdentifier(toFoldedcase(S))

The one exception for casing is U+0345 COMBINING GREEK YPOGEGRAMMENI. In the very
unusual case that U+0345 is at the start of S, U+0345 is not in XID_Start, but its
uppercase and case-folded versions are. In practice, this is not a problem
because of the way normalization is used with identifiers.

The reverse implication is not true in the case of compatibility equivalence:
isIdentifier(toNFC(S)) does not imply isIdentifier(S). There are many
characters for which the reverse implication is not true, because there are many
characters counting as symbols or non-decimal numbers—and thus outside of
identifiers—whose compatibility equivalents are letters or decimal numbers and
thus in identifiers. Some examples are: shown in Table 6.

Table 6. Compatibility Equivalents to Letters or Decimal Numbers

Code Points GC Samples Names

Page 23 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

2070 No (⁰) SUPERSCRIPT ZERO

20A8 Sc (₨) RUPEE SIGN

2116 So (№) NUMERO SIGN

2120..2122 So (℠..™) SERVICE MARK..TRADE MARK SIGN

2460..2473 No (①..⑳) CIRCLED DIGIT ONE..CIRCLED NUMBER TWENTY

3300..33A6 So (㌀..㎦) SQUARE APAATO..SQUARE KM CUBED

If an implementation needs to ensure both directions for compatibility
equivalence of identifiers, then the identifier definition needs to be tailored to add
these characters.

For canonical equivalence the implication is true in both directions. isIdentifier
(toNFC(S)) if and only if isIdentifier(S).

There were two exceptions before Unicode 5.1, as shown in Table 7. If an
implementation needs to ensure full canonical equivalence of identifiers, then the
identifier definition must be tailored so that these characters have the same
value, so that either both isIdentifier(S) and isIdentifier(toNFC(S)) are true, or so
that both values are false.

Table 7. Canonical Equivalence Exceptions Prior to Unicode 5.1

isIdentifier(toNFC(S))=True isIdentifier(S)=False Different in:
U+02B9 (ʹ) MODIFIER LETTER PRIME U+0374 (ʹ) GREEK NUMERAL SIGN XID and ID
U+00B7 (·) MIDDLE DOT U+0387 (·) GREEK ANO TELEIA XID alone

Those programming languages with case-insensitive identifiers should use the
case foldings described in Section 3.13, Default Case Algorithms, of [Unicode] to
produce a case-insensitive normalized form.

When source text is parsed for identifiers, the folding of distinctions (using case
mapping or NFKC) must be delayed until after parsing has located the identifiers.
Thus such folding of distinctions should not be applied to string literals or to
comments in program source text.

The Unicode Character Database (UCD) provides support for handling case
folding with normalization: the property FC_NFKC_Closure can be used in case
folding, so that a case folding of an NFKC string is itself normalized. These
properties, and the files containing them, are described in Unicode Standard
Annex #44, "Unicode Character Database" [UAX44].

Acknowledgments

Mark Davis is the author of the initial version and has added to and maintained
the text of this annex.

Page 24 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

Thanks to Eric Muller, Asmus Freytag, Julie Allen, Kenneth Whistler, and Martin
Duerst for feedback on this annex.

References

For references for this annex, see Unicode Standard Annex #41, “Common
References for Unicode Standard Annexes.”

Modifications

The following summarizes modifications from previous revisions of this annex.

Revision 10

Draft 4:•
In A1. Allow ZWNJ in the following context, changed $L and $R to
disambiguated from $L meaning Letter; fixed property name to
Joining_Type, and fixed the text to correspond correctly to the regex.

•

Added HTML anchors to Figures and Tables•

Added to Candidate Characters for Inclusion in Identifiers: U+0F0B (་)
TIBETAN MARK INTERSYLLABIC TSHEG and U+30FB (・) KATAKANA
MIDDLE DOT

•

Added to Candidate Characters for Exclusion from Identifiers: Default
Ignorable Code Points, Tatweel (-like) characters, and scripts Old Turkic,
Old South Arabian, Imperial Aramaic, Inscriptional Parthian, Inscriptional
Pahlavi, Avestan, Egyptian Hieroglyphs, Javanese, Samaritan, Kaithi,
Bamum, Lisu

•

Added to Recommended Scripts: Meetei Mayek, Tai Tham, Tai Viet•
Earlier Drafts::•
Updated caption style for figures and tables.•
Added table captions and centered Tables 6 and 7 in Section 5.1.•
Split the unnumbered identifier closure table in Section 5.1 into two Figures
and adjusted the surrounding text for clarity.

•

Removed borders around images, and redrew Figures 2, 3, 4 for clarity•
Updated explanatory text for Figure 4.•
Minor editorial cleanup.•

Revision 9

Updated for Unicode 5.1.0.•
Fixed Table 2 to exclude Pattern_Syntax and Pattern_White_Space
explicitly.

•

Added note under R2 Alternative Identifiers•
Removed surrogates, private-use, and control from R2, added notes.•
Noted restrictions on ZWJ/ZWNJ are as applied to NFC.•
Added Section 2.2 Modifier Letters and renumbered sections.•

Page 25 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

Added Table 5, to show other scripts.•
Noted that both Tables will require updating with successive versions of
Unicode, as new scripts are added.

•

Broadened the discussion of Layout Controls to include other Default
Ignorables in 2.3 Layout and Format Control Characters.

•

Minor reformatting of tables and figures, and addition of captions to tables.•
Added descriptions of scripts in Table 4, Candidate Characters for
Exclusion from Identifiers.

•

Added sentence about further restrictions to R1a.•
Added line pointing to UTR36 for information about further restrictions.•
Added to discussion of canonical equivalence of identifiers.•
Added filtered identifiers and rules.•
Added format character discussion and rules.•

Revision 8 being a proposed update, only changes between revisions 9 and 7
are noted here.

Revision 7

Introduced the term profile.•
Added note on profiles of identifiers for natural language in Section 2.3
Specific Character Adjustments

•

Minor editing for clarity in 2 Default Identifier Syntax•
Added note on spaces in identifiers (eg in SQL)•

Revision 6 being a proposed update, only changes between revisions 7 and 5
are noted here.

Revision 5

Removed section 4.1, because the two properties have been accepted for
Unicode 4.1.

•

Expanded introduction•
Adding information about stability, and tailoring for identifiers.•
Added the list of characters in Other_ID_Continue .•
Changed <identifier_continue> and <identifier_start> to just use the
property names, to avoid confusion.

•

Included XID_Start and XID_Continue in R1 and elsewhere.•
Added reference to UTR #36, and the phrase “or a list of additional
constraints on identifiers” to R1.

•

Changed “Coverage” to “General Description of Coverage,” because the
UCD value are definitive.

•

Added clarifications in 2.4•
Revamped 2.2 Layout and Format Control Characters•
Minor editing•

Page 26 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

Revision 3

Made draft UAX•
Incorporated Annex 7 from UAX #15•
Added Other_ID_Continue for Unicode 4.1•
Added conformance clauses•
Changed <identifier_extend> to <identifier_continue> to better match the
property name.

•

Some additional edits.•

Revision 2

Modified Pattern_White_Space to remove compatibility characters•
Added example explaining use of Pattern_White_Space•

Revision 1

First version: incorporated section from Unicode 4.0 on Identifiers plus new
section on patterns.

•

Copyright © 2000-2009 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or
implied warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for
incidental and consequential damages in connection with or arising out of the use of the information or
programs contained or accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

Page 27 of 27UAX #31: Unicode Identifier and Pattern Syntax

8/14/2009http://www.unicode.org/reports/tr31/tr31-10.html

