
Proposed Update Unicode Technical Standard #10

UNICODE COLLATION ALGORITHM

Summary

This report provides the specification of the Unicode Collation Algorithm, which provides a
specification for how to compare two Unicode strings while remaining conformant to the
requirements of The Unicode Standard. The UCA also supplies the Default Unicode Collation
Element Table (DUCET) as the data specifying the default collation order for all Unicode characters.

Status

This is a draft document which may be updated, replaced, or superseded by other documents at
any time. Publication does not imply endorsement by the Unicode Consortium. This is not a stable
document; it is inappropriate to cite this document as other than a work in progress.

A Unicode Technical Standard (UTS) is an independent specification. Conformance to the
Unicode Standard does not imply conformance to any UTS.

Please submit corrigenda and other comments with the online reporting form [Feedback]. Related
information that is useful in understanding this annex is found in Unicode Standard Annex #41,
“Common References for Unicode Standard Annexes.” For the latest version of the Unicode
Standard, see [Unicode]. For a list of current Unicode Technical Reports, see [Reports]. For more
information about versions of the Unicode Standard, see [Versions]. For any errata which may apply
to this annex, see [Errata].

Contents

1 Introduction
1.1 Multi-Level Comparison
1.2 Canonical Equivalence
1.3 Contextual Sensitivity
1.4 Customization
1.5 Other Applications of Collation

 Technical Reports

Version 5.2.0 draft 1
Authors Mark Davis (markdavis@google.com), Ken Whistler

(ken@unicode.org)
Date 2009-04-01
This Version http://www.unicode.org/reports/tr10/tr10-19.html
Previous
Version

http://www.unicode.org/reports/tr10/tr10-18.html

Latest Version http://www.unicode.org/reports/tr10/
Revision 19

rick@unicode.org
Text Box
L2/09-135

1.6 Interleaved Levels
1.7 Performance
1.8 Common Misperceptions
1.9 The Unicode Collation Algorithm

1.9.1 Goals
1.9.2 Non-Goals

2 Conformance
3 Collation Element Table

3.1 Linguistic Features
3.1.1 Multiple Mappings

3.1.1.1 Expansions
3.1.1.2 Contractions
3.1.1.3 Other Multiple Mappings

3.1.2 French Accents
3.1.3 Rearrangement
3.1.4 Default Values
3.1.5 Collation Graphemes
3.1.6 Combining Grapheme Joiner

3.2 Default Unicode Collation Element Table
3.2.1 File Format
3.2.2 Variable Weighting

3.3 Well-Formed Collation Element Tables
3.4 Stability

4 Main Algorithm
4.1 Normalize
4.2 Produce Array
4.3 Form Sort Key
4.4 Compare

5 Tailoring
5.1 Parametric Tailoring
5.2 Preprocessing

6 Implementation Notes
6.1 Reducing Sort Key Lengths

6.1.1 Eliminating Level Separators
6.1.2 L2/L3 in 8 Bits
6.1.3 Machine Words
6.1.4 Run-Length Compression

6.2 Large Weight Values
6.3 Reducing Table Sizes

6.3.1 Contiguous Weight Ranges
6.3.2 Escape Hatch
6.3.3 Leveraging Unicode Tables
6.3.4 Reducing the Repertoire
6.3.5 Memory Table Size

6.4 Avoiding Zero Bytes
6.5 Avoiding Normalization
6.6 Case Comparisons
6.7 Incremental Comparison
6.8 Catching Mismatches
6.9 Tailoring Example: Java
6.10 Flat File Example

6.10.1 Collation Element Format
6.10.2 Sample Code

7 Weight Derivation
7.1 Derived Collation Elements

7.1.1 Illegal Code Points

7.1.2 Legal Code Points
7.1.3 Implicit Weights
7.1.4 Trailing Weights

7.2 Canonical Decompositions
7.3 Compatibility Decompositions

7.3.1 Tertiary Weight Table
8 Searching and Matching

8.1 Collation Folding
Appendix A: Deterministic_Sorting
Acknowledgements
References
Modifications

1 Introduction

Collation is the general term for the process and function of determining the sorting order of strings
of characters. It is a key function in computer systems; whenever a list of strings is presented to
users, they are likely to want it in a sorted order so that they can easily and reliably find individual
strings. Thus it is widely used in user interfaces. It is also crucial for the operation of databases, not
only in sorting records but also in selecting sets of records with fields within given bounds.

However, collation is not uniform; it varies according to language and culture: Germans, French and
Swedes sort the same characters differently. It may also vary by specific application: even within the
same language, dictionaries may sort differently than phonebooks or book indices. For non-
alphabetic scripts such as East Asian ideographs, collation can be either phonetic or based on the
appearance of the character. Collation can also be commonly customized or configured according to
user preference, such as ignoring punctuation or not, putting uppercase before lowercase (or vice
versa), and so on. Linguistically correct searching also needs to use the same mechanisms: just as
"v" and "w" sort as if they were the same base letter in Swedish, a loose search should pick up
words with either one of them.

Thus collation implementations must deal with the often-complex linguistic conventions that
communities of people have developed over the centuries for ordering text in their language, and
provide for common customizations based on user preferences. And while doing all of this, of
course, performance is critical.

The following table shows some examples of cases where sort order differs by language, by usage,
or by another customization.

The conventions that people have developed over the centuries for collating text in their language
are often quite complex. Sorting all Unicode characters in a uniform and consistent manner
presents a number of challenges. And for any collation mechanisms to be accepted in the

Example Differences

Language Swedish: z < ö

German: ö < z

Usage German Dictionary: öf < of

German Telephone: of < öf

Customizations Upper-first A < a

Lower-First a < A

marketplace, algorithms that allow for good performance are crucial.

Languages vary not only regarding which types of sorts to use (and in which order they are to be
applied), but also in what constitutes a fundamental element for sorting. For example, Swedish treats
ä as an individual letter, sorting it after z in the alphabet; German, however, sorts it either like ae or
like other accented forms of a, thus following a. In Slovak, the digraph ch sorts as if it were a
separate letter after h. Examples from other languages (and scripts) abound. Languages whose
writing systems use uppercase and lowercase typically ignore the differences in case, unless there
are no other differences in the text.

It is important to ensure that collation meets user expectations as fully as possible. For example, in
the majority of Latin languages, ø sorts as an accented variant of o, meaning that most users would
expect ø alongside o. However, there are a few languages (Norwegian and Danish for example) that
sort ø as a unique sorting element after z. Sorting "Søren" after "Sylt" in a long list — that is, as
would be expected in Norwegian or Danish — will cause problems if the user expects ø as a variant
of o. A user will look for "Søren" between "Sorem" and "Soret", not see it in the selection, and
assume the string is missing - fooled by the fact that it has sorted in a completely different location.
In matching, the same can occur, which can cause significant problems for software customers; and
as with database selection, the user may not realize what he is missing. See Section 1.5, Other
Applications of Collation.

With Unicode being deployed so widely, multilingual data becomes the rule, not the exception.
Furthermore, it is increasingly common to see users with many different sorting expectations
accessing the data. For example, a French company with customers all over Europe will include
names from many different languages - French, German, Polish, Swedish, and so on. If a German
employee at this French company accesses the data, the customer names need to show up in the
order that meets this employee's expectations — that is, in a German order — even though there will
be many different accented characters that do not normally appear in German text.

For scripts and characters outside the use of a particular language, explicit rules may not exist. For
example, Swedish and French have clear and different rules on sorting ä (either after z or as an
accented character with a secondary difference from a), but neither defines the ordering of other
characters such as Ж, ש, ♫, ∞, ◊, or ⌂.

1.1 Multi-Level Comparison

To address the complexities of language-sensitive sorting, a multilevel comparison algorithm is
employed. In comparing two words, for example, the most important feature is the base character:
such as the difference between an A and a B. Accent differences are typically ignored, if there are
any differences in the base letters. Case differences (uppercase versus lowercase), are typically
ignored, if there are any differences in the base or accents. Punctuation is variable. In some
situations a punctuation character is treated like a base character. In other situations, it should be
ignored if there are any base, accent, or case differences. There may also be a final, tie-breaking
level, whereby if there are no other differences at all in the string, the (normalized) code point order
is used.

Comparison Levels

Level Description* Examples

L1 Base characters role < roles < rule

L2 Accents role < rôle < roles

L3 Case role < Role < rôle

L4 Punctuation role < “role” < Role

Ln Tie-Breaker role < ro□le < “role”

These examples are in English; the levels may correspond to different features in other languages.
Notice that in each example for levels L2 through Ln, the differences on that level (indicated by the
underlined characters) are swamped by the stronger-level differences (indicated by the blue text).
For example, the L2 example shows that difference between an o and an accented ô is swamped by
an L1 difference (the presence or absence of an s). In the last example, the □ represents a format
character, which is otherwise completely ignorable.

The core concept is that the primary level (L1) is for the basic sorting of the text, and the non-primary
levels (L2..Ln) are for tweaking other linguistic elements in the writing system that are important to
users in ordering, but less important than the order of the basic sorting. In practice, not all of these
levels may be needed, depending on the user preferences or customizations.

Note: Many people see the Unicode code charts, and expect the characters in their language
to be in the "correct" order in the code charts. Because collation varies by language — not just
by script —, it is not possible to arrange code points for characters so that simple binary string
comparison produces the desired collation order for all languages. Because multi-level sorting
is a requirement, it is not even possible to arrange code points for characters so that simple
binary string comparison produces the desired collation order for any particular language.
Separate data tables are required for correct sorting order. For more information on tailorings
for different languages, see [CLDR].

The sorting weight of characters is not provided by their position in the Unicode code
charts.

1.2 Canonical Equivalence

There are a number of cases in Unicode where two sequences of characters are canonically
equivalent; they are essentially the same character but can be represented in different ways. For
more information on what this means, see [UAX15].

For collation, sequences that are canonically equivalent must sort the same. In the table below are
some examples. For example, the angstrom symbol was encoded for compatibility, and is
canonically equivalent to an A-ring. The latter is also equivalent to the decomposed sequence of A
plus the combining ring character. The order of certain combining marks in many cases is also
irrelevant, so these must be sorted the same, as in the second example. In the third example, we
have a composed character that can be decomposed in four different ways, all of which are
canonically equivalent.

Canonical Equivalence

1 Å U+212B ANGSTROM SIGN

Å U+00C5 LATIN CAPITAL LETTER A WITH RING ABOVE

A ◌̊ U+0041 LATIN CAPITAL LETTER A, U+030A COMBINING RING ABOVE

2 x ◌̛ ◌̣ U+0078 LATIN SMALL LETTER X, U+031B COMBINING HORN, U+0323
COMBINING DOT BELOW

x ◌̣ ◌̛ U+0078 LATIN SMALL LETTER X, U+0323 COMBINING DOT BELOW, U+031B
COMBINING HORN

3 ự U+1EF1 LATIN SMALL LETTER U WITH HORN AND DOT BELOW

1.3 Contextual Sensitivity

Beyond the concept of levels, there are additional complications in certain languages, whereby the
comparison is context sensitive: it depends on more than just single characters compared directly
against one another.

First are contractions, where two (or more) characters sort as if they were a single base character. In
the table below, CH acts like a character after C. Second are expansions, where a single character
sorts as if it were two (or more) characters in sorting. In the table below, an Œ ligature sorts as if it
were O + E. Both of these can be combined: that is, two (or more) characters may sort as if they
were a different sequence of two (or more) characters. In the example below, for Japanese, a length
mark sorts like the vowel of the previous syllable: as an A after KA and as an I after KI.

There are some further oddities in the ways that languages work. Normally, all differences in sorting
are assessed going from the start to the end of the string. If all of the base characters are the same,
the first accent difference determines the final order. In row 1 of the example below, the first accent
difference is on the o, so that is what determines the order. In French and a few other languages,
however, it is the last accent difference that determines the order, as in row 2.

1.4 Customization

In practice, there are additional features of collation that users need control over, which are
expressed in user-interfaces and eventually in APIs. Other customizations or user preferences
include (but are not limited to) the following:

 Language. As discussed above, this is the most important feature, because it is crucial that the
collation match the expectations of users of the target language community.

ụ◌̛ U+1EE5 LATIN SMALL LETTER U WITH DOT BELOW, U+031B COMBINING HORN

u ◌̛ ◌̣ U+0075 LATIN SMALL LETTER U, U+031B COMBINING HORN, U+0323
COMBINING DOT BELOW

ư ◌̣ U+01B0 LATIN SMALL LETTER U WITH HORN, U+0323 COMBINING DOT BELOW

u ◌̣ ◌̛ U+0075 LATIN SMALL LETTER U, U+0323 COMBINING DOT BELOW, U+031B
COMBINING HORN

Context Sensitivity

Contractions H < Z, but
CH > CZ

Expansions OE < Œ < OF

Both カー < カイ, but
キー > キイ

French Ordering

Normal Accent Ordering cote < coté < côte < côté

French Accent Ordering cote < côte < coté < côté

 Strength. Next to that is the strength, the number of levels that are to be considered in
comparison. For comparison, most of the time a three-level strength will need to be used. In
some cases, a larger number of levels will be needed, while in others — especially in
searching — fewer levels will be desired.

 Case Ordering. Some dictionaries and authors use uppercase before lowercase while others
use the reverse, so that needs to be customizable. Sometimes the case ordering is mandated
by the government, as in Denmark. But often it is simply a customization or user preference.
Another common option is whether to treat punctuation (including spaces) as base characters
or treat them as a level 4 difference.

 User-Defined Rules. Such rules provide specified results for given combinations of letters. For
example, in an index, an author may wish to have symbols sorted as if they were spelled out,
thus "?" may sort as if it were "question mark".

 Merging Tailorings. These allow the merging of sets of rules for different languages. For
example, someone may want Latin characters sorted as in French, and Arabic characters
sorted as in Iranian. In such an approach, generally one is the “master” in cases of conflicts.

 Script Order. This allows users to determine which scripts come first. For example, in an index
an author may want the script of the text of the book to come first. For example:

b < ב < β < б versus
β < b < б < ב

Attempting to achieve the same effect by introducing an extra strength level before the first
(primary) level would give incorrect results for strings containing mixed scripts

 Numbers: This allows sorting numbers by numeric order. If numbers are sorted alphabetically,
“A-10” comes before “A-2”, which is often not desired. This can be customized, but is much
trickier than it sounds because of ambiguities with recognizing numbers within strings (because
they may be formatted according to different language conventions). Once each number is
recognized, it can be preprocessed in place it into a format that allows for correct numeric
sorting, such as a textual version of the IEEE numeric format.

Note that phonetic sorting of Han characters requires use of either a lookup dictionary of words or,
more typically, special construction of programs or databases to maintain an associated phonetic
spelling for the words in the text.

1.5 Other Applications of Collation

The same collation behavior has application in other realms than sorting. In particular, searching
should behave consistently with sorting. For example, if v and w are treated as identical base letters
in Swedish sorting, then they should do so for searching. For searching, the ability to set the
maximal strength level is very important.

Selection is the process of using the comparisons between the endpoints of a range, as when using
a SELECT command in a database query. It is crucial that the correct range be returned, according
to the users expectations. Consider the example of a German businessman making a database
selection, such as to sum up revenue in each of of the cities from O... to P... for planning purposes. If
behind his back all cities starting with Ö are excluded because the query selection is using a
Swedish collation, there is going to be one very unhappy customer.

A sequence of characters considered to be a unit in collation, such as ch in Slovak, represents a
tailored grapheme cluster. For applications of this, see UTS #18: Unicode Regular Expression
Guidelines [UTS18]. For more information on grapheme clusters, see UAX #29: Text Boundaries
[UAX29].

1.6 Interleaved Levels

Levels may also need to be interleaved. Take, for example, sorting a database according to two
fields. The simplest way to sort is field by field, sequentially. This gives us the results in column one

in the example below. First all the levels in Field 1 are compared, then all the levels in Field 2. The
problem with this approach is that high level differences in the second field are swamped by minute
differences in the first field. Thus we get unexpected ordering for the first names.

A second way to do this is to ignore all but base-level differences in the sorting of the first field. This
gives us the results in column 2. The first names are then all in the right order, but the problem is
now that the first field is not correctly ordered except on the base character level.

The correct way to sort is to merge the fields in sorting, as shown in the last column. Using this
technique, all differences in the fields are taken into account, and the levels are considered
uniformly: accents in all fields are ignored if there are any base character differences in any of the
fields; case in all fields is ignored if there are accent or base character differences in any of the
fields; and so on.

1.7 Performance

Collation is one of the most performance-critical features in a system. Consider the number of
comparison operations that are involved in sorting or searching large databases, for example. Most
production implementations will use a number of optimizations to speed up string comparison.

There is a common mechanism for preprocessing strings so that multiple comparisons operations
are much faster. With this mechanism, each collation engine provides for the generation of a sort
key from any given string. The binary comparison of any two sort keys will yield the same result
(less, equal, or greater) as the collation engine would return for a comparison of the original strings.
Thus for a given collation C and any two strings A and B:

A ≤ B according to C if and only if sortkey(C, A) ≤ sortkey(C, B)

Still, simple string comparison is faster for any individual comparison. This is easy to understand,
because the generation of a sort key requires processing an entire string, while in most string
comparisons differences are found before all the characters are processed. Typically there is a
considerable difference in performance, with simple string comparison being about 5 to 10 times
faster than generating sort keys and then using a binary comparison.

However, sort keys can be much faster for multiple comparisons. Because binary comparison is
blindingly faster than string comparison, whenever there will be more than about 10 comparisons per
string — and the system can afford the storage — it is faster to use sort keys.

Merged Fields

Sequential Weak 1st Merged

F1L1, F1L2, F1L3,

F2L1, F2L2, F2L3

F1L1,

F2L1, F2L2, F2L3

F1L1, F2L1,

F1L2, F2L2,

F1L3, F2L3

diSilva John
diSilva Fred
di Silva John
di Silva Fred
disílva John
disílva Fred

diSilva John
di Silva John
disílva John
disílva Fred
di Silva Fred
diSilva Fred

diSilva John
di Silva John
disílva John
diSilva Fred
di Silva Fred
disílva Fred

1.8 Common Misperceptions

There are a number of common misperceptions about collation.

1. Collation is not aligned with character sets or repertoires of characters. Swedish and German
share most of the same characters, for example, but have very different sorting orders.

2. Collation is not code point (binary) order. The simplest case of this is capital Z versus
lowercase a. As noted above, beginners may complain about Unicode that a particular
character is “not in the right place in the code chart”. That is a misunderstanding of the role of
the character encoding in collation. While the Unicode Standard does not gratuitously place
characters such that the binary ordering is odd, the only way to get the linguistically-correct
order is to use a language-sensitive collation, not a binary ordering.

3. Collation is not a property of strings. Consider a list of cities, with each city correctly tagged
with its language. Despite this, a German user will expect to see the cities all sorted according
to German order, and not expect to see a word with ö appear after z, simply because the city
has a Swedish name. As mentioned above it is of crucial importance that if a German
businessman makes a database selection, such as to sum up revenue in each of of the cities
from O... to P... for planning purposes, then cities starting with Ö must not be excluded.

4. Collation order is not preserved under concatenation or substring operations, in general. For
example, the fact that x is less than y does not mean that x + z is less than y + z. This is
because characters may form contractions across the substring or concatenation boundaries.
In summary, the following shows which implications not to expect.

x < y ↛ xz < yz
x < y ↛ zx < zy
xz < yz ↛ x < y
zx < zy ↛ x < y

5. Collation order is not preserved when comparing sort keys generated from different collation
sequences. Remember that sort keys are a preprocessing of strings according to a given set of
collation features. From different features, you will get different binary sequences. For
example, suppose we have two collations, F and G, where F is a French collation (with accents
compared from the end), and G is a German phonebook ordering. Then:

 A ≤ B according to F if and only if sortkey(F, A) ≤ sortkey(F, B), and
 A ≤ B according to G if and only if sortkey(G, A) ≤ sortkey(G, B)
 But the relation between sortkey(F, A) and sortkey(G, B) says nothing about whether A ≤

B according to F, or whether A ≤ B according to G.
6. Collation order is not a stable sort; that is a property of a sort algorithm, not a collation

sequence. For more information, see Section 3.4, Stability.
7. Collation order is not fixed. Over time, collation order will vary: there may be fixes that are

discovered as more information becomes available about languages; there may be new
government or industry standards for the language that require changes; and finally, the new
characters that are added to Unicode periodically will interleave with the previously-defined
ones. Thus collations must be carefully versioned.

1.9 The Unicode Collation Algorithm

The Unicode Collation Algorithm (UCA) provides a specification for how to compare two Unicode
strings while remaining conformant to the requirements of The Unicode Standard. The UCA also
supplies the Default Unicode Collation Element Table (DUCET), which is data specifying the default
collation order for all Unicode characters. This table is designed so that it can be tailored to meet the
requirements of different languages and customizations.

Briefly stated, the Unicode Collation Algorithm takes an input Unicode string and a Collation Element
Table, containing mapping data for characters. It produces a sort key, which is an array of unsigned
16-bit integers. Two or more sort keys so produced can then be binary-compared to give the correct

comparison between the strings for which they were generated.

The Unicode Collation Algorithm assumes multiple-level key weighting, along the lines widely
implemented in IBM technology, and as described in the Canadian sorting standard [CanStd] and
the International String Ordering standard [ISO14651].

By default, the algorithm makes use of three fully-customizable levels. For the Latin script, these
levels correspond roughly to:

1. alphabetic ordering
2. diacritic ordering
3. case ordering.

A final level for tie-breaking (semi-stability) may be used for tie-breaking between strings not
otherwise distinguished.

This design allows implementations to produce culturally acceptable collation, while putting the least
burden on implementations in terms of memory requirements and performance. In particular,
Collation Element Tables only require storage of 32 bits of collation data per significant character.

However, implementations of the Unicode Collation Algorithm are not limited to supporting only three
levels. They are free to support a fully customizable 4th level (or more levels), as long as they can
produce the same results as the basic algorithm, given the right Collation Element Tables. For
example, an application which uses the algorithm, but which must treat some collection of special
characters as ignorable at the first three levels and must have those specials collate in non-Unicode
order (as, for example to emulate an existing EBCDIC-based collation), may choose to have a fully
customizable 4th level. The downside of this choice is that such an application will require more
storage, both for the Collation Element Table and in constructed sort keys.

The Collation Element Table may be tailored to produce particular culturally required orderings for
different languages or locales. As in the algorithm itself, the tailoring can provide full customization
for three (or more) levels.

1.9.1 Goals

The algorithm is designed to satisfy the following goals:

1. A complete, unambiguous, specified ordering for all characters in Unicode.
2. A complete resolution of the handling of canonical and compatibility equivalences as relates to

the default ordering.
3. A complete specification of the meaning and assignment of collation levels, including whether

a character is ignorable by default in collation.
4. A complete specification of the rules for using the level weights to determine the default

collation order of strings of arbitrary length.
5. Allowance for override mechanisms (tailoring) for creating language-specific orderings.

Tailoring can be provided by any well-defined syntax that takes the default ordering and
produces another well-formed ordering.

6. An algorithm that can be efficiently implemented, both in terms of performance and in terms of
memory requirements.

Given the standard ordering and the tailoring for any particular language, any two companies or
individuals — with their own proprietary implementations — can take any arbitrary Unicode input and
produce exactly the same ordering of two strings. In addition, when given a tailoring specifying
French accents this algorithm passes the Canadian and ISO 14651 benchmarks ([CanStd],
[ISO14651]).

Note: The Default Unicode Collation Element Table does not explicitly list weights for all

assigned Unicode characters. However, the algorithm is well defined over all Unicode code
points. See Section 7.1.2, Legal Code Points.

1.9.2 Non-Goals

The Default Unicode Collation Element Table explicitly does not provide for the following features:

1. reversibility: from a Collation Element you are not guaranteed that you can recover the original
character.

2. numeric formatting: numbers composed of a string of digits or other numerics will not
necessarily sort in numerical order.

3. API: no particular API is specified or required for the algorithm.
4. title sorting: for example, removing articles such as a and the during bibliographic sorting is not

provided.
5. Stability of binary sort key values between versions: For more information, see Section 3.4,

Stability.
6. linguistic applicability: to meet most user expectations, a linguistic tailoring is needed. For more

information, see Section 5, Tailoring.

2 Conformance

There are many different ways to compare strings, and the Unicode Standard does not restrict the
ways in which implementations can do this. However, any Unicode-conformant implementation that
purports to implement the Unicode Collation Algorithm must do so as described in this document.

Note: A conformance test for the UCA is available in [Test].

The algorithm is a logical specification, designed to be straightforward to describe. Actual
implementations of the algorithm are free to change any part of the algorithm as long as any two
strings compared by the implementation are ordered the same as they would be by the algorithm.
They are also free to use a different format for the data in the Collation Element Table. The sort key
is also a logical intermediate object: as long as an implementation produces the same results in
comparison of strings, the sort keys can differ in format from what is specified here. (See Section 6,
Implementation Notes.)

The requirements for conformance on implementations of the Unicode Collation Algorithm are as
follows:

C1 Given a well-formed Unicode Collation Element Table, a conformant implementation
shall replicate the same comparisons of strings as those produced by Section 4,
Main Algorithm.

In particular, a conformant implementation must be able to compare any two
canonically equivalent strings as being equal, for all Unicode characters supported
by that implementation.

If a conformant implementation compares strings in a legacy character set, it must
provide the same results as if those strings had been transcoded to Unicode.

C2 A conformant implementation shall support at least three levels of collation.

A conformant implementation is only required to implement three levels. However, it
may implement four (or more) levels if desired.

3 Collation Element Table

A Collation Element Table contains a mapping from one (or more) characters to one (or more)
collation elements, where a collation element is an ordered list of three or more 16-bit weights. (All
code points not explicitly mentioned in the mapping are given an implicit weight: see Section 7,
Weight Derivation).

Note: Implementations can produce the same result without using 16-bit weights — see
Section 6, Implementation Notes.

The first weight is called the Level 1 weight (or primary weight), the second is called the Level 2
weight (secondary weight), the third is called the Level 3 weight (tertiary weight), the fourth is called
the Level 4 weight (quaternary weight), and so on. For a collation element X, these can be
abbreviated as X1, X2, X3, X4, and so on. Given two collation elements X and Y, we will use the

following notation:

C3 A conformant implementation that supports any of the features backward levels,
variable weighting, and semi-stability shall do so in accordance with this
specification.

A conformant implementation is not required to support these features; however, if
it does so, it must interpret them properly. Unless they are functioning in a very
restricted domain, it is strongly recommended that implementations support a
backwards secondary level, because this is required for French.

C4 A conformant implementation must specify the version number of this Unicode
Technical Standard.

The precise values of the collation elements for the characters may change over time
as new characters are added to the Unicode Standard. The version number of this
document is synchronized with the version of the Unicode Standard for which it
specifies the repertoire.

C5 An implementation claiming conformance to Matching and Searching according to
UTS #10, shall meet the requirements described in Section 8, Searching and
Matching.

C6 An implementation claiming conformance to standard UCA parametric tailoring shall
do so in accordance with the specifications Section 5, Tailoring.

An implementation claiming such conformance does not have to support all of the
parameter attributes and values; the only requirement is that those that it does
claim to support must behave as specified.

Equals Notation

Notation Reading Meaning
X =1 Y X is primary equal to Y X1 = Y1

X is secondary equal to Y

Other operations are given their customary definitions in terms of the above. That is:

 X ≤n Y if and only if X <n Y or X =n Y

 X >n Y if and only if Y <n X

 X ≥n Y if and only if Y ≤n X

The collation algorithm results in a similar ordering among
characters and strings, so that for two strings A and B we can write
A <2 B, meaning that A is less than B and there is a primary or

secondary difference between them. If A <2 B but A=1 B, we say

that there is only a secondary difference between them. If two
strings are equivalent (equal at all levels) according to a given
Collation Element Table, we write A ≡ B. If they are bit-for-bit
identical, we write A = B.

If a weight is 0000, then that collation element is ignorable at that
level: the weight at that level is not taken into account in sorting. A
Level N ignorable is a collation element that is ignorable at level N
but not at level N+1. Thus:

 A Level 1 ignorable (or primary ignorable) is a collation
element that is ignorable at Level 1, but not at Level 2;

 a Level 2 ignorable (or secondary ignorable) is ignorable at
Levels 1 and 2, but not Level 3;

 a Level 3 ignorable (or tertiary ignorable) is ignorable at Levels 1, 2, and 3 but not Level 4;

In addition:

 A collation element that is not ignorable at any level is called a non-ignorable.
 A collation element with zeros at every level is called completely ignorable.

For a given Collation Element Table, MINn is the least weight in any collation element at level n, and

MAXn is the maximum weight in any collation element at level n.

X =2 Y X2 = Y2 and X =1 Y

X =3 Y X is tertiary equal to Y X3 = Y3 and X =2 Y

X =4 Y X is quaternary equal to Y X4 = Y4 and X =3 Y

Less Than Notation

Notation Reading Meaning
X <1 Y X is primary less than Y X1 < Y1

X <2 Y X is secondary less than Y X <1 Y or (X =1 Y and X2 < Y2)

X <3 Y X is tertiary less than Y X <2 Y or (X =2 Y and X3 < Y3)

X <4 Y X is quaternary less than Y X <3 Y or (X =3 Y and X4 < Y4)

Note: Where only plain text
ASCII characters are
available the following
fallback notation can be
used:

Notation Fallback
X <n Y X <[n] Y

Xn X[n]

X ≤n Y X <=[n] Y

A ≡ B A =[a] B

The following are sample collation elements that are used in the examples illustrating the algorithm.
Unless otherwise noted, all weights are in hexadecimal format.

Note: Weights in all examples are illustrative, and may not match what is in the latest Default
Unicode Collation Element Table.

3.1 Linguistic Features

The following section describes the implications of the features discussed in Section 1, Introduction.

3.1.1 Multiple Mappings

The mapping from characters to collation elements may not be a simple mapping from one character
to one collation element: in general, it may map from one to many, from many to one, or from many
to many. The following sections illustrate this.

3.1.1.1 Expansions

The Latin letter æ is treated as an independent letter by default. Collations such as English, which
may require treating it as equivalent to an <a e> sequence, can tailor the letter to map to a sequence
of more than one collation elements, such as in the following example:

In this example, the collation element [06D9.0020.0002] gives the weight values for a, and the
collation element [073A.0020.0002] gives the weight values for e.

3.1.1.2 Contractions

Similarly, where ch is treated as a single letter as in traditional Spanish, it is represented as a
mapping from two characters to a single collation element, such as in the following example:

In this example, the collation element [0707.0020.0002] has a primary value one greater than the
primary value for the letter c by itself, so that the sequence ch will collate after c and before d. The
above example shows the result of a tailoring of collation elements to weight sequences of letters as
a single unit.

Any character (such as soft hyphen) that is not completely ignorable between two characters of a
contraction will cause them to sort as separate characters. Thus a soft hyphen can be used to
separate and cause distinct weighting of sequences such as Slovak ch or Danish aa that would
normally weight as units.

Sample Table

Character Collation Element Name
0300 "`" [0000.0021.0002] COMBINING GRAVE ACCENT
0061 "a" [06D9.0020.0002] LATIN SMALL LETTER A
0062 "b" [06EE.0020.0002] LATIN SMALL LETTER B
0063 "c" [0706.0020.0002] LATIN SMALL LETTER C
0043 "C" [0706.0020.0008] LATIN CAPITAL LETTER C
0064 "d" [0712.0020.0002] LATIN SMALL LETTER D

Character Collation Element Name
00E6 [06D9.0020.0002],

[073A.0020.0002]
LATIN SMALL LETTER AE; "æ"

Character Collation Element Name
0063
0068

[0707.0020.0002] LATIN SMALL LETTER C,
LATIN SMALL LETTER H; "ch"

Contractions that end with non-starter characters are known as discontiguous contractions. For
example, suppose that there is a contraction of <a, combining ring above>, as in Danish where
this sorts as after "z". If the input text contains the sequence <a, combining dot below, combining
ring above>, then the contraction still needs to be detected. This is required because the
rearrangement of the combining marks is canonically equivalent:

<a, combining dot below, combining ring above>
≡

<a, combining ring above, combining dot below>.

That is, discontiguous contractions must be detected in input text whenever the final sequence of
non-starter characters could be rearranged so as to make a contiguous matching sequence that is
canonically equivalent. In the formal algorithm this is handled by rule Rule S2.1. For information on
non-starters, see [UAX15].

3.1.1.3 Other Multiple Mappings

Certain characters may both expand and contract: see Section 1.3, Contextual Sensitivity.

3.1.2 French Accents

In some languages (notably French), accents are sorted from the back of the string to the front of the
string. This behavior is not marked in the Default Unicode Collation Element Table, but may occur in
tailored tables. In such a case, the collation elements for the accents and their base characters are
marked as being backwards at Level 2.

3.1.3 Rearrangement

Certain characters are not coded in logical order, such as the Thai vowels เ through ไ and the Lao
vowels � through � (this list is indicated by the Logical_Order_Exception property in the Unicode
Character Database [UCD]). For collation, they are rearranged by swapping with the following
character before further processing, because logically they belong afterwards. This is done by
providing these sequences as contractions in the Collation Element Table.

3.1.4 Default Values

Both in the Default Unicode Collation Element Table and in typical tailorings, most unaccented
letters differ in the primary weights, but have secondary weights (such as a1) equal to MIN2. The

primary ignorables will have secondary weights greater than MIN2. Characters that are compatibility

or case variants will have equal primary and secondary weights (for example, a1 = A1 and a2 = A2),

but have different tertiary weights (for example, a3 < A3). The unmarked characters will have tertiary

weights (such as a3) equal to MIN3.

However, a well-formed Unicode Collation Element Table does not guarantee that the meaning of a
secondary or tertiary weight is uniform across tables. For example, a capital A and katakana ta could
both have a tertiary weight of 3.

3.1.5 Collation Graphemes

A collation ordering determines a collation grapheme cluster (also known as a collation grapheme or
collation character), which is a sequence of characters that is treated as a primary unit by the
ordering. For example, ch is a collation grapheme for a traditional Spanish ordering. These are
generally contractions, but may include additional ignorable characters. To determine the boundaries
for a collation grapheme starting at a given position, use the following process:

1. Set oldPosition to be equal to position.

2. If position is at the end of the string, return it.

3. Fetch the next collation element(s) mapped to by the character(s) at position.

4. If the collation element(s) contain a non-ignorable and position is not equal to oldPosition,
return position.

5. Otherwise set position to be the end of the characters mapped.

6. Loop back to step 2.

For information on the use of collation graphemes, see [UTS18].

3.1.6 Combining Grapheme Joiner

The Unicode Collation Algorithm involves the normalization of Unicode text strings before collation
weighting. The U+034F COMBINING GRAPHEME JOINER (CGJ) is ordinarily ignored in collation
key weighting in the UCA, but it can be used to block the reordering of combining marks in a string
as described in [Unicode]. In that case, its effect can be to invert the order of secondary key weights
associated with those combining marks. Because of this, the two strings would have distinct keys,
making it possible to treat them distinctly in searching and sorting without having to further tailor
either the combining grapheme joiner or the combining marks themselves.

The CGJ can also be used to prevent the formation of contractions in the Unicode Collation
Algorithm. Thus, for example, while ch is sorted as a single unit in a tailored Slovak collation, the
sequence <c, CGJ, h> will sort as a c followed by an h. This can also be used in German, for
example, to force ü to be sorted as u + umlaut (thus u <2 ü), even where a dictionary sort is being

used (which would sort ue <3 ü). This happens without having to further tailor either the combining

grapheme joiner or the sequence.

Note: As in a few other cases in Unicode, such as U+200B ZERO WIDTH SPACE (which is
not a white space character), the name of the CGJ is misleading: the usage above is in some
sense the inverse of "joining".

Sequences of characters which include the combining grapheme joiner or other completely ignorable
characters may also be given tailored weights. Thus the sequence <c, CGJ, h> could be weighted
completely differently from the either the contraction ch or how c and h would have sorted without
the contraction. However, this application of CGJ is not recommended, because it would produce
effects much different than the normal usage above, which is to simply interrupt contractions.

3.2 Default Unicode Collation Element Table

The Default Unicode Collation Element Table is provided in [AllKeys]. This table provides a mapping
from characters to collation elements for all the explicitly weighted characters. The mapping lists
characters in the order that they would be weighted. Any code points that are not explicitly
mentioned in this table are given a derived collation element, as described in Section 7, Weight
Derivation. There are three types of mappings:

 Normal. One Unicode character maps to one collation element.
 Expansions. One Unicode character maps to a sequence of collation elements.
 Contractions. A sequence of Unicode characters maps to a sequence of (one or more)

collation elements.

The Default Unicode Collation Element Table does not aim to provide precisely correct ordering for
each language and script; tailoring is required for correct language handling in almost all cases. The
goal is instead to have all the other characters, those that are not tailored, show up in a reasonable
order. In particular, this is true for contractions, because the use of contractions can result in larger
tables and significant performance degradation. While contractions are required in tailorings, in the
Default Unicode Collation Element Table their use is kept to the bare minimum to avoid such
problems.

In the Default Unicode Collation Element Table, contractions are required in those instances where a

canonically decomposable character requires a distinct primary weight in the table, so that the
canonically equivalent character sequences are also given the same weights. For example, Indic
two-part vowels have primary weights as units, and their canonically equivalent sequence of vowel
parts must be given the same primary weight by means of a contraction entry in the table. The same
applies to a number of precomposed Cyrillic characters with diacritic marks and to a small number of
Arabic letters with madda or hamza marks.

Contractions are also entered in the table for Thai and Lao logical order exception vowels. Because
both Thai and Lao both have five vowels that are represented in strings in visual order, instead of
logical order, they cannot simply be weighted by their representation order in strings. One option is
to require preprocessing of Thai and Lao strings, to identify and reorder all logical order exception
vowels around the following consonant. That approach was used in Version 4.0 (and earlier) of the
UCA. Starting with Version 4.1 of the UCA, contractions for the relevant combinations of Thai and
Lao vowel+consonant have been entered in the Default Unicode Collation Element Table instead.

Those are the only two classes of contractions allowed in the Default Unicode Collation Element
Table. Generic contractions of the sort needed, for example, to handle digraphs such as "ch" in
Spanish or Czech sorting, should be dealt with instead in tailorings to the default table -- in part
because they often vary in ordering from language to language, and in part because every
contraction entered into the default table has a significant implementation cost for all applications of
the default table, even those which may not be particularly concerned with the affected script. See
the Unicode Common Locale Data Repository (CLDR) for extensive tailorings of the DUCET for
various languages, including those requiring contractions.

This table is constructed to be consistent with the Unicode Canonical Equivalence algorithm, and to
respect the Unicode character properties. It is not, however, merely algorithmically derivable from
those data, because the assignment of levels does take into account characteristics of particular
scripts. For example, in general the combining marks are Level 1 ignorables; however, the Indic
combining vowels are given non-zero Level 1 weights, because they are as significant in sorting as
the consonants.

Any character may have variant forms or applied accents which affect collation. Thus, for FULL STOP
there are three compatibility variants, a fullwidth form, a compatibility form, and a small form. These
get different tertiary weights, accordingly. For more information on how the table was constructed,
see Section 7, Weight Derivation.

The following table shows the layout of the collation elements in the Default Unicode Collation
Element Table, ordered by primary weight:

DUCET Layout

Values Range Types of Characters
X1, X2, X3

= 0

tertiary
ignorables

- Control Codes
- Format Characters
- Hebrew Points
- Tibetan Signs
...

X1, X2 = 0;

X3 ≠ 0

secondary
ignorables

None in DUCET; could be in tailorings

X1 = 0;

X2, X3 ≠ 0

primary ignorable - Most nonspacing marks

X1, X2, X3 variable - Whitespace

For most languages, some degree of tailoring is required to match user expectations. For more
information, see Section 5, Tailoring.

3.2.1 File Format

Each of the files consists of a version line followed by an optional variable-weight line, optional
backwards lines, and a series of entries, all separated by newlines. A '#' or '%' and any following
characters on a line are comments. Whitespace between literals is ignored. The following is an
extended BNF description of the format, where "x+" indicates one or more x's, "x*" indicates zero or
more x's, "x?" indicates zero or one x, and <char> is a hexadecimal Unicode code value.

<collationElementTable> := <version>
 <variable>?
 <backwards>*
 <entry>+

The version line is of the form:

@<version> := <major>.<minor>.<variant> <eol>

The variable-weight line has three possible values that may change the weights of collation elements
in processing (see Section 3.2.2, Variable Weighting). The default is shifted.

<variable> := '@variable ' <variableChoice> <eol>
<variableChoice> := 'blanked' | 'non-ignorable' | 'shifted'

A backwards line lists a level that is to be processed in reverse order. A forwards line does the
reverse. The default is for lines to be forwards.

<backwards> := ('@backwards ' | '@forwards ') <levelNumber> <eol>

Each entry is a mapping from character(s) to collation element(s), and is of the following form:

<entry> := <charList> ';' <collElement>+ <eol>
<collElement> := "[" <alt> <char> "." <char> "." <char> ("." <char>)* "]"
<alt> := "*" | "."

In the Default Unicode Collation Element Table, the comment may contain informative tags.

Here are some selected entries taken from a particular version of the data file. (It may not match the
actual values in the current data file.)

≠ 0 - Punctuation
- Symbols

regular - Small number of exceptional symbols (for example,
U+02D0 (ː) triangular colon)
- Numbers
- Latin
- Greek
...

implicit - CJK & CJK compatibility (those not decomposed)
- CJK Extension A & B
- Unassigned and others given implicit weights

trailing None in DUCET; could be in tailorings

0020 ; [*0209.0020.0002.0020] % SPACE
02DA ; [*0209.002B.0002.02DA] % RING ABOVE; COMPATSEQ
0041 ; [.06D9.0020.0008.0041] % LATIN CAPITAL LETTER A
3373 ; [.06D9.0020.0017.0041] [.08C0.0020.0017.0055] % SQUARE AU; COMPATSEQ
00C5 ; [.06D9.002B.0008.00C5] % LATIN CAPITAL LETTER A WITH RING ABOVE; CANONSEQ
212B ; [.06D9.002B.0008.212B] % ANGSTROM SIGN; CANONSEQ
0042 ; [.06EE.0020.0008.0042] % LATIN CAPITAL LETTER B
0043 ; [.0706.0020.0008.0043] % LATIN CAPITAL LETTER C
0106 ; [.0706.0022.0008.0106] % LATIN CAPITAL LETTER C WITH ACUTE; CANONSEQ
0044 ; [.0712.0020.0008.0044] % LATIN CAPITAL LETTER D

The entries in each file are ordered by collation element, not by character, using a SHIFTED
comparison. This makes it easy to see the order in which characters would be collated.

Although this document describes collation elements as three levels, the file contains a fourth level
(as in [.0712.0020.0008.0044]), which is computable. In most cases the fourth level is simply equal
to the code point itself. For composite characters which have have collation weights using a
sequence of collation elements, the fourth level for each collation element is based on the
decomposition of the character. For completely ignorable collation elements, the fourth level is set to
zero. For more information on the use of the fourth level and stable sorts, see Section 3.4, Stability.

Implementations can also add more customizable levels, as discussed above under conformance.
For example, an implementation might want to be capable not only of handling the standard Unicode
Collation, but also capable of emulating an EBCDIC multi-level ordering (having a fourth-level
EBCDIC binary order).

3.2.2 Variable Weighting

Collation elements that are marked with an asterisk in a Unicode Collation Element Table are known
as variable collation elements.

Based on the setting of the variable weighting tag, collation elements can be either treated as
ignorables or not. When they are treated as ignorables, then any sequence of ignorable characters
that immediately follows the variable collation element is also affected.

There are four possible options for variable weighted characters, with the default being Shifted:

 Blanked: Variable collation elements and any subsequent ignorables are reset so that their
weights at levels one through three are zero. For example,

 SPACE would have the value [.0000.0000.0000]

 A combining grave accent after a space would have the value [.0000.0000.0000]

 Capital A would be unchanged, with the value [.06D9.0020.0008]

 A combining grave accent after a Capital A would be unchanged
 Non-ignorable: Variable collation elements are not reset to be ignorable, and but get the

weights explicitly mentioned in the file.
 SPACE would have the value [.0209.0020.0002]

 Capital A would be unchanged, with the value [.06D9.0020.0008]

 Ignorables are unchanged.
 Shifted: Variable collation elements are reset to ignorable zero at levels one through three. In

addition, a new final fourth-level weight is appended, whose value depends on the type:

Character Collation Element Name
0020 " " [*0209.0020.0002] SPACE

Type L4 Examples
Completely Tertiary Ignorable 0000 NULL

Any subsequent primary or secondary ignorables following a variable are reset so that their
weights at levels one through four are zero.

 A combining grave accent after a space would have the value [.0000.0000.0000.0000].

 A combining grave accent after a Capital A would be unchanged.

The shifted option provides for improved orderings when the variable collation elements are
ignorable, while still only requiring three fields to be stored in memory for each collation
element. It does result in somewhat longer sort keys, although they can be compressed (see
Section 6.1, Reducing Sort Key Lengths and Section 6.3, Reducing Table Sizes).

 Shift-Trimmed: the same as Shifted, except that all trailing FFFFs are trimmed from the sort
key. This option is designed to emulate POSIX behavior.

The following gives an example of the differences between orderings using the different options for
variable collation elements. In this example, sample strings differ by the third character: a letter,
space, '-' hyphen-minus (002D), or '-' hyphen (2010); followed by an uppercase/lowercase
distinction. In the first column below, the words with hyphen-minus and hyphen are separated by
deluge, because an l comes between them in Unicode code order. In the second column, they are
grouped together but before all letters in the third position. This is because they are no longer
ignorable, and have primary values that differ from the letters. In the third column, the hyphen-minus
and hyphen are grouped together, and their differences are less significant than between the deluge.
In this case, it is because they are ignorable, but their fourth level differences are according to the
original primary order, which is more intuitive than Unicode order.

Primaries for variable collation elements are not interleaved with other primary weights. This allows
for more compact storage of memory tables. Rather than using a bit per collation element to
determine whether the collation element is variable, the implementation only needs to store the
maximum primary value for all the variable elements. All collation elements with primary weights
from 1 to that maximum are variables; all other collation elements are not.

[.0000.0000.0000.0000]

Primary or Secondary Ignorable (L1, L2) ,
following a after Variable

0000 COMBINING GRAVE
[.0000.0000.0000.0000]

Variable old L1 SPACE
[.0000.0000.0000.0209]

None of the above FFFF Capital A
[.06D9.0020.0008.FFFF]

Blanked Non-
ignorable

Shifted Shift-
Trimmed

death
de luge
de-luge
deluge
de-luge
de Luge
de-Luge
deLuge
de-Luge
demark

de luge
de Luge
de-luge
de-Luge
de-luge
de-Luge
death
deluge
deLuge
demark

death
de luge
de-luge
de-luge
deluge
de Luge
de-Luge
de-Luge
deLuge
demark

death
deluge
de luge
de-luge
de-luge
deLuge
de Luge
de-Luge
de-Luge
demark

3.3 Well-Formed Collation Element Tables

A well-formed Collation Element Table meets the following conditions:

1. Except in special cases detailed in Section 6.2, Large Weight Values, no collation
element can have a zero weight at Level N and a non-zero weight at Level N-1.

For example, the secondary can only be ignorable if the primary is ignorable. The reason
for this will be explained under Step 4 of the main algorithm.

2. All Level N weights in Level N-1 ignorables must be strictly less than all weights in Level
N-2 ignorables.

For example, secondaries in non-ignorables must be strictly less than those in primary
ignorables:

 Given collation elements [C, D, E] and [0, A, B], where C ≠ 0 and A ≠ 0
 Then D must be less than A.

3. No variable collation element has an ignorable primary.
4. For all variable collation elements U, V, if there is a collation element W such that U1 ≤

W1 and W1 ≤ V1, then W is also variable.

This provision prevents interleaving, mentioned above.

3.4 Stability

The notion of stability in sorting often causes confusion when discussing collation.

A stable sort is one where two records with a field that compares as equal will retain their order if
sorted according to that field. This is a property of the sorting algorithm, not the comparison
mechanism. For example, a bubble sort is stable, while a quick sort is not. This is a useful property,
but cannot be accomplished by modifications to the comparison mechanism or tailorings.

A semi-stable collation is different. It is a collation where strings that are not canonical equivalents
will not be judged to be equal. This is a property of comparison, not the sorting algorithm. In general
this is not a particularly useful property; its implementation also typically requires extra processing in
string comparison or an extra level in sort keys, and thus may degrade performance to little purpose.
However, if a semi-stable collation is required, the specified mechanism is to append the NFD form
of the original string after the sort key, in Section 4.3, Form Sort Key. See also Appendix A:
Deterministic_Sorting.

The fourth-level weights in the Default Collation Element Table can be used to provide an
approximation of a semi-stable collation.

Neither one of the above refers to the stability of the Default Collation Element Table itself. For any
particular version of the UCA, the contents of that table will remain unchanged. The contents may,
however, change between successive versions of the UCA, as new characters are added, or as
more information is obtained about existing characters.

Implementers should be aware that using different versions of the UCA, as well as different versions
of the Unicode Standard, could result in different collation results of their data. There are numerous
ways collation data could vary across versions, for example:

1. Code points that were unassigned in a previous version of the Unicode Standard are now
assigned in the current version, and as such, will have a sorting semantic appropriate to the
repertoire to which they belong. For example, the code points U+103D0..U+103DF were
undefined in Unicode 3.1. Because they were assigned characters in Unicode 3.2, their sorting

semantics and respective sorting weights will change.
2. Certain semantics of the Unicode standard could change between versions, such that code

points are treated in a manner different than previous versions of the standard (for example,
normalization errata).

3. More information is gathered about a particular script, and in order to provide a more
linguistically accurate sort, the weight of a code point may need to be adjusted.

Any of these reasons could necessitate a change between versions with regards to sort weights for
code points, and as such, it is important that the implementers specify the version of the UCA, as
well as the version of the Unicode standard under which their data is sorted.

4 Main Algorithm

The main algorithm has four steps. First is to normalize each input string, second is to produce an
array of collation elements for each string, and third is to produce a sort key for each string from the
collation elements. Two sort keys can then be compared with a binary comparison; the result is the
ordering for the original strings.

4.1 Normalize

Step 1. Produce a normalized form of each input string, applying S1.1.

S1.1 Use the Unicode canonical algorithm to decompose characters according to the canonical
mappings. That is, put the string into Normalization Form D (see [UAX15]).

 Conformant implementations may skip this step in certain circumstances: see Section 7,
Weight Derivation for more information.

4.2 Produce Array

Step 2. The collation element array is built by sequencing through the normalized form as follows:

Note: A non-starter in a string is called blocked if there is another non-starter of the same
canonical combining class or zero between it and the last character of canonical combining
class 0.

S2.1 Find the longest initial substring S at each point that has a match in the table.

S2.1.1 If there are any non-starters following S, process each non-starter C.

S2.1.2 If C is not blocked from S, find if S + C has a match in the table.

S2.1.3 If there is a match, replace S by S + C, and remove C.

S2.2 Fetch the corresponding collation element(s) from the table if there is a match. If there is no
match, synthesize a weight as described in Section 7.1, Derived Collation Elements.

S2.3 Process collation elements according to the variable-weight setting, as described in >Section
3.2.2, Variable Weighting.

S2.4 Append the collation element(s) to the collation element array.

S2.5 Proceed to the next point in the string (past S).

S2.6 Loop until the end of the string is reached.

Note: The reason for considering the extra non-starter C is that otherwise irrelevant characters
could interfere with matches in the table. For example, suppose that the contraction <a,

combining_ring> (= å) is ordered after z. If a string consists of the three characters <a,
combining_ring, combining_cedilla>, then the normalized form is <a, combining_cedilla,
combining_ring>, which separates the a from the combining_ring. If we did not have the step of
considering the extra non-starter, this string would compare incorrectly as after a and not after
z.

If the desired ordering treats <a, combining_cedilla> as a contraction which should take
precedence over <a, combining_ring>, then an additional mapping for the combination <a,
combining_ring, combining_cedilla> can be introduced to produce this effect.

Note: For conformance to Unicode canonical equivalence, only unblocked non-starters are
matched. For example, <a, combining_macron, combining_ring> would compare as after a-
macron, and not after z. As in the previous note, additional mappings can be added to
customize behavior.

4.3 Form Sort Key

Step 3. The sort key is formed by successively appending weights from the collation element array.
The weights are appended from each level in turn, from 1 to 3. (Backwards weights are inserted in
reverse order.)

An implementation may allow the maximum level to be set to a smaller level than the available levels
in the collation element array. For example, if the maximum level is set to 2, then level 3 and higher
weights are not appended to the sort key. Thus any differences at levels 3 and higher will be
ignored, leveling any such differences in string comparison.

Here is a more detailed statement of the algorithm:

S3.1 For each weight level L in the collation element array from 1 to the maximum level,

S3.2 If L is not 1, append a level separator*

S3.3 If the collation element table is forwards at level L,

S3.4 For each collation element CE in the array

S3.5 Append CEL to the sort key if CEL is non-zero.

S3.6 Else the collation table is backwards at level L, so

S3.7 Form a list of all the non-zero CEL values.

S3.8 Reverse that list

S3.9 Append the CEL values from that list to the sort key.

Example:

normalized
string:

ca´b

collation
element
array:

[0706.0020.0002], [06D9.0020.0002], [0000.0021.0002], [06EE.0020.0002]

* The level separator is zero (0000), which is guaranteed to be lower than any weight in the
resulting sort key. This guarantees that when two strings of unequal length are compared,
where the shorter string is a prefix of the longer string, the longer string is always sorted after
the shorter (in the absence of special features like contractions). For example:

"abc" < "abcX" where "X" can be any character(s)

S3.10 If a semi-stable sort is required, then after all the level weights have been added, append a
copy of the NFD version of the original string. This strength level is called "identical". (See also
Appendix A: Deterministic_Sorting.)

4.4 Compare

Step 4. Compare the sort keys for each of the input strings, using a binary comparison. This means
that:

 Level 3 differences are ignored if there are any Level 1 or 2 differences
 Level 2 differences are ignored if there are any Level 1 differences
 Level 1 differences are never ignored.

In this example, "cab" <3 "Cab" <2 "cáb" <1 "dab". The differences that produce the ordering are

shown by the bold underlined items:

 For the first two strings, the first difference is in 0002 versus 0008 (Level 3)

 For the middle two strings the first difference is in 0020 versus 0021 (Level 2)

 For the last two strings, the first difference is in 0706 versus 0712 (Level 1).

Note: At this point we can explain the reason for only allowing well-formed weights. If ill-formed
weights were allowed, the ordering of elements can be incorrectly reflected in the sort key. For
example, suppose the secondary weights of the Latin characters were zero (ignorable) and
that (as normal) the primary weights of case-variants are equal: that is, a1 = A1. Then the

following incorrect keys would be generated:

1. "áe" = <a, acute, e> => [a1 e1 0000 acute2 0000 a3 acute3 e3...]

Example:

collation
element
array:

[0706.0020.0002], [06D9.0020.0002], [0000.0021.0002],
[06EE.0020.0002]

sort key: 0706 06D9 06EE 0000 0020 0020 0021 0020 0000 0002 0002 0002 0002

Example:

String Sort Key
cab 0706 06D9 06EE 0000 0020 0020 0020 0000 0002 0002 0002

Cab 0706 06D9 06EE 0000 0020 0020 0020 0000 0008 0002 0002

cáb 0706 06D9 06EE 0000 0020 0020 0021 0020 0000 0002 0002 0002 0002

dab 0712 06D9 06EE 0000 0020 0020 0020 0000 0002 0002 0002

2. "Aé" = <A, e, acute> => [a1 e1 0000 acute2 0000 A3 acute3 e3...]

Because the secondary weights for a, A, and e are lost in forming the sort key, the relative
order of the acute is also lost, resulting in an incorrect ordering based solely on the case of A
versus a. With well-formed weights, this does not happen, and you get the following correct
ordering:

1. "Aé" = <A, e, acute> => [a1 e1 0000 a2 e2 acute2 0000 a3 acute3 e3...]

2. "áe" = <a, acute, e> => [a1 e1 0000 a2 acute2 e2 0000 A3 acute3 e3...]

However, there are circumstances--typically in expansions--where higher-level weights in
collation elements can be zeroed (resulting in ill-formed collation elements) without
consequence (see Section 6.2, Large Weight Values). Implementations are free to do this as
long as they produce the same result as with well-formed tables.

5 Tailoring

Tailoring is any well-defined syntax that takes the Default Unicode Collation Element Table and
produces another well-formed Unicode Collation Element Table. This syntax can provide
linguistically-accurate collation, if desired. Such syntax will usually allow for the following capabilities:

1. Reordering any character (or contraction) with respect to others in the standard ordering. Such
a reordering can represent a Level 1 difference, Level 2 difference, Level 3 difference, or
identity (in levels 1 to 3). Because such reordering includes sequences, arbitrary multiple
mappings can be specified.

2. Setting the secondary level to be backwards (French) or forwards (normal).

3. Set variable weighting options.

4. Customizing the exact list of variable collation elements.

For examples of tailoring syntax, see Section 6.9, Tailoring Example: Java.

5.1 Parametic Tailoring

Parametric tailoring, if supported, is specified using a set of attribute-value pairs that specify a
particular kind of behavior relative to the UCA. The standard parameter names (attributes) and their
posible values are listed in the table Collation Parameters, and follow those defined in the Unicode
Locale Data Markup Language [LDML] in the table Collation Settings (Section 5.13.3, Setting
Options). The bold values are the defaults for the UCA.

Collation Parameters

Attribute Options Description
locale (or
language)

locale_id Specifies the tailoring rules for the language and/or
variant. The locale_id for locale or language uses the
syntax from [LDML], Section 3, Identifiers. Unless
otherwise specified, tailoring by locale uses the tables
from the Unicode Common Locale Data Repository
[CLDR]. Such a choice may override the defaults for
the attributes given below. The default if nothing is
specified is the UCA behavior.

strength primary (1)
secondary (2)
tertiary (3)
quaternary (4)
identical (5)

Sets the default strength for comparison, as
described in the UCA. The parenthesized numbers are
alternate forms.

alternate non-ignorable
shifted
blanked

Sets alternate handling for variable weights, as
described in Section 3.2.2, Variable Weighting. Note
that in [LDML], blanked is not supported, and shifted
is the default.

backwards on
off

Sets the comparison for the second level only to be
backwards ("French"), as described in 3.1.2 French
Accents and specified in S3.3-S3.6. The default is on
for the French locales and off for others.

normalization on
off

Conformant implementations may skip [S1.1] in
certain circumstances. If on, then the normal UCA
algorithm is used. If off, all strings that normalized
will sort correctly, but others won't necessarily sort
correctly. So it should only be set off if the the strings
to be compared are normalized. (It is recommended
that implementations correctly sort all strings that are
in the format known as FCD even if normalization is
off. For more information on FCD, see [UTN5].)

caseLevel on
off

If set to on, a level consisting only of case
characteristics will be inserted in front of tertiary
level. To ignore accents but take cases into account,
set strength to primary and case level to on.

caseFirst upper
lower
off

If set to upper, causes upper case to sort before lower
case. If set to lower, lower case will sort before upper
case. Useful for locales that have already supported
ordering but require different order of cases. Affects
case and tertiary levels.

hiraganaQuaternary on
off

Controls special treatment of Hiragana code points on
quaternary level. If turned on, Hiragana codepoints
will get lower values than all the other non-variable
code points. The strength must be greater or equal
than quaternary if you want this attribute to take
effect. The default is on for the Japanese locales and
off for others.

numeric on
off

If set to on, any sequence of Decimal Digits
(General_Category = Nd in the [UCD]) is sorted at a
primary level with its numeric value. For example, "A-

5.2 Preprocessing

In addition to tailoring, some implementations may choose to preprocess the text for special
purposes. Once such preprocessing is done, the standard algorithm can be applied.

Examples include:

 mapping "McBeth" to "MacBeth"

 mapping "St." to "Street" or "Saint", depending on the context

 dropping articles, such as a or the

 using extra information, such as pronunciation data for Han characters

Such preprocessing is outside of the scope of this document.

6 Implementation Notes

As noted above for efficiency, implementations may vary from this logical algorithm as long as they
produce the same result. The following items discuss various techniques that can be used for
reducing sort key length, reducing table sizes, customizing for additional environments, searching,
and other topics.

6.1 Reducing Sort Key Lengths

The following discuss methods of reducing sort key lengths. If these methods are applied to all of the
sort keys produced by an implementation, they can result in significantly shorter and more efficient
sort keys while retaining the same ordering.

6.1.1 Eliminating Level Separators

21" < "A-123".
variableTop uXXuYYYY The parameter value is an encoded Unicode string,

with code points in hex, leading zeros removed, and
'u' inserted between successive elements.

Sets the default value for the variable top. All the
code points with primary strengths less than variable
top will be considered variable, and thus affected by
the alternate handling. If not specified, then the
default is the value in DUCET.

match-boundaries: none
whole-character
whole-word

Defined in Section 8, Searching and Matching.

match-style minimal
medial
maximal

Defined in Section 8, Searching and Matching.

Level separators are not needed between two levels in the sort key, if the weights are properly
chosen. For example, if all L3 weights are less than all L2 weights, then no level separator is needed
between them. If there is a fourth level, then the separator before it needs to be retained.

For example, here is a sort key with these level separators removed.

While this technique is relatively easy to implement, it can interfere with other compression methods.

6.1.2 L2/L3 in 8 Bits

The L2 and L3 weights commonly are small values. Where that condition occurs for all possible
values, they can then be represented as single 8-bit quantities.

Here is the above example with both these changes (and grouping by bytes). Note that the separator
has to remain after the primary weight when combining these techniques. If any separators are
retained (such as before the fourth level), they need to have the same width as the previous level.

6.1.3 Machine Words

The sort key can be represented as an array of different quantities depending on the machine
architecture. For example, comparisons as arrays of 32-bit quantities may be much faster on some
machines. If this is done, the original is to be padded with trailing (not leading) zeros as necessary.

6.1.4 Run-Length Compression

Generally sort keys do not differ much in the secondary or tertiary weights, so you tend to end up
with keys with a lot of repetition. This also occurs with quaternary weights generated with the shifted
parameter. By the structure of the collation element tables, there are also many weights that are
never assigned at a given level in the sort key. You can take advantage of these regularities in these
sequences to compact the length — while retaining the same sort sequence — by using the
following technique. (There are other techniques that can also be used.)

This is a logical statement of the process: the actual implementation can be much faster and
performed as the sort key is being generated.

 For each level n, find the most common value COMMON produced at that level by the collation
element table for typical strings. For example, for the Default Unicode Collation Element Table,
this is:

 0020 for the secondaries (corresponding to unaccented characters)

String Sort Key
càb (0) 0706 06D9 06EE 0000 0020 0020 0021 0020 0000 0002 0002 0002 0002

càb (1) 0706 06D9 06EE 0020 0020 0021 0020 0002 0002 0002 0002

String Sort Key
càb (0) 07 06 06 D9 06 EE 00 00 00 20 00 20 00 21 00 20 00 00 00 02 00 02 00

02 00 02

càb (1,2) 07 06 06 D9 06 EE 00 00 20 20 21 20 02 02 02 02

String Sort Key
càb (1,2) 07 06 06 D9 06 EE 00 00 20 20 21 20 02 02 02 02

càb (1,2,3) 070606D9 06EE0000 20202120 02020202

 0002 for tertiaries (corresponding to lowercase or unmarked letters)
 FFFF for quaternaries (corresponding to non-ignorables with the shifted parameter)

 Reassign the weights in the collation element table at level n to create a gap of size GAP
above COMMON. Typically for secondaries or tertiaries this is done after the values have been
reduced to a byte range by the above methods. Here is a mapping that moves weights up or
down to create a gap in a byte range.
w -> w + 01 - MIN, for MIN <= w < COMMON
w -> w + FF - MAX, for COMMON < w <= MAX

 At this point, weights go from 1 to MINTOP, and from MAXBOTTOM to MAX. These new
unassigned values are used to run-length encode sequences of COMMON weights.

 When generating a sort key, look for maximal sequences of m COMMON values in a row. Let
W be the weight right after the sequence.

 If W < COMMON (or there is no W), replace the sequence by a synthetic low weight
equal to (MINTOP + m).

 If W > COMMON, replace the sequence by a synthetic high weight equal to
(MAXBOTTOM - m).

In the following example, the low weights are 01, 02; the high weights are FE, FF; and the
common weight is 77.

Examples

 The last step is a bit too simple, because we have to keep the synthetic weights from colliding
with other values with long strings of COMMON weights. This is done by using a sequence of
synthetic weights, absorbing as much length into each one as possible. This is done by
defining a value BOUND between MINTOP and MAXBOTTOM. The exact value for BOUND
can be chosen based on the expected frequency of synthetic low weights versus high weights
for the particular collation element table.

 If a synthetic low weight would not be less than BOUND, use a sequence of low weights
of the form (BOUND-1)..(BOUND-1)(MINTOP + remainder) to express the length of the
sequence.

 Similarly, if a synthetic high weight would be less than BOUND, use a sequence of high
weights of the form (BOUND)..(BOUND)(MAXBOTTOM - remainder).

This process results in keys that are never longer than the original, are generally much shorter, and
result in the same comparisons.

6.2 Large Weight Values

If a collation sequence requires more than 65,535 weight values (or 65,024 values where zero bytes

Original Weights Compressed Weights
01
02
77 01
77 02
77 77 01
77 77 02
77 77 77 01
77 77 77 02
...
77 77 77 FE
77 77 77 FF
77 77 FE
77 77 FF
77 FE
77 FF
FE
FF

01
02
03 01
03 02
04 01
04 02
05 01
05 02
...
FB FE
FB FF
FC FE
FC FF
FD FE
FD FF
FE
FF

are avoided), this can still be accommodated by using multiple collation elements for a single
character. For example, suppose that 50,000 UTF-16 supplementary characters are assigned in a
particular implementation, and that these are to be sorted after X. Simply assign them all dual
collation elements of the form

[(X1+1).0000.0000], [yyyy.zzzz.wwww]

If there was an element with the primary weight (X1+1), then it also needs to be converted into a dual
collation element.

The characters will then sort properly with respect to each other and to the rest of the characters.
The first collation element is one of the instances where ill-formed collation elements are allowed.
Because the second collation element is well-formed and the first element will only occur in
combination, ordering is preserved.

6.3 Reducing Table Sizes

The data tables required for full Unicode sorting can be quite sizable. This section discusses ways to
significantly reduce the table size in memory. These have very important implications for
implementations.

6.3.1 Contiguous Weight Ranges

The Default Unicode Collation Element Table has secondary weights that are greater than 00FF.
This is the result of the derivation described in Section 7, Weight Derivation. However, these values
can be compacted to a range of values that do not exceed 00FF. Whenever collation elements have
different primary weights, the ordering of their secondary weights is immaterial. Thus all of the
secondaries that share a single primary can be renumbered to a contiguous range without affecting
the resulting order. Composite characters still need to be handled correctly if normalization is
avoided as discussed in Section 7, Weight Derivation.

For example, for the primary value 0820 (for the letter O), there are 31 distinct secondary values
ranging from 0020 to 012D. These can be renumbered to the contiguous range from 0020 to 003F,
which is less than 00FF.

6.3.2 Escape Hatch

Although the secondary and tertiary weights for the Default Unicode Collation Element Table can
both fit within one byte, of course, any particular tailored table could conceivably end up with
secondary or tertiary weights that exceed what can be contained in a single byte. However, the
same technique used for large weight values can also be used for implementations that do not want
to handle more than 00FF values for a particular weight.

For example, the Java collation implementation only stored 8-bit quantities in level 2 and level 3.
However, characters can be given L2 or L3 weights with greater values by using a series of two
collation elements. For example, with characters requiring 2,000 weights at L2, then 248 characters
can be given single keys, while 1,792 are given two collation keys of the form [yyyy.00zz.00ww]
[0000.00nn.0001].

The 248 can be chosen to be the higher frequency characters, while there would need to be eight
distinct zz values to cover the remaining characters. These zz values must only be used with dual
collation elements.

6.3.3 Leveraging Unicode Tables

Because all canonically decomposable characters are decomposed in Step 1.1, no collation
elements need to be supplied for them. This includes a very large number of characters, not only a
large number of Latin and Greek characters, but also the very large number of Hangul Syllables.

Because most compatibility decomposable characters in the default table can be algorithmically
generated from the decomposition, no collation elements need to be stored for those decomposable
characters: the collation elements can be generated on the fly with only a few exceptions entered in
the table. The collation elements for the Han characters (unless tailored) are algorithmically derived;
no collation elements need to be stored for them either. For more information, see Section 7, Weight
Derivation.

This means that only a small fraction of the total number of Unicode characters need to have an
explicit collation element. This can cut down the memory storage considerably.

6.3.4 Reducing the Repertoire

If characters are not fully supported by an implementation, then their code points can be treated as if
they were unassigned. This allows them to be algorithmically constructed from code point values
instead of including them in a table. This can significantly reduce the size of the required tables. See
Section 7.1, Derived Collation Elements for more information.

6.3.5 Memory Table Size

Applying the above techniques, an implementation can thus safely pack all of the data for a collation
element into a single 32-bit quantity: 16 for the primary, 8 for the secondary and 8 for the tertiary.
Then applying techniques such as the Two-Stage table approach described in "Multistage Tables" in
Section 5.1, Transcoding to Other Standards of [Unicode], the mapping table from characters to
collation elements can both fast and small. For an example of how this can be done, see Section
6.10, Flat File Example.

6.4 Avoiding Zero Bytes

If the resulting sort key is to be a C-string, then zero bytes must be avoided. This can be done by:

 using the value 010116 for the level separator instead of 0000.

 preprocessing the weight values to avoid zero bytes, such as remapping as follows:
 x => 010116 + (x / 255)*256 + (x % 255)

 Where the values are limited to 8-bit quantities (as discussed above), zero bytes are even
more easily avoided by just using 01 as the level separator (where one is necessary), and
mapping weights by

 x => 01 + x.

6.5 Avoiding Normalization

Implementations that do not handle separate combining marks can map decomposable characters
(such as "à") to single collation elements with different Level 2 weights for the different accents. For
more information, see Section 7, Weight Derivation. However, this does require including the
mappings for these characters in the collation table, which will increase the size substantially unless
the collation elements for the Hangul Syllables are computed algorithmically.

6.6 Case Comparisons

In some languages, it is common to sort lowercase before uppercase; in other languages this is
reversed. Often this is more dependent on the individual concerned, and is not standard across a
single language. It is strongly recommended that implementations provide parameterization that
allow uppercase to be sorted before lowercase, and provide information as to the standard (if any)
for particular countries. This can easily be done to the Default Unicode Collation Element Table
before tailoring by remapping the L3 weights (see Section 7, Weight Derivation). It can be done after
tailoring by finding the case pairs and swapping the collation elements.

6.7 Incremental Comparison

Implementations do not actually have to produce full sort keys. Collation elements can be
incrementally generated as needed from two strings, and compared with an algorithm that produces
the same results as sort keys would have. The choice of which algorithm to use depends on the
number of comparisons between the same strings.

 Generally incremental comparison is more efficient than producing full sort keys if strings are
only to be compared once and if they are generally dissimilar, because differences are caught
in the first few characters without having to process the entire string.

 Generally incremental comparison is less efficient than producing full sort keys if items are to
be compared multiple times.

However, it is very tricky to produce an incremental comparison that produces correct results. For
example, some implementations have not even been transitive! Be sure to test any code for
incremental comparison thoroughly.

6.8 Catching Mismatches

Sort keys from two different tailored collations cannot be compared, because the weights may end
up being rearranged arbitrarily. To catch this case, implementations can produce a hash value from
the collation data, and prepend it to the sort key. Except in extremely rare circumstances, this will
distinguish the sort keys. The implementation then has the opportunity to signal an error.

6.9 Tailoring Example: Java

Java 2 implements a number of the tailoring features described in this document. The following
summarizes these features (for more information, see Collator on [JavaCollator]).

1. Java does not use a default table in the Unicode Collation Element format: instead it always uses
a tailoring syntax. Here is a description of the entries:

Either x or y can be more than one character, to handle contractions and expansions. NULL is
completely ignorable, so by using the above operations, various levels of ignorable characters can
be specified.

2. Entries can be abbreviated in a number of ways:

 They do not need to be separated by newlines.
 Characters can be specified directly, instead of using their hexadecimal Unicode values.
 Wherever you have rules of the form "x < y & y < z", you can omit "& y", leaving just "x < y < z".

These can be done successively, so the following are equivalent in ordering.

Java Syntax Description
 & y < x Make x primary-greater than y
 & y ; x Make x secondary-greater than y
 & y , x Make x tertiary-greater than y
 & y = x Make x equal to y

Java Unicode Collation Element Table
 a, A ; à, À < b, B 0061 ; [.0001.0001.0001] % a

0040 ; [.0001.0001.0002] % A
00E0 ; [.0001.0002.0001] % à
00C0 ; [.0001.0002.0002] % à
0042 ; [.0002.0001.0001] % b
0062 ; [.0002.0001.0002] % B

For a discussion of more powerful tailoring features, see [ICUCollator]. For details on a common
XML format for tailorings, see [LDML].

6.10 Flat File Example

The following is a sample flat-file binary layout and sample code for collation data. It is included only
for illustration. The table is used to generate collation elements from characters, either going
forwards or backwards, and detect the start of a contraction. The backwards generation is for
searching backwards or Boyer-Moore-style searching; the contraction detection is for random
access.

In the file representation, ints are 32 bit values, shorts are 16, bytes are 8 bits. Negatives are two's-
complement. For alignment, the ends of all arrays are padded out to multiples of 32 bits. The
signature determines endianness. The locale uses an ASCII representation for the Java locale: a 2
byte ISO language code, optionally followed by '_' and 2 byte ISO country code, followed optionally
by a series of variant tags separated by '_'; any unused bytes are zero.

Data Comment
int signature; Constant 0x636F6C74, used also for big-endian detection
int tableVersion; Version of the table format
int dataVersion; Version of the table data
byte[32] locale; Target locale (if any)
int flags; Bit01 = 1 if French secondary

Others are reserved
int limitVariable; Every ce below this value that has a non-zero primary is variable. Because

variables are not interleaved, this does not need to be stored on a per-character
basis.

int maxCharsPerCE; Maximum number of characters that are part of a contraction
int maxCEsPerChar; Maximum number of collation elements that are generated by an expansion
int indexOffset; Offset to index table
int collationElementsOffset; Offset to main data table
int expansionsOffset; Offset to expansion table
int contractionMatchOffset; Offset to contraction match table
int contractionResultOffset; Offset to contraction values table
int nonInitialsOffset; Offset to non-initials table. These are used for random access.
int[10] reserved; Reserved
int indexLength; Length of following table
int[] index; Index for high-byte (trie) table. Contains offsets into Collation Elements. Data is

accessed by:
ce = collationElements[index[char>>8]+char&0xFF]

int
collationElementsLength;

Length of following table

int[] collationElements; Each element is either a real collation element, an expansionsOffset, or an
contractionsOffset. See below for more information.

int expansionsLength; Length of following table
int[] expansions; The expansionOffsets in the collationElements table point into sublists in this

table. Each list is terminated by FFFFFFFF.
int
contractionMatchesLength;

Length of following table

short[] contractionMatches; The contractionOffsets in the collationElements table point into sublists in this
table. Each sublist is of the following format:

6.10.1 Collation Element Format

 'real' collationElement
 16 bits primary (FFE0..FFFF not allowed)
 8 10 bits secondary
 8 6 bits tertiary

 expansionsOffset
 12 bits = FFF
 20 bits = offset (allows for 1,048,576 items)

 contractionsOffset
 12 bits = FFE
 20 bits = offset (allows for 1,048,576 items)

An alternative structure would have the offsets be byte offsets from the start of the table, instead of
indexes into the arrays. That would limit the size of the table, but use fewer machine instructions.

6.10.2 Sample Code

The following is a pseudo code using this table for the required operations. Although using Java
syntax in general, the code example uses arrays so as to be more familiar to users of C and C++.
The code is presented for illustration only; it is not a complete statement of the algorithm.

char[] input; // input buffer (i)
int inputPos; // position in input buffer (io)
int[] output; // output buffer (o)
int outputPos; // position in output buffer (io)
boolean forwards; // 0 for forwards, 1 for backwards (i)

/**
* Reads characters from input, writes collation elements in output
*/
void getCollationElements() {
 char c = input[inputPos++];
 int ce = collationElements[index[c>>8] + c&0xFF];
 processCE(ce);
}

/**
* Normally just returns ce. However, special forms indicate that
* the ce is actually an expansion, or that we have to search
* to see if the character was part of a contraction.
* Expansions use
*/
void processCE(int ce) {

short backwardsOffset; When processing backwards, offset to true
contractions table.

short length; Number of chars in list to search
short[] charsToMatch; characters in sorted order.

int contractionCEsLength; Length of following table
int[] contractionCEs; List of CEs. Each corresponds to a position in the contractionChars table. The

one corresponding to the length in a sublist is the bail-out; what to do if a
match is not found.

int nonInitialsLength; Length of following table
short[] nonInitials; List of characters (in sorted order) that can be non-initials in contractions. That

is, if "ch" is a contraction, then "h" is in this list. If "abcd" is a contraction, then
"b", "c", and "d" are in the list.

 if (ce < 0xFFF00000) {
 output[outputPos++] = ce;
 } else if (ce >= 0xFFE00000) {
 copyExpansions(ce & 0x7FFFFF);
 } else {
 searchContractions(ce & 0x7FFFFF);
 }
}

/**
* Search through a contraction sublist to see if there is a match.
* Because the list is sorted, we can exit if our value is too high.<p>
* Because we have a length, we could implement this as a
* binary search, although we do not right now.<p>
* If we do find a match, we need to recurse. That's how "abc" would
* be handled.<p>
* If we fail, we return the non-matching case. That can be an expansion
* itself (it would never be a contraction).
*/
void searchContractions(int offset) {
 if (forwards) inputPos++;
 else offset += input[inputPos++];
 short goal = (short)input[inputPos++];
 int limit = offset + contractionMatches[offset];
 for (int i = offset; i < limit; ++i) {
 short cc = contractionMatches[i];
 if (cc > goal) { // definitely failed
 processCE(contractionCEs[offset]);
 break;
 } else if (cc == goal) { // found match
 processCE(contractionCEs[i]);
 break;
 }
 }
}

/**
* Copy the expansion collation elements up to the terminator.
* Do not use 00000000 as a terminator, because that may be a valid CE.
* These elements do not recurse.
*/
void copyExpansions (int offset) {
 int ce = expansions[offset++];
 while (ce != 0xFFFFFFFF) {
 output[outputPos++] = ce;
 ce = expansions[offset++];
 }
}

/**
* For random access, gets the start of a collation element.
* Any non-initial characters are in a sorted list, so
* we just check that list.<p>
* Because we have a length, we could implement this as a
* binary search, although we do not right now.
*/
int getCollationElementStart(char[] buffer, int offset) {
 int i;
 main:
 for (i = offset; i > 0; --i) {
 char c = buffer[i];
 for (int j = 0; j < nonInitialsLength; ++j) {
 char n = nonInitials[j];
 if (c == n) continue main;
 if (c > n) break main;
 }
 break;
 }
 return i;
}

7 Weight Derivation

This section describes the generation of the Unicode Default Unicode Collation Element Table, and
the assignment of weights to code points that are not explicitly mentioned in a Collation Element
Table. This uses information from the Unicode Character Database [UCD].

7.1 Derived Collation Elements

CJK Ideographs and Hangul Syllables are not explicitly mentioned in the default table. CJK
ideographs are mapped to collation elements that are derived from their Unicode code point value as
described in Section 7.1.3, Implicit Weights.

The collation algorithm requires that Hangul Syllables be decomposed. However, if the table is
tailored so that the primary weights for Hangul Jamo (and all related characters) are adjusted, then
the Hangul Syllables can be left as single code points and treated in the same way as CJK
ideographs. That will provide a collation which is approximately the same as UCA, and may be
sufficient in environments where individual jamo are not expected.

The adjustment is to move each initial jamo (and related characters) to have a primary weight
corresponding to the first syllables starting with that jamo, and make all non-initial jamo (and related
characters) be ignorable at a primary level.

7.1.1 Illegal Code Points

Certain code points are illegal in a data stream. These include noncharacters (code points with the
Noncharacter_Code_Point property in the Unicode Character Database [UCD]), unpaired surrogates
(code points with the General_Category property Cs), and out-of-range values (< 0 or > 10FFFF).
Implementations may also choose to treat these as error conditions and respond appropriately, such
as by throwing an exception.

If they are not treated as an error condition, they must be mapped to [.0000.0000.0000.], and thus
ignored.

7.1.2 Legal Code Points

Any other legal code point that is not explicitly mentioned in the table is mapped a sequence of two
collation elements as described in Section 7.1.3, Implicit Weights.

7.1.3 Implicit Weights

A character is mapped to an implicit weight in the following way. The result of this process consists
of collation elements that are sorted in code point order, that do not collide with any explicit values in
the table, and that can be placed anywhere (for example, at BASE) with respect to the explicit
collation element mappings (by default, they go after all explicit collation elements).

To derive the collation elements, the code point CP is separated into two parts, chosen for the
correct numerical properties. First, separate off the top 6 bits of the code point. Because code points
can go from 0 to 10FFFF, this will have values from 0 to 2116 (= 3310). Add this to the special value

BASE.

AAAA = BASE + (CP >> 15);

Now take the bottom 15 bits of the code point. Turn the top bit on, so that the value is non-zero.

BBBB = (CP & 0x7FFF) | 0x8000;

The mapping given to CP is then given by:

CP => [.AAAA.0020.0002.][.BBBB.0000.0000.]

If a fourth or higher weights are used, then the same pattern is used: they are set to a non-zero
value, and so on in the first collation element and zero in the second. (Because all distinct code
points have different AAAA/BBBB combination, the exact non-zero value does not matter.)

The value for BASE depends on the type of character:

These results make AAAA (in each case) larger than any explicit primary weight; thus the implicit
weights will not collide with explicit weights. It is not generally necessary to tailor these values to be
within the range of explicit weights. However if this is done, the explicit primary weights must be
shifted so that none are between each of the BASE values and BASE + 34.

7.1.4 Trailing Weights

The range of primary weights from FC00 to FFFF is available for use as trailing weights especially
for the case of Hangul Syllables. These syllables can be of the form LL*VV*T*: that is, one or more
Lead jamo, followed by one or more Vowel jamo, followed optional by any number of Trail jamos.
For more information, see Section 3.12, Conjoining Jamo Behavior in [Unicode].

Trailing weights are for characters that are given primary weights, but grouped as a unit together
with a previous character, such as U+1160 HANGUL JUNGSEONG FILLER through U+11F9
HANGUL JONGSEONG YEORINHIEUH. By tailoring these characters in this range, the units are
ordered independently of subsequent characters with higher weights. Otherwise problems may
occur, such as in the following example.

In this example, the symbols {G}, {A}, and {K} represent letters in a script where syllables (or other
sequences of characters) are sorted as units. By proper choice of weights for the individual letters,
the syllables can be ordered correctly. But the weights of the following letters may cause syllables of
different lengths to change order. Thus {G}{A}{K} comes after GA in Case 1. But in Case 2, it comes
before. That is, the order of these two syllables would be reversed when each is followed by a CJK
character: in this case, U+56D7 (囗).

7.1.4.1 Hangul Trailing Weights

Hangul is in a rather unique position, because of the large number of the precomposed characters,
and because those precomposed characters are the normal (NFC) form of interchanged text. For
Hangul syllables to sort correctly, either the UCA data must be tailored or the UCA algorithm (and
data) must be tailored. The following are possible solutions:

Data Method

1. Tailor the Vs and Ts to be Trailing Weights, with the ordering T < V
2. Tailor each sequence of multiple L's that occurs in the repertoire as a contraction, with an

FB40 CJK Ideograph

FB80 CJK Ideograph Extension A/B

FBC0 Any other code point

Case 1 Case 2

1 {G}{A}

2 {G}{A}{K}

2 {G}{A}{K}囗

1 {G}{A}囗

independent primary weight after any prefix's weight
 This means that if L1 has a primary weight of 555, and L2 has 559, then L1L1 would have

to be given a weight from 556 to 558.

Terminator Method

1. Add an internal terminator primary weight (Ⓣ).

2. Tailor all Jamo so that Ⓣ < T < V < L

3. Algorithmically add the terminator primary weight (Ⓣ) to the end of every standard Hangul
syllable.

 This is done by adding the terminator between any pairs of characters that are not kept
together according to the rules of Section 3.12, Conjoining Jamo Behavior of [Unicode]

Interleaving Method

1. Generate a modified weight table:
a. Assign a weight to each precomposed Hangul Syllable character, with a 1-weight gap

between each one. (see Section 6.2, Large Weight Values)
b. Give each Jamo a 1-byte internal weight. Also add an internal terminator 1-byte weight

(Ⓣ). These are assigned so that all Ⓣ < T < V < L.

 These weights are separate from the default weights, and are just used internally.
2. When any string of Jamo and/or Hangul Syllables is encountered, break it into syllables

according to the rules of Section 3.12, Conjoining Jamo Behavior of [Unicode]. Process each
syllable separately:

a. If a syllable is canonically equivalent to one of the precomposed Hangul Syllables, then
just assign the weight as above

b. If not, then find the greatest syllable that it is greater than; call that the base syllable.
Generate a weight sequence corresponding to the following gap weight, followed by all
the Jamo weight bytes, followed by the terminator byte.

Each of these methods can correctly represent the ordering of all modern and ancient Hangul
Syllables, but there are implementation trade-offs between them. These trade-offs can have a
significant impact on the acceptability of the implementation, because substantially longer sort keys
will cause significant performance degradations and database index bloat.

Note: If the repertoire of supported Hangul syllables is limited to modern syllables (those of the
form LV or LVT), then all of these become simpler.

The Data method provides for the following order of weights, where the Xb are all the scripts sorted

before Hangul, and the Xa are all those sorted after.

This ordering gives the right results among the following:

Xb L Xa T V

Chars Weights Comments
L1V1Xa WL1 WV1 WXa

L1V1L... WL1 WV1 WLn ...

L1V1Xb WL1 WV1 WXb

The disadvantages of the Data method are that the weights for T and V are separated from those of
L, which can cause problems for sort-key compression, and that a combination of LL that is outside
the contraction table will not sort properly.

The Terminator method would assign the following weights:

This ordering gives the right results among the following:

The disadvantages of the Terminator method are that an extra weight is added to all Hangul
syllables, increasing the length of sort keys by roughly 40%, and the fact that the terminator weight is
non-contiguous can disable sort-key compression.

The Interleaving method provides for the following assignment of weights. Wn represents the weight

of a Hangul Syllable, and Wn' is the weight of the gap right after it. The L, V, T weights will only occur

after a W, and thus can be considered part of an entire weight.

byte weights:

This ordering gives the right results among the following:

L1V1T1 WL1 WV1 WT1 Works because WT > all WX and WL

L1V1V2 WL1 WV1 WV2 Works because WV > all WT

L1L2V1 WL1L2 WV1 Works if L1L2 is a contraction.

Ⓣ Xb T V L Xa

Chars Weights Comments
L1V1Xa WL1 WV1 Ⓣ WXa

L1V1Ln... WL1 WV1 Ⓣ WLn ...

L1V1Xb WL1 WV1 Ⓣ WXb

L1V1T1 WL1 WV1 WT1 Ⓣ Works because WT > all WX and Ⓣ

L1V1V2 WL1 WV1 WV2 Ⓣ Works because WV > all WT

L1L2V1 WL1 WL2 WV1 Ⓣ Works because WL > all WV

Xb W Xa

Ⓣ T V L

Chars Weights Comments
L1V1Xa Wn Xa

L1V1Ln... Wn Wk ... The Ln will start another syllable

The Interleaving method is somewhat more complex than the others, but produces the shortest sort
keys for all of the precomposed Hangul Syllables, so for normal text it will have the shortest sort
keys. If there were a large percentage of ancient Hangul Syllables, the sort keys would be longer
than other methods.

Note: The Unicode Consortium recognizes that one of these solutions should be implemented
in the standard UCA algorithm and tables, but is attempting to work out a common approach to
the problem with the ISO SC22 WG20 OWG-SORT group, which takes considerable time. In
the meantime, one of these approaches can be used for correct ordering.

7.2 Canonical Decompositions

Characters with canonical decompositions do not require mappings to collation elements, because
Step 1.1 maps them to collation elements based upon their decompositions. However, they may be
given mappings to collation elements anyway. The weights in those collation elements must be
computed in such a way they will sort in the same relative location as if the characters were
decomposed using Normalization Form D. By including these mappings, this allows an
implementation handling a restricted repertoire of supported characters to compare strings correctly
without performing the normalization in Step 1.1 of the algorithm.

A combining character sequence is called impeding if it contains any conjoining Jamo, or if it
contains an L1-ignorable combining mark and there is some character that canonically decomposes
to a sequence containing the same base character. For example, the sequence <a, cedilla> is an
impediment, because cedilla is an L1-ignorable character, and there is some character (for example,
a-grave) that decomposes to a sequence containing the same base letter a. Note that although
strings in Normalization Form C generally do not contain impeding sequences, there is nothing
prohibiting them from containing them.

Note: Conformant implementations that do not support impeding character sequences as part
of their repertoire can avoid performing Normalization Form D processing as part of collation.

7.3 Compatibility Decompositions

As remarked above, most characters with compatibility decompositions can have collation elements
computed at runtime to save space, duplicating the work that was done to compute the Default
Unicode Collation Element Table. This can be an important savings in memory space. The process
works as follows.

1. Derive the compatibility decomposition. For example,

2475 PARENTHESIZED DIGIT TWO => 0028, 0032, 0029

2. Get the CE Look up the collation element for each character in the decomposition. For example,

0028 [*023D.0020.0002] % LEFT PARENTHESIS
0032 [.06C8.0020.0002] % DIGIT TWO
0029 [*023E.0020.0002] % RIGHT PARENTHESIS

3. Set the first two L3 values to be lookup (L3), where the lookup function uses the table in Section
7.3.1, Tertiary Weight Table. Set the remaining L3 values to MAX (which in the default table is

L1V1Xb Wn Xb

L1V1T1 Wm Works because Wm > Wn

L1V1V2 Wm'L1V1V2Ⓣ Works because Wm'>Wm

L1L2V1 Wm'L1L2V1Ⓣ Works because the byte weight for L2 > all V

001F). For example,

0028 [*023D.0020.0004] % LEFT PARENTHESIS
0032 [.06C8.0020.0004] % DIGIT TWO
0029 [*023E.0020.001F] % RIGHT PARENTHESIS

4. Concatenate the result to produce the sequence of collation elements that the character maps to.
For example,

2475 [*023D.0020.0004] [.06C8.0020.0004] [*023E.0020.001F]

Some characters cannot be computed in this way. They must be filtered out of the default table and
given specific values. For example,

017F [.085D.00FD.0004.017F] % LATIN SMALL LETTER LONG S; COMPAT

7.3.1 Tertiary Weight Table

Characters are given tertiary weights according to the following table. The Decomposition Type is
from the Unicode Character Database [UCD]. The Condition is either based on the General
Category or on a specific list of characters. The weights are from MIN = 2 to MAX = 1F16, excluding

7, which is not used for historical reasons. The Samples show some minimal values that are
distinguished by the different weights. All values are distinguished from MIN except for the
Katakana/Hiragana values.

Type Condition Weight Samples
 NONE 0x0002 i ب) mw 1⁄ 2 X
 <wide> 0x0003 ｉ
 <compat> 0x0004 ⅰ
 0x0005 �
 <circle> 0x0006 ⓘ
!unused! 0x0007
 NONE Uppercase 0x0008 I MW
 <wide> Uppercase 0x0009 Ｉ ）
 <compat> Uppercase 0x000A Ⅰ
 Uppercase 0x000B ℑ
 <circle> Uppercase 0x000C Ⓘ
 <small> small hiragana (3041, 3043, ...) 0x000D ぁ

 NONE normal hiragana (3042, 3044, ...) 0x000E あ

 <small> small katakana (30A1, 30A3, ...) 0x000F ﹚ ァ

 <narrow> small narrow katakana (FF67..FF6F) 0x0010 ｧ

 NONE normal katakana (30A2, 30A4, ...) 0x0011 ア

 <narrow> narrow katakana (FF71..FF9D),
narrow hangul (FFA0..FFDF)

0x0012 ｱ

 <circle> circled katakana (32D0..32FE) 0x0013 ㋐

 <super> 0x0014 ⁾

8 Searching and Matching

Language-sensitive searching and matching are closely related to collation. Strings that compare as
equal at some strength level are those that should be matched when doing language-sensitive
matching. For example, at a primary strength, "ß" would match against "ss" according to the UCA,
and "aa" would match "å" in a Danish tailoring of the UCA. The main difference from the collation
comparison operation is that the ordering is not important. Thus for matching it doesn't matter that
"å" would sort after "z" in a Danish tailoring: the only relevant information is that they don't match.

The basic operation is matching: determining whether string X matches string Y. Other operations
are built on this:

 Y contains X when there is some substring of Y that matches X
 A search for a string X in a string Y succeeds if Y contains X.
 Y starts with X when some initial substring of Y matches X
 Y ends with X when some final substring of Y matches X

The collation settings determine the results of the matching operation (see Section 5.1, Parametric
Tailoring). Thus users of searching and matching need to be able modify parameters such as locale
or comparison strength. For example, setting the strength to exclude differences at Level 3 has the
effect of ignoring case and compatibility format distinctions between letters when matching.
Excluding differences at Level 2 has the effect of also ignoring accentual distinctions when matching.

Conceptually, a string matches some target where a substring of the target has the same sort key.
But there are a number of complications:

1. The lengths of matching strings may differ: "aa" and "å" would match in Danish.
2. Because of ignorables (at different levels), there are different possible positions where a string

matches, depending on the attribute settings of the collation. For example, if hyphens are
ignorable for a certain collation, then "abc" will match "abc", "abc-", "-abc-", and so on.

3. Suppose that the collator has contractions, and that a contraction spans the boundary of the
match. Whether or not it is considered a match may depend on user settings, just as users are
given a "Whole Words" option in searching. So in a language where "ch" is a contraction, "bac"
would not match in "bach" (given the proper user setting).

4. Similarly, combining character sequences may need to be taken into account. Users may not
want a search for "abc" to match in "...abç..." (with a cedilla on the c). However, this may also
depend on language and user customization.

 <sub> 0x0015 ₎
 <vertical> 0x0016 ︶
 <initial> 0x0017 ب
 <medial> 0x0018 ب
 <final> 0x0019 ب
 <isolated> 0x001A ب
 <noBreak> 0x001B
 <square> 0x001C ㎽
 <square>, <super>, <sub> Uppercase 0x001D ㎿
 <fraction> 0x001E ½
 n/a (MAX value) 0x001F

5. The above two conditions can be considered part of a general condition: "Whole Characters
Only"; very similar to the common "Whole Words Only" checkbox that is included in most
search dialog boxes. (For more information on grapheme clusters, see [UTS18].

6. If the matching does not check for "Whole Characters Only", then some other complications
may occur. For example, suppose that P is "x^", and Q is "x ^¸". Because the cedilla and
circumflex can be written in arbitrary order and still be equivalent, one would expect to find a
match for P in Q. A canonically-equivalent matching process requires special processing at the
boundaries to check for situations like this. (It does not require such special processing within
the P or the substring of Q because collation is defined to observe canonical equivalence.)

The following are used to provide a clear definition of searching and matching that deal with the
above complications:

DS1. Define S[start,end] to be the substring of S that includes the character after the offset start up
to the character before offset end. For example, if S is "abcd", then S[1,3] is "bc". Thus S = S
[0,length(S)].

DS1a. A boundary condition is a test imposed on an offset within a string. An example includes
Whole Word Search, as defined in UAX #29.

The tailoring parameter match-boundaries specifies constraints on matching (see Section 5.1,
Parametric Tailoring). The parameter match-boundaries=whole-character requires that the start and
end of a match each be on a grapheme boundary. The value match-boundaries=whole-character
further requires that the start and end of a match each be on a word boundary as well. For more
information on the specification of these boundaries, see [UAX29].

By using grapheme-complete conditions, contractions and combining sequences are not interrupted.
This also avoids the need to present visually discontiguous selections to the user (except for BIDI
text).

Suppose there is a collation C, a pattern string P and a target string Q, and a boundary condition B.
C has some particular set of attributes, such as a strength setting, and choice of variable weighting.

DS2. The pattern string P has a match at Q[s,e] according to collation C if C generates the same
sort key for P as for Q[s,e], and the offsets s and e meet the boundary condition B. We also say P
has a match in Q according to C.

DS3. The pattern string P has a canonical match at Q[s,e] according to collation C if there is some Q'
that is canonically equivalent to Q[s,e], and P has a match in Q'.

For example, suppose that P is "Å", and Q is "...A◌� ◌� ...". There would not be a match for P
in Q, but there would be a canonical match, because P does have a match in "A◌� ◌� ", which
is canonically equivalent to "A◌� ◌� ". However, it is not commonly necessary to use canonical
matches, so this definition is only supplied for completeness.

Each of the following are qualifications of DS2 or DS3.

DS3a. The match is grapheme-complete if B requires that the offset be at a grapheme cluster
boundary. Note that Whole Word Search as defined in [UAX29] is grapheme complete.

DS4. The match is minimal if there is no match at Q[s+i,e-j] for any i and j such that i ≥ 0, j ≥ 0, and i
+ j > 0. In such a case, we also say that P has a minimal match at Q[s,e].

DS4a. The match is medial when it is contained in the maximal match, contains the minimal match,
and is extended beyond the minimal match whenever there is a successive binary match between
the extra characters in pattern and target.

DS4b. The match is maximal if there is no match at Q[s-i,e+j] for any i and j such that i ≥ 0, j ≥ 0, and

i + j > 0. In such a case, we also say that P has a maximal match at Q[s,e].

As an example of the differences between these, consider the following case, where the collation
strength is set to ignore punctuation and case, and format indicates the match.

By using minimal, maximal, or medial matches, the issue with ignorables is avoided. Medial matches
tend to match user expectations the best.

When an additional condition is set on the match, the types (minimal, maximal, medial) are based on
the matches that meet that condition. Consider the following:

Thus if the condition is Whole Grapheme, then the matches are restricted to "abc¸|-°|d", thus
discarding match positions that would not be on a grapheme cluster boundary. Thus the minimal
match would be "abc¸|-°d"

DS6. The first forward match for P in Q starting at b is the least offset s greater than or equal to b
such that for some e, P matches within Q[s,e].

DS7. The first backward match for P in Q starting at b is the greatest offset s less than or equal to b
such that for some e, P matches within Q[s,e].

In DS6 and DS7, matches can be minimal, medial, or maximal; the only requirement is that the
combination in use in DS6 and DS7 be specified. Of course, a possible match can also be rejected
on the basis of other conditions, such as being grapheme-complete or applying Whole Word Search,
as described in [UAX29]).

The choice of medial or minimal matches for the "starts with" or "ends with" operations only affects
the positioning information for the end of the match or start of the match, respectively.

Special Cases. Ideally, the UCA at a secondary level would be compatible with the standard
Unicode case folding and removal of compatibility differences, especially for the purpose of
matching. For the vast majority of characters, it is compatible, but there are the following exceptions:

1. The UCA maintains compatibility with the DIN standard for sorting German by having the
German sharp-s (U+00DF (ß) LATIN SMALL LETTER SHARP S) sort as a secondary

 Text Description
Pattern *!abc!* Notice that the *! and !* are ignored in matching.

Target Text def$!Abc%$ghi
Minimal Match def$!Abc%$ghi The minimal match is the tightest one, because $! and %$

are ignored in the target.
Medial Match def$!Abc%$ghi The medial one includes those characters that are binary

equal.
Maximal Match def$!Abc%$ghi The maximal match is the loosest one, including the

surrounding ignored characters.

 Value Notes
Pattern: abc
Strength: primary thus ignoring combining marks, punctuation
Text: abc¸-°d two combining marks, cedilla and ring
Matches: |abc|¸|-|°|d four possible endpoints, indicated by |

difference with "SS", instead of having ß and SS match at the secondary level.
2. Compatibility normalization (NFKC) folds stand-alone accents to a combination of space +

combining accent. This was not the best approach, but for backwards compatibility cannot be
changed in NFKC. UCA takes a better approach to weighting stand-alone accents, but as a
result does not weight them exactly the same as their compatibility decompositions.

3. Case-Folding maps iota-subscript (U+0345 (�) COMBINING GREEK YPOGEGRAMMENI) to
an iota, due to the special behavior of iota-subscript, while the UCA treats iota-subscript as a
regular combining mark (secondary ignorable).

4. When compared to their case and compatibility folded values, UCA compares the following as
different at a secondary level, whereas other compatibility differences are at a tertiary level.

 U+017F (ſ) LATIN SMALL LETTER LONG S (and precomposed characters containing it)
 U+1D4C (�) MODIFIER LETTER SMALL TURNED OPEN E
 U+2D6F (�) TIFINAGH MODIFIER LETTER LABIALIZATION MARK

In practice, most of these differences are not important for modern text, with one exception: the
German ß. Implementations should consider tailoring ß to have a tertiary difference from SS, at least
when collation tables are used for matching. Where full compatibility with case and compatibility
folding are required, either the text can be preprocessed, or the UCA tables can be tailored to handle
the outlying cases.

8.1 Collation Folding

Matching can be done by using the collation elements, directly, as discussed above. However, since
matching doesn't use any of the ordering information, the same result can be achieved by a folding.
That is, two strings would fold to the same string if and only if they would match according to the
(tailored) collation. For example, a folding for a Danish collation would map both "Gård" and "gaard"
to the same value. A folding for a primary-strength folding would map "Resume" and "résumé" to the
same value. That folded value is typically a lowercase string, such as "resume".

A comparison between folded strings cannot be used for an ordering of strings, but it can be applied
to searching and matching quite effectively. The data for the folding can be smaller, because the
ordering information does not need to be included. The folded strings are typically much shorter than
a sort key, and are human-readable, unlike the sort key. The processing necessary to produce the
folding string can also be faster than that used to create the sort key.

The following is an example of the mappings used for such a folding using to the [CLDR] tailoring of
UCA:

Parameters:

{locale=da_DK, strength=secondary, alternate=shifted}

Mapping:

...
ª → a Map compatibility (tertiary) equivalents, such as full-width and superscript

characters, to representative character(s)ａ → a
A → a
Ａ → a
ª → a
...
å → aa Map contractions (a + ring above) to equivalent values

Once the table of such mappings is generated, the folding process is a simple longest-first match-
and-replace: a string to be folded is first converted to NFD, then at each point in the string, the
longest match from the table is replaced by the corresponding result.

However, ignorable characters need special handling. Characters that are fully ignorable at a given
strength level level normally map to the empty string. For example, at strength=quaternary, most
controls and format characters map to the empty string; at strength=primary, most combining marks
also map to the empty string. In some contexts, however, fully ignorable characters may have an
effect on comparison, or characters that aren't ignorable at the given strength level are treated as
ignorable.

1. Any discontiguous contractions need to be detected in the process of folding and handled
according to Rule S2.1. For more information about discontiguous contractions, see Section
3.1.1.2, Contractions.

2. An ignorable character may interrupt what would otherwise be a contraction. For example,
suppose that "ch" is a contraction sorting after "h", as in Slovak. In the absence of special
tailoring, a CGJ or SHY between the "c" and the "h" prevents the contraction from being
formed, and causes "c<CGJ>h" to not compare as equal to "ch". If the CGJ is simply folded
away, they would incorrectly compare as equal. See also Section 3.1.6, Combining Grapheme
Joiner.

3. With the parameter values alternate=shifted or alternate=blanked, any (partially) ignorable
characters after Variables have their weights reset to zero at levels 1 to 3, and may thus
become fully ignorable. In that context, they would also be mapped to the empty string. For
more information, see Section 3.2.2, Variable Weighting.

For more information about folding, see [UTR30].

Appendix A: Deterministic Sorting

There is often a good deal of confusion about what is meant by the terms "stable" or "deterministic"
when applied to sorting or comparison. This confusion in terms often leads people to make mistakes
in their software architecture, or make choices of language-sensitive comparison options that have
significant impact in terms of performance and footprint, and yet do not give the results that users
expect.

A.1 Stable Sort

A stable sort is one where two records will retain their order when sorted according to a particular
field, even when the two fields have the same contents. Thus those two records come out in the
same relative order that they were in before sorting, although their positions relative to other records
may change. Importantly, this is a property of the sorting algorithm, not the comparison mechanism.

Two examples of differing sorting algorithms are Quick Sort and Merge. Quick Sort is not stable
while Merge Sort is stable. (A Bubble Sort, as typically implemented, is also stable.)

 For background on the names and characteristics of different sorting methods, see [SortAlg]
 For a definition of stable sorting, see [Unstable]

 Suppose that you have the following records and you sort on the Last_Name field only:

Å → aa
...

Original Records

As you see from the above, the Quicksort algorithm is not stable; the records 1 and 2 are not in the
same order they were in before sorting.

A stable sort is often desired; for one thing, it allows records to be successively sorting according to
different fields, and retain the correct lexigraphic order. Thus with a stable sort, one could all the
records by First_Name, then sort all the records by Last_Name, giving the desired results: that all
records would be sorted by Last_Name, and where the Last_Names are the same, sorted by
First_Name.

A.2 Deterministic Sort

A deterministic sort is a very different beast. This is a sort algorithm that returns the same results
each time. On the face of it, it would seem odd for any sort algorithm to not be deterministic, but
there are examples of real-world sort algorithms that aren't.

The key concept is that these sort algorithms are deterministic when two records have unequal
fields, but they may return different results at different times when two records have equal fields.

For example, a classic Quick Sort algorithm works recursively on ranges of records. For any given
range of records, it takes the first element as the pivot element. We're not going to explain the details
here, but that algorithm performs badly with input data that happens to be sorted (or mostly sorted).
A randomized Quick Sort, which picks a random element as the pivot, can on average be faster. The
results it gets are not deterministic; from exactly the same input, different results can be output:

Record Last_Name First_Name

1 Davis John

2 Davis Mark

3 Curtner Fred

Merge Sort Results

Record Last_Name First_Name

3 Curtner Fred

1 Davis John

2 Davis Mark

Quick Sort Results

Record Last_Name First_Name

3 Curtner Fred

2 Davis Mark

1 Davis John

Enhanced Quick Sort Results

As another example, multiprocessor sorting algorithms can be non-deterministic. The work of sorting
different blocks of data are farmed out to different processors and then merged back together. The
ordering of records with equal fields might be different according to when different processors finish
different tasks.

Note that a deterministic sort is weaker than a stable sort. A stable sort is always deterministic, but
not vice versa. And typically when people say they want a deterministic sort, they really mean that
they want a stable sort.

A.3 Deterministic Comparison

A deterministic comparison is different than either of the above; it is a property of a comparison
function, not a sorting algorithm. This is a comparison where strings that do not have identical binary
contents (optionally, after some process of normalization) will compare as unequal. A deterministic
comparison is sometimes called a stable (or semi-stable) comparison.

There are many people who confuse a deterministic comparison with a deterministic (or stable) sort,
but once again, these are very different creatures. A comparison is used by a sorting algorithm to
determine the relative ordering of two fields, such as strings. Using a deterministic comparison
cannot cause a sort to be deterministic, nor to be stable. Whether a sort is deterministic or stable is a
property of the sort algorithm, not the comparison function. If you look at the examples above, this is
clear.

A.3.1 Forcing Deterministic Comparisons

One can produce a deterministic comparison function from a non-deterministic one, in the following
way (in pseudo-code):

int new_compare (String a, String b) {
 int result = old_compare(a, b);
 if (result == 0) {
 result = binary_compare(a, b);
 }
 return result;
}

Programs typically also provide the facility to generate a sort key, which is a sequences of bytes
generated from a string in alignment with a comparison function. Two sort keys will binary-compare
in the same order as their original strings. To create a deterministic sort key that aligns with the
above new_compare, the simplest means is to append a copy of the original string to the sort key.
This will force the comparison to be deterministic.

byteSequence new_sort_key (String a) {
 return old_sort_key(a) + SEPARATOR + toByteSequence(a);
}

Because sort keys and comparisons must be aligned, a sort key generator is deterministic if and
only if a comparison is.

A.3.2 Best Practice

However, a deterministic comparison is generally not best practice. First, it has a certain

Record Last_Name First_Name

3 Curtner Fred

2 Davis John

1 Davis Mark

or Record Last_Name First_Name

3 Curtner Fred

1 Davis Mark

2 Davis John

performance cost in comparison, and a quite substantial impact on sort key size. (For example, ICU
language-sensitive sort keys are generally about the size of the original string, so appending a copy
of the original string generally doubles the size of the sort key.) A database using these sort keys
can have substantially increased disk footprint and memory footprint, and consequently reduced
performance.

More importantly, a deterministic comparison function does not actually achieve the effect people
think it will have. Look at the sorted examples above. Whether a deterministic comparison is use or
not, there will be no effect on Quick Sort example, since the two records in question have identical
last name fields. It does not make a non-deterministic sort into a deterministic one, nor does it make
a non-stable sort into a stable one.

Thirdly, a deterministic comparison is often not what is wanted, when people look closely at the
implications. Look at our above example, and suppose that this time the user is sorting first by last
name, then by first name.

The desired results are the following, which should result whether the sorting algorithm is stable or
not, since we are using both fields.

Now suppose that in record 2, the source for the data caused the last name to contain a control
character, such as a ZWJ (used to request ligatures on display). There is in this case no visible
distinction in the forms, since the font doesn't have any ligatures for these values. The standard UCA
collation sequence causes that character to be—correctly—ignored in comparison, since it should
only affect rendering. However, if that comparison is changed to be deterministic (by appending the
binary original string, then unexpected results will occur.

A.3.3 Forcing Stable Sorts

Original Records

Record Last_Name First_Name

1 Davis John

2 Davis Mark

3 Curtner Fred

Last then First

Record Last_Name First_Name

3 Curtner Fred

1 Davis John

2 Davis Mark

Last then First
(Deterministic)

Record Last_Name First_Name

3 Curtner Fred

2 Davis Mark

1 Davis John

Typically, what people really want when they say they want a deterministic comparison is actually a
stable sort.

One can force non-stable sorting algorithm to produce stable results by how one does the
comparison. However, it has literally nothing to do with making the comparison be deterministic or
not. Instead, it can be done by appending the current record number to the strings to be compared.
(The implementation may not actually append the number; it may use some other mechanism, but
the effect would be the same.)

If such a modified sort comparison is used, for example, then it forces Quick Sort to get the same
results as Merge Sort. And in that case, the irrelevant character ZWJ does not affect the outcome,
as illustrated below, and the correct results occur.

If anything, this then is what users want when they say they want a deterministic comparison. See
also Section 1.6, Interleaved Levels.

A.4 Stable Comparison

There are a few other terms worth mentioning, simply because they are also subject to considerable
confusion. Any or all of the following may be easily confused with above.

A stable comparison is one that does not change over successive software versions. That is, as one
uses successive versions of an API, with the same "settings" (such as locale), one gets the same
results.

A stable sort key generator is one that generates the same binary sequence over successive
software versions.

Warning: if the sort key generator is stable, then the associated comparison will perforce be.
However, the reverse is not guaranteed. To take a trivial example, suppose the new version of
the software always adds an 0xFF byte at the front of every sort key. The results of any
comparison of any two new keys would be identical to the results of the comparison of any two
corresponding old keys. But the bytes have changed, and the comparison of old and new keys
would give different results. Thus one can have a stable comparison, yet an associated non-
stable sort key generator.

A portable comparison is where corresponding APIs for comparison produce the same results
across different platforms. That is, if one uses the same "settings" (such as locale), one gets the
same results.

A portable sort key generator is where corresponding sort key APIs produce exactly the same
sequence of bytes across different platforms.

Warning: as above, a comparison may be portable without the associated sort key generator
being portable.

Ideally, all products would have the same string comparison and sort key generation for, say

Last then First
(Forced Stable Results)

Record Last_Name First_Name

3 Curtner Fred

1 Davis John

2 Davis Mark

Swedish, and thus be portable. For historical reasons, this is not the case. Even if the main letters
sort the same, there will be differences in the handling of other letters, or symbols, punctuation, and
other characters. There are some libraries that offer portable comparison, such as [ICU], but in
general the results of comparison or sort key generation may vary significantly between different
platforms.

In a closed system, or in simple scenarios, portability may not matter. Where someone has a given
set of data to present to a user, and just wants the output to be reasonably appropriate for Swedish,
then the exact order on the screen may not matter.

In other circumstances, it can lead to data corruption. For example, suppose that two
implementations do a database SELECT for records between a pair of strings. If the collation is
different in the least way, they can get different data results. Financial data might be different, for
example, if a city is included in one SELECT on one platform and excluded from the same SELECT
on another platform.

Acknowledgements

Thanks to Bernard Desgraupes, Richard Gillam, Kent Karlsson, Michael Kay, Åke Persson,
Roozbeh Pournader, Markus Scherer, Javier Sola, Otto Stolz, and Vladimir Weinstein for their
feedback on previous versions of this document, to Jianping Yang and Claire Ho for their
contributions on matching, and to Cathy Wissink for her many contributions to the text.

References

[AllKeys] The latest approved version of this file is:
http://www.unicode.org/Public/UCA/latest/allkeys.txt

The version at the time of this publication is:
http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt

Note: ftp access is available, starting at:
ftp://www.unicode.org/Public/UCA/

[CanStd] CAN/CSA Z243.4.1

[CLDR] Common Locale Data Repository
http://unicode.org/cldr/

[FAQ] Unicode Frequently Asked Questions
http://www.unicode.org/faq/
For answers to common questions on technical issues.

[Feedback] Reporting Errors and Requesting Information Online
http://www.unicode.org/reporting.html

[Glossary] Unicode Glossary
http://www.unicode.org/glossary/
For explanations of terminology used in this and other documents.

[ICUCollator] ICU User Guide: Collation Introduction
http://icu.sourceforge.net/userguide/Collate_Intro.html

[ISO14651] International Organization for Standardization. Information Technology--
International String ordering and comparison--Method for comparing
character strings and description of the common template tailorable
ordering. (ISO/IEC 14651:2001). For availability see http://www.iso.org

[JavaCollator] http://java.sun.com/j2se/1.4/docs/api/java/text/Collator.html,
http://java.sun.com/j2se/1.4/docs/api/java/text/RuleBasedCollator.html

[LDML] UTS #35: Locale Data Markup Language (LDML)
http://www.unicode.org/reports/tr35/

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/
For information on the status and development process for technical
reports, and for a list of technical reports.

[Sample] http://www.unicode.org/reports/tr10/Sample/

[Test] The latest approved versions of these files are:
http://www.unicode.org/Public/UCA/latest/CollationTest.html
http://www.unicode.org/Public/UCA/latest/CollationTest.zip

The versions at the time of this publication are:
http://www.unicode.org/Public/UCA/5.2.0/CollationTest.html
http://www.unicode.org/Public/UCA/5.2.0/CollationTest.zip

Note: ftp access is available, starting at:
ftp://www.unicode.org/Public/UCA/

[SortAlg] For background on the names and characteristics of different sorting
methods, see
http://www.aeriesoft.ru/Projects/SortAlg/

[UAX15] UAX #15: Unicode Normalization Forms
http://www.unicode.org/reports/tr15/

[UAX29] UAX #29: Text Boundaries
http://www.unicode.org/reports/tr29/

[UCD] Unicode Character Database
http://www.unicode.org/Public/UNIDATA/UCD.html

[Unicode] The Unicode Consortium. The Unicode Standard, Version 5.0
Boston, MA, Addison-Wesley, 2007. 0-321-48091-0.

[UTN5] UTN #5: Canonical Equivalence in Applications
http://www.unicode.org/notes/tn5/

Modifications

The following summarizes modifications from the previous revisions of this document.

Revision 19

 Proposed Update for Unicode 5.2.0.
 Clarified the computation of the fourth level in Section 3.2.1. [KW]
 Changed bit layout in Section 6.10.1 for a real collation element, to account for the fact that the

DUCET secondary values number more than 255, so no longer fit in 8 bits. [KW]
 Made small editorial clarifications regarding variable weighting in Section 3.2.2. [KW]
 Updated reference to SC22 WG20 to SC2 OWG-SORT in Section 7.1.4.1. [KW]
 Made a minor wording clarification in Section 7.3. [KW]
 Small editorial updates through for formatting consistency. [KW]
 Updated Modifications section to current conventions for handling proposed update drafts.

[KW]

Revision 18

 Updated for Unicode 5.1.0.
 Disallowed skipping 2.1.1 through 2.1.3 (Section 4.2, Produce Array).
 Clarified use of contractions in the DUCET in Section 3.2, Default Unicode Collation Element

Table and Section 3.1.1.2, Contractions.
 Added information about the use of parameterization (Section 5.1, Parametric Tailoring) and a

new conformance clause C6.
 In Section 8, Searching and Matching, added new introduction and explained special cases;

clarified language in definitions.
 Added Section 8.1, Collation Folding.
 Fixed a number of reported typos.

Revision 17 being a proposed update, only changes between revisions 18 and 16 are noted here.

Revision 16

 Updated for Unicode 5.0.0.

[UTR30] UTR #30: Character Foldings (draft)
http://www.unicode.org/reports/tr30/

[UTS18] UTR #18: Unicode Regular Expression Guidelines
http://www.unicode.org/reports/tr18/

[Unstable] For a definition of stable sorting, see
http://planetmath.org/encyclopedia/UnstableSortingAlgorithm.html

[Versions] Versions of the Unicode Standard
http://www.unicode.org/versions/
For details on the precise contents of each version of the Unicode
Standard, and how to cite them.

 Replaced "combining mark" by "non-starter" where necessary.
 Updated reference to Unicode 5.0 with the ISBN number.
 Added UTN#9 text in informative appendix as Appendix A: Deterministic_Sorting.

Revision 15 being a proposed update, only changes between revisions 16 and 14 are noted here.

Revision 14

 Updated for Unicode 4.1.0.
 Expanded use of 0x1D in Section 7.3.1, Tertiary Weight Table.
 Removed DS5, added DS1a, DS2a, explanations of interactions with other conditions, such as

Whole Word or Whole Grapheme.
 Added conformance clause C5 for searching and matching.
 Many minor edits.
 Removed S1.3, so that fully ignorable characters will interrupt contractions (that do not

explicitly contain them).
 Added related Section 3.1.6, Combining Grapheme Joiner.
 Removed S1.2 for Thai, and a paragraph in 1.3.
 Added more detail about Hangul to Section 7.1.4, Trailing Weights, including a description of

the Interleaving method.
 Fixed dangling reference to base standard in C4.
 Added definitions and clarifications to Section 8, Searching and Matching.
 Added more information on user expectations to Section 1, Introduction.

Data tables for 4.1.0 contain the following changes:

1. The additions of weights for all the new Unicode 4.1.0 characters.
2. The change of weights for characters Æ, Ǽ, Ǣ; Đ, Ð; Ħ; Ł, Ŀ; and Ø, Ǿ (and their lowercase

and accented forms) to have secondary (accent) differences from AE; D; H; L; and O,
respectively. This is to provide a much better default for languages in which those characters
are not tailored. See also the section on user expectations.

3. Change in weights for U+0600 ARABIC NUMBER SIGN and U+2062 INVISIBLE TIMES and
like characters (U+0600..U+0603, U+06DD, U+2061..U+2063) to be not completely ignorable,
because their effect on the interpretation of the text can be substantial.

4. The addition of about 150 contractions for Thai. This is synchronized with the removal of S1.2.
The result produces the same results for well-formed Thai data, while substantially reducing
the complexity of implementations in searching and matching. Other changes for Thai include:

a. After U+0E44 ไ THAI CHARACTER SARA AI MAIMALAI
Insertion of the character U+0E45 ๅ THAI CHARACTER LAKKHANGYAO

b. Before U+0E47 ็ THAI CHARACTER MAITAIKHU
Insertion of the character U+0E4E ๎ THAI CHARACTER YAMAKKAN

c. After U+0E4B  THAI CHARACTER MAI CHATTAWA
Insertion of the character U+0E4C  THAI CHARACTER THANTHAKHAT
Then the character U+0E4D ํ THAI CHARACTER NIKHAHIT

5. Changed the ordering of U+03FA GREEK CAPITAL LETTER SAN and U+03FB GREEK
SMALL LETTER SAN.

Revisions 12 and 13 being proposed updates, only changes between revisions 14 and 11 are noted
here.

Revision 11

 Changed the version to synchronize with versions of the Unicode Standard, so that the
repertoire of characters is the same. This affects the header and C4. This revision is

synchronized with Unicode 4.0.0.
 Location of data files changed to http://www.unicode.org/Public/UCA/
 Added new Introduction. This covers concepts in Version 3.0, Section 5.17, "Sorting and

Searching", in The Unicode Standard, Version 3.0, but is completely reworked. The Scope
section has been recast and is now at the end of the introduction.

 In Section 6.9, Tailoring Example: Java, added informative reference to LDML; moved
informative reference to ICU.

 Added explanation of different ways that the Hangul problem can be solved in Section 7.1.4,
Trailing Weights.

 Copied sentence from Scope up to Summary, for more visibility.

Revision 10 being a proposed update, only changes between revisions 11 and 9 are noted here.

Revision 9

 Added C4.
 Added more conditions in Section 3.3, Well-Formed Collation Element Tables.
 Added S1.3.
 Added treatment of ignorables after variables in Section 3.2.2, Variable Weighting.
 Added Section 3.4, Stability.
 Modified and reorganized Section 7, Weight Derivation. In particular, CJK characters and

unassigned characters are given different weights. Added MAX to Section 7.3.
 Added references.
 Minor editing.
 Clarified noncharacter code points in Section 7.1.1, Illegal code points.
 Modified S1.2 and Section 3.1.3, Rearrangement to use the Logical_Order_Exception

property, and removed rearrange from the file syntax in Section 3.2.1, File Format, and from
Section 5, Tailoring.

 Incorporated Cathy Wissink's notes on linguistic applicability.
 Updated links for [Test].

Copyright © 1998-2009 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied
warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and
consequential damages in connection with or arising out of the use of the information or programs contained or
accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

