Doc Type:	Working Group Document
Title:	Diwani Numerals: Towards a Model for Encoding Numerals of the Siyaq Systems
Source:	Anshuman Pandey (pandey@umich.edu)
Status:	Individual Contribution
Action:	For consideration by UTC
Date:	$2009-04-11$

1 Introduction

The intent of this document is to determine possible models for encoding numerals of the Siyaq system in the Universal Character Set (ISO/IEC 10646). It does so through an analysis of the Diwani Numerals, one of the four sub-systems of Siyaq numerical notation.

This document draws upon information originally presented in L2/07-414 "Proposal to Encode Siyaq Numerals in ISO/IEC 10646" (December 2007). In L2/07-414, the present author analyzed the four Siyaq sub-systems and recommended a unified encoding for the numerals of these systems. Although the numerals of the Diwani, Ottoman, Persian, and South Asian traditions are based upon a common typology, there are sufficient differences in character shapes and orthography to warrant an independent encoding for the numerals of each system.

Certain Siyaq traditions have unique requirements for shaping and other rendering behaviors; for example, in the Diwani and South Asian systems there are rules for positioning numerals when writing composite numbers. Certain Siyaq traditions have forms for numerals not found in others; for example, the Persian tradition developed distinct forms for numerals for representing currencies and weights. Also, the Diwani and South Asian systems have alternate forms of the primary numerals that are used for writing composite numerals, while the Ottoman and Persian systems do not. Moreover, certain Siyaq traditions evolved through the influence of local accounting systems; for example, the manner of representing large numerical orders in the South Asian tradition is based not upon the Arabic model, but upon the number system of Sanskrit. Thus, in addition to distinct technical requirements, the four Siyaq traditions differ also on account of their linguistic and historical contexts.

Diwani is the least complex of the four systems of Siyaq. It is, therefore, the system chosen to analyze possible encoding models for Siyaq numerals. It is hoped that a presentation of the typology and numerical notation system of Diwani Numerals will provide information that will facilitate the encoding and implementation of numerals of the Siyaq family in the UCS.

2 Background

The Diwani Numerals are a specialized subset of the Arabic script that were used for maintaining accounting records and other administrative documents. They were developed in the 8th century during the Umayyad caliphate. The numerals originated from the practice of writing numbers using not digits, but the full Arabic names for numbers. As the practice changed through the introduction of abbreviations and calligraphic features, the original Arabic words evolved into distinct monograms. While elements of the original words are visible in a given Diwani numeral, the degree of stylistic innovation masks the relationship between the numerals and the original words. These numerals are not simply presentation forms of the original Arabic letters from which they are derived; they are independent characters that possess particular numerical values.

Table 1: Forms of the Diwani Numerals for each order and magnitude

3 The Notation System

Structure Diwani Numerals represent units of a base-10 (decimal) positional system. The notation system is additive, that is, the value of a number is the sum of the values of the numerals that constitute it. There is no character for zero; it is inherently represented in the distinct numerals for the various decimal orders.

Directionality Diwani Numerals are written right-to-left in the regular manner of the Arabic script, unlike the left-to-right directionality of the Arabic-Indic digits. The exception is composite numbers of the primary and larger units, which are transposed on account of the manner in which numbers are expressed in Arabic.

Typology Diwani numerals are highly stylized monograms of the Arabic names for numbers for the primary units and their magnitudes in the orders of tens, hundreds, thousands, ten thousands, and hundred thousands. The numerals may be decomposed into basic forms for the numbers $1-10$ and distinctive signs that indicate units for different magnitudes (see Section 4 for fuller discussion). The following table illustrates the basic typology with magnitudes of 5 for six decimal orders:

BASE	5	50	500	5,000	50,000	500,000
\sim	L	1	la	حكع	هـل1	حهالف
	+	+	+	$+1$	$\boldsymbol{U}+\sim$	+ 6

3.1 Ordering

The ordering of Diwani numerals is visual, which reflects the method of expressing numbers in Arabic.

3.2 Orthography

Diwani Numerals are written according to the rules for expressing numbers in Arabic. The largest numeral of a number is written first. The writing of composite numbers is governed by the following rules:

1. Composite numbers consisting of the primary numerals and those of the tens, ten thousands, and hundred thousands units are written transposed and with the base form of the primary numeral.
2. Composite numbers consisting of the primary numerals and those of the hundreds and thousands units are written using the independent form of the primary numerals in the regular order.
3. The numbers $11-19$ are written using the base forms of both the primary numeral and TEN.

When written in composite numbers, the base forms of the primary numerals are shaped differently. They are not written fully linearly, but take a cursive shape and extend beneath the following numeral. This shaping feature is shown in the numbers 11-19 in section 4.7.

Examples of the above rules are

- (ح 15 ح 15 FIVE BASE + 9 TEN base): خمسة عشر 'five-ten'.

- حححا (ح 55 FIVE baSE + حـ 7 FIFTY): خمسة و خمسون 'five and fifty’.
 five base + حص FIVE hUNDRED). The form * ححع could theoretically represent 'fifty-five hundred', but this amount would be parsed as 'five thousand and five hundred' and written as حكع حعا.
 and five-ten'.
 The incorrect form is * ححתا (ح حIVE base + حكع Five thousand).
- 50,005 حلا حا (حلا FIFTY THOUSAND + حا FIVE): خمسان الفا و خمسة 'fifty thousand and five'.
- 55,000 ح حلا (حلا FIVE bASE + حـلا FIFTY THOUSAND): : خمسة و خمسون الفا 'five and fifty thousand'.
 'five and fifty thousand / and five'.
 THOUSAND + حط FIVE HUNDRED + حا FIVE: خمس مائة الف و خمسة الاف و خمس مائة و خمسة 'five hundred thousand / and five thousand / and five hundred / and five'.
 HUNDRED + حـ FIVE BASE + حـ FIFTY): مائة و خمسة و خمسسون الفا و خمس مائة و خمسسة و خمسون خمس 'five hundred / and five and fifty thousand / and five-hundred / and five and fifty'.

4 The Numerals

4.1 The Primary Unit

The primary unit of Diwani consists of the numbers 1 through 9 and 10. They are stylized monograms of the Arabic names or abbreviations of the names consisting of the initial and one or more letters in a name written with a terminal stroke, which is a stylized representation of the word-final \boldsymbol{a} TEH MARBUTA in the names of the units: l

1	-	احد	ahad	one
ע	-	اثنان	$i \underline{i t n a ̄ n}$	two
W	-	ثلاثة	talāta	three
لصا	لس	اربعة	arba'a	four
L	$\mathbf{l}+$	خمسة	$\underline{h} a m s a$	five
\checkmark	$1+\Omega$	ستّة	sitta	six
1	$1+\mu$	سبعة	$s a b ' a$	seven
4	$l+r$	ثمانية	tamāniya	eight
عا	(1+	تسعة	tis ' a	nine
عا	$l+9$	عشرة	'ašara	ten

Base Forms of the Primary Numerals The primary numerals may be decomposed to produce base forms:

Variant Forms The following characters have variant forms:

- The base form of $3(\boldsymbol{\sim})$ takes the shape $\boldsymbol{\omega}$ when writing tens and hundreds.
- The base form of 8 (حع) takes the shape when writing tens and hundreds.

4.2 The Tens Unit

The numerals for 30-90 are composed from the base forms of the primary numerals joined to the tens termi-

as a hook: 1. The exception is 20 , which is modeled after ς, the base form of عشرون is 10 , as its name the dual form of the Arabic name for 10.

eq	$1+9$	عشرون	'išrūn	twenty
て	$1+\sim$	ثلاثون	$\underline{\text { talātūn }}$	thirty
1	1+	اربعون	arba ${ }^{\text {c }}$ ¢	forty
17	$1+\sim$	خمسون	hamsūn	fifty
乙	$1+\Omega$	ستّون	sittūn	sixty
14	$1+\mu$	سبعون	sab ${ }^{\text {¢ }}$ ¢ n	seventy
2	$1+r$	ثمانون		eighty
عع1	1+ع	تسعون	tis 'ūn	ninty

4.3 The Hundreds Unit

The numerals for 300-900 are composed from the base forms of the primary numerals joined to the numeral $100 \mathbf{b}$, which is the abbreviation (م) of the Arabic word مائة 'hundred'. The exceptions are 1006 and 200 $\boldsymbol{\Omega}$, which are monograms of their Arabic names.

6	-	مائة	mi'a	one hundred
\bigcirc		مائتان	mi'ātān	two hundred
لبا	$\checkmark+\sim$	ثلاث مائة		three hundred
601	$b+\boldsymbol{l}$	اربع مائة	arba 'u mi'a	four hundred
¢	$6+$	خمس مائة	$\underline{\text { hamsu mi'a }}$	five hundred
6	$b+\Omega$	ستّ مائة	sittu mi'a	six hundred
bur	$b+\mu$	سبع مائة	sab ' mi'a $^{\text {a }}$	seven hundred
b	$b+r$	ثمان مائة		eight hundred
كe	ك+	تسع مائة	tis 'um mi'a	nine hundred

Variant Forms The following character has a variant form:

- The numeral three hundred (بلا) also takes the shape

4.4 The Thousands Unit

The numerals for $3,000-9,000$ are composed from the base forms of the primary numerals joined to the terminal كש, which is a monogram of the Arabic word الف one thousand and العى two thousand are monograms of their Arabic names.

الع	-	الف	alf	one thousand
العى		الفان	alfān	two thousand
טת	ω	ثلاثة الاف	talāta a a ă f	three thousand
لمعف	لس +	اربعة الاف	arba 'a àlāf	four thousand
حكع	حا +	خمسة الاف	$\underline{\text { hamsa a }}$ läf	five thousand
U	$\omega+$ U	ستّة الاف	sitta àlāf	six thousand
crer	$\omega+$ +		sab'a ālāf	seven thousand
cror	$\omega+L^{\text {+ }}$	ثمانية الاف	ṫamāniya ālāf	eight thousand
لعك	Uعا +	تسعة الاف	tis 'a àlāf	nine thousand
عתع	عا +	عشرة الاف	'ašara àlāf	ten thousand

Variant Forms The following character has a variant form:

- The numeral one thousand (اله) also takes the shape الحّ.

4.5 The Ten Thousands Unit

The ten thousands are written using modified forms of the tens numerals joined to the terminal \boldsymbol{H}, which is a contraction of الفا. The leftward hook in the stylized form of final noon that marks the tens terminal 1 is dropped and the base is joined to \mathbb{U}. This is supported by the presence of the variant forms of the base forms of three and eight that are used for writing thirty and eighty. Moreover, the Arabic names for these numerals supports this typology: 30,000 is 'thirty thousands'. The exception to the typology for the ten thousands is 20,000 lus, which is modeled after 20 lq .

Lus	$\boldsymbol{u}+$	عشرون الفا	'išrūn alfan	twenty thousand
سلا	$\boldsymbol{u}+$	ثلاثون الفا		thirty thousand
لنعلا	$\boldsymbol{u}+$	اربعون الفا	arba 'ūn alfan	forty thousand
حلا	$\boldsymbol{u}+$	خمسون الفا	$\underline{\text { hamsūn alfan }}$	fifty thousand
U	$\boldsymbol{u}+$	ستّون الفا	sittūn alfan	sixty thousand
بعلا	$\boldsymbol{u}+$	سبعون الفا	sab ūn alfan	seventy thousand
لــلا	$\boldsymbol{u}+$	ثمانون الفا		eighty thousand
لعـل	$\boldsymbol{U}+$	تسعون الفا	tis'ūn alfan	ninty thousand

4.6 The Hundred Thousands Unit

The numerals for the hundred thousands unit are written as الש one thousand + \boldsymbol{b} one hundred + the base form of the primary unit.

bالع	b + الa	مائة الف	mi'a alf	one hundred thousand
لا	لا + + + الa +	مائتا الف	mi'atā alf	two hundred thousand
cece		ثلاث مائة الف		three hundred thousand
لس	لس +	اربع مائة الف	arba'u mi'a alf	four hundred thousand
حطالف	+	خمس مائة الف	hamsu mi'a alf	five hundred thousand
)		ستّ مائة الف	sittu mi'a alf	six hundred thousand
rer	訨+ + +	سبع مائة الف	sab'u mi'a alf	seven hundred thousand
${ }^{\text {d }} \mathrm{l}_{\text {r }}$		ثمان مائة الف	tamānu mi'a alf	eight hundred thousand
لعطاله	لع+ + + الع	تسع مائة الف	tis'u mi'a alf	nine hundred thousand

It may be possible to compose the numerals for this unit using الع ONE THOUSAND + the hundreds unit of a digit, but this rule is not attested:

$$
\begin{aligned}
& \text { ONE THOUSAND }+\quad \text { b ONE HUNDRED }+\boldsymbol{\omega} \text { THREE } \\
& \text { ONE THOUSAND + }
\end{aligned}
$$

4.7 Composite Numbers

The rules for writing composite numbers in the Diwani system are given in Section 3.2. The numbers 10-19 are shown below to illustrate the use of the base form of TEN in writing composite numbers of this range.

ع	-	عشرة	'ašara	ten
cl	$s+1$	احل عشر	ahad 'ašara	eleven
لاع	$\varepsilon+\downarrow$	اثنا عشر	intnā 'ašara	twelve
901	$q+\sim \sim$	ثلاثة عشر	ṫalāta 'ašara	thirteen
ل-	¢	اربعة عشر	arba'a 'ašara	fourteen
97	$4+$	خمسة عشر	hamsa 'ašara	fifteen
91	$9+\bigcirc$	ستّة عشر	sitta 'ašara	sixteen
sel	$\varepsilon+\mu$	سبعة عشر	sab 'a 'ašara	seventeen
97	$q+r$	ثمانية عشر	ṫamāniya 'ašara	eighteen
كع8	rer	تسعة عشر	tis 'a 'ašara	nineteen

Composite numbers from 21-99 are also written with the base form of the primary numeral and the respective tens numeral. They are expressed using the conjunction g wa 'and'. Thus, 21 is written $\boldsymbol{\iota} \boldsymbol{q} /$ and is expressed as احلد و عشرون 'one and twenty’, 22 is الثا و عشرون لا 'two and twenty', etc.

5 Implementation

5.1 Encoding Model

Given the above analysis, the possible models for encoding the Diwani Numerals are:

1. Encode each numeral as an atomic character
2. Encode the base forms of the primary units and unit marks
3. Encode the numerals for the primary, tens, hundreds, thousands, and ten thousands units
4. Encode each numeral as an atomic character The most elementary approach to encoding the Diwani Numerals is to encode each individual numeral as an atomic character. This model would require 69 characters: primary units (10), base forms of the primary units (10), tens (9), hundreds (10), thousands (10), ten thousands (10), and hundred thousands (10).

The advantage of this model is that no special rendering rules are needed to write the numerals. The disadvantage is the encoding of redundant characters, in particular the hundred thousands unit, which may be written using characters for other units.
2. Encode the base forms of the primary units and unit marks This is an extreme alternative to encoding each numeral as an atomic character. It is a means of encoding Diwani Numerals according to their typological decomposition. In this approach, the Diwani Numerals would be written using the base forms of the primary numerals and the distinctive sign for each decimal order. This approach would require only 16 characters: base forms of the primary units (10) and signs for the units (6).

With this approach, the number five $\boldsymbol{\sim}$ would be produced as \mathbf{l} UNITS SIGN $+\sim$ FIVE, and the number FIFTY would be composed using 1 tens mark $+\underset{\sim}{\text { ح }}$ FIVE.

The major disadvantage to this approach is the heavy reliance upon rendering rules. The shaping engine would need to produce the appropriate forms for special ligatures. The number one thousand الع would be
 ς ten; twenty thousand lley would be \mathcal{E} ten thousands sign $+\boldsymbol{V}$ two.

Another disadvantage is ordering. With this approach the rendering engine would need to first compose the appropriate number for a base numeral + a unit sign, then order these pairs according to the Arabic counting order.

Although the primitives approach reflects the pattern that underlies the typology of the Diwani Numerals, the complexity of this encoding model may restrict its implementation.
3. Encode the numerals for the primary through ten thousands units A third approach is a mean between the two discussed previously. In this approach, the numerals of the primary, tens, hundreds, thousand, and ten thousands units are encoded as atomic characters. Based upon their glyphic representation, the numerals for these units are unique and cannot be represented using other characters (apart from the primitives model). The numerals for the hundred thousands unit may be written using the base forms of the primary unit + ONE HUNDRED + ONE THOUSAND.

This model would require 59 characters: primary units (10), base forms of the primary units (10), tens (9), hundreds (10), thousands (10), and ten thousands (10). Of the three, this approach offers the least complicated method of encoding Diwani Numerals.

5.2 A Basic Character Set for Diwani Numerals

Based upon encoding model \#3, 59 characters are required to encode Diwani Numerals in the UCS:

```
xx01 DIWANI NUMERAL ONE
xx02 DIWANI NUMERAL TWO
xx03 DIWANI NUMERAL THREE
xx04 DIWANI NUMERAL FOUR
xx05 DIWANI NUMERAL FIVE
xx06 DIWANI NUMERAL SIX
xx07 DIWANI NUMERAL SEVEN
xx08 DIWANI NUMERAL EIGHT
xx09 DIWANI NUMERAL NINE
xxOA DIWANI NUMERAL TEN
xx0B DIWANI NUMERAL COMBINING ONE
xxOC DIWANI NUMERAL COMBINING TWO
xxOD DIWANI NUMERAL COMBINING THREE
xxOE DIWANI NUMERAL COMBINING FOUR
xxOF DIWANT NUMERAL COMBINTNG FIVE
xx10 DIWANI NUMERAL COMBINING SIX
xx11 DIWANI NUMERAL COMBINING SEVEN
xx12 DIWANI NUMERAL COMBINING EIGHT
xx13 DIWANI NUMERAL COMBINING NINE
xx14 DIWANI NUMERAL COMBINING TEN
xx15 DIWANI NUMERAL TWENTY
xx16 DIWANI NUMERAL THIRTY
xx17 DIWANI NUMERAL FORTY
xx18 DIWANI NUMERAL FIFTY
xx19 DIWANI NUMERAL SIXTY
xx1A DIWANI NUMERAL SEVENTY
xx1B DIWANI NUMERAL EIGHTY
xx1C DIWANI NUMERAL NINETY
xx1D DIWANI NUMERAL ONE HUNDRED
xx1E DIWANI NUMERAL TWO HUNDRED
xx1F DIWANI NUMERAL THREE HUNDRED
xx20 DIWANI NUMERAL FOUR HUNDRED
xx21 DIWANI NUMERAL FIVE HUNDRED
XX22 DIWANI NUMERAL SIX HUNDRED
XX23 DIWANI NUMERAL SEVEN HUNDRED
xx24 DIWANI NUMERAL EIGHT HUNDRED
xx25 DIWANI NUMERAL NINE HUNDRED
xx26 DIWANI NUMERAL ONE THOUSAND
xx27 DIWANI NUMERAL TWO THOUSAND
xx28 DIWANI NUMERAL THREE THOUSAND
xx29 DIWANI NUMERAL FOUR THOUSAND
xx2A DIWANI NUMERAL FIVE THOUSAND
xx2B DIWANI NUMERAL SIX THOUSAND
xx2C DIWANI NUMERAL SEVEN THOUSAND
xx2D DIWANI NUMERAL EIGHT THOUSAND
xx2E DIWANI NUMERAL NINE THOUSAND
xx2F DIWANI NUMERAL TEN THOUSAND
xx30 DIWANI NUMERAL TWENTY THOUSAND
xx31 DIWANI NUMERAL THIRTY THOUSAND
xx32 DIWANI NUMERAL FORTY THOUSAND
xx33 DIWANI NUMERAL FIFTY THOUSAND
xx34 DIWANI NUMERAL SIXTY THOUSAND
xx35 DIWANI NUMERAL SEVENTY THOUSAND
xx36 DIWANI NUMERAL EIGHTY THOUSAND
xx37 DIWANI NUMERAL NINETY THOUSAND
```


6 References

Kazem-Zadeh, H. 1915. "Les Chiffres Siyâk et la Comptabilité Persane." In Revue du Monde Musulman, vol. 30, pp. 1-51.
Pihan, Antoine Paulin. 1860. Exposé des signes de numération usités chez les peuples orientaux anciens et modernes. Paris: L'imprimerie impériale.

LES CHIFFRES «DÎVÂNî» CHEZ LES ARABES（i）

chiffres	valeur	Catprres	valeur	chiffres	valeur
1	I	9x＋	19	wll ou all	1，000
1	2	45	20	c^{11}	2，000
C ou lll	3	1	30	cat	3，000
Led	4	Led	40	colld	4，000
La	5	1	50	cos	5，000
L	6	1	60	－	6，000
	7	124	70	¢⿴囗木	7，000
γ	8	1	80	0	8，000
Le）	9	1e	9°	ك10	9，000
L	10	6	100	sla	10，000
91	I I	\int	200	$\mathrm{C}_{1} 8$	20，000
cy	12	ou 16	300	100	30，000
54	13	N	400	\ln	40，000
sed	14	Les	500	Ha	50，000
50	15	10	600	14	60，000
\％	16	Le4	700	IN	70，000
934	17	a）	800	14d	80，000
Gor	18	L21	900	1as	90，000

（t）D＇après un manuscrit du Vocabulaire arabe－persan de Zamakhcharí（Bibliothéque Nationale，ancien fonds arabe no ${ }^{\text {1256 }}$ ），reproduits dans la Grammaire arabe de Silyestre de $S_{A C Y}$ et dans l＇ouvrage de A．－P．Pihan．

Figure 1：Table showing the Diwani number forms（from Kazem－Zadeh 1915：Plate VII）．

UNITÉS.		dizaines.		centaines.	
1	1	عL	10	6	100
ل	2	bs	20	\int	200
O ou ${ }^{(1)}$	3	て	30	كل大	300
لما	4	لW1	40	لـ88	400
L	5	2	50	lea	500
\checkmark	6	2	60	6-	600
Ler	7	12	70	4	700
4	8	2	80	b	800
L	9	181	90	Les	900
mille.		dizaines de mille.		centaines de mille.	
الeour	1,000	عاع	10,000	6الع	100,000
العى	2,000	Uny	20,000	لا	200,000
سת	3,000	سلا	30,000	دعها	300,000
لـعكع	4,000	لععلا	40,000	للعطالع	400,000
صكع	5,000	حلا	50,000		
ع	6,000	4	60,000		
بת	7,000	بعلا	70,000		
crr	8,000	U-	80,000		
كعك	9,000	كعلا	90,000		

Figure 2: Table showing the Diwani number forms (from Pihan 1860: 211).

cl	11	8M	17	עلم1	42
لا	19	84	18	Levr	48
¢논	13	תer	${ }^{19}$	6الص16	141
لمת	14	cl	21	1246	152
97	15	ل-	34	\checkmark	206
4	16	ת10	35	كاحو	315

Figure 3: Table showing composite numbers written with Diwani Numerals (from Pihan 1860: 212).

