
UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

1 of 27 8/4/2009 5:35 PM

  Technical Reports

 

Proposed Update to
Unicode Technical Standard #22

UNICODE CHARACTER MAPPING MARKUP LANGUAGE
(CharMapML)

Version 5.0
Authors Mark Davis, Markus Scherer
Date 2009-06-30
This 
Version

http://www.unicode.org/reports/tr22/tr22-6.html

Previous 
Version

http://www.unicode.org/reports/tr22/tr22-5.html

Latest 
Version

http://www.unicode.org/reports/tr22/

DTDs http://www.unicode.org/reports/tr22/CharacterMapping.dtd
http://www.unicode.org/reports/tr22/CharacterMappingAliases.dtd

Revision 6

Summary

This document specifies an XML format for the interchange of mapping data for
character encodings, and describes some of the issues connected with the use of
character conversion. It provides a complete description for such mappings in
terms of a defined mapping to and from Unicode, and a description of alias tables
for the interchange of mapping table names.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this
document as other than a work in progress.

A Unicode Technical Standard (UTS)  is an independent specification.
Conformance to the Unicode Standard does not imply conformance to any
UTS.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this document is
found in the References. For the latest version of the Unicode Standard see
[Unicode]. For a list of current Unicode Technical Reports see [Reports]. For more

rick@unicode.org
Text Box
L2/09-268



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

2 of 27 8/4/2009 5:35 PM

information about versions of the Unicode Standard, see [Versions].

Contents
1  Introduction

1.1  Illegal and Unassigned Codes
1.1.1  Best-Fit Mappings
1.1.2  Dual Substitution Handling

1.2  Completeness
1.3  Canonical Equivalence
1.4  Charset Alias Matching

2  Conformance
3  Character Mapping Table Format

3.1  Header
3.2  History
3.3  Validity Specification

3.3.1  Error Conditions
3.3.2  Simple SI/SO-Stateful Encodings

3.4  Assignments
3.4.1  Mapping Multiple Characters
3.4.2  Error Conditions

3.5  ISO 2022
4  Alias Table Format
5  Samples

5.1  Full Sample
5.2  UTF-8 Sample

5.2.1  Partial Validity Checks
5.2.2  Full Validity Checks

Data Files
References
Modification History

1 Introduction
The ability to seamlessly handle multiple character encodings is crucial in today's
world, where a server may need to handle many different client character
encodings covering many different markets. No matter how characters are
represented, servers need to be able to process them appropriately. Unicode
provides a common model and representation of characters for all the languages
of the world. Because of this, Unicode is being adopted by more and more systems
as the internal storage processing code. Rather than trying to maintain data in
literally hundreds of different encodings, a program can translate the source data
into Unicode on entry, process it as required, and translate it into a target
character set on request.

Even where Unicode is not used as a process code, it is often used as a pivot
encoding. Data can be converted first to Unicode and then into the eventual target
encoding. This requires only a hundred tables, rather than ten thousand.

Whether or not Unicode is used, it is vital to maintain the consistency of data
across conversions between different character encodings. Because of the fluidity
of data in a networked world, it is easy for it to be converted from, say, CP950 on
a Windows platform, sent to a UNIX server as UTF-8, processed, and converted



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

3 of 27 8/4/2009 5:35 PM

back to CP950 for representation on another client machine. This requires
implementations to have identical mappings for a character encoding, no matter
what platform they are working on. It also requires them to use the same name for
the same encoding, and different names for different encodings. This is difficult to
do unless there is a standard specification for the mappings so that it can be
precisely determined what the encoding actually maps to.

This technical report provides a standard specification for the interchange of
mapping data for character encodings. By using this specification,
implementations on any platform can be assured of providing precisely the same 
mappings as all other implementations, regardless of platform. The use of
CharMapML in and of itself does not guarantee that the result of a mapping is in a
Unicode Encoding Form.

The DTD does not specify valid documents. It is insufficient for the specification of
all of the constraints on CharMapML files. The constraints are fully specified in this
Unicode Technical Standard.

1.1 Illegal and Unassigned Codes

When converting data between different character encodings, the conversion
software needs to distinguish the different types of errors that can occur. These
fall into three main categories: sequences that are illegal, unassigned and
unmappable.

There are two variants when the sequence is illegal. In the first variant, the
sequence is incomplete. For example, 

0xA3 is incomplete in CP950. Unless followed by another byte of the right 
form, it is illegal.
0xC2 is incomplete in UTF-8. Unless followed by another value of the right 
form, it is illegal.
0x80 is incomplete in UTF-8. Unless preceded by another value of the right 
form, it is illegal.

The second variant is where the sequence is complete, but explicitly illegal. For
example,

0xC0 is illegal in UTF-8. This value can never occur in valid UTF-8 text.

In the second category, the source sequence represents a valid code point, but is
unassigned (also known as undefined). This sequence may be given an assignment
in some future version of the character encoding. For example, 0xA3 0xBF is
unassigned in CP950, as of 1999. 0x0EDE is unassigned in Unicode, V3.0

In the third category, the source sequence is assigned, but unmappable: there is 
no corresponding code point in the target encoding to accurately represent the
source sequence. For example, the long dash is assigned in Unicode, but cannot
be mapped to ISO-8859-1.

In the case of illegal source sequences, a conversion routine will typically provide
three options. It may stop with an error (or throw an exception). Secondly, it may



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

4 of 27 8/4/2009 5:35 PM

skip the source sequence. While this is commonly an option, it can also hide 
corruption problems in the source text. Lastly, it may map to a substitution
character such as the Unicode REPLACEMENT CHARACTER (U+FFFD).

When a conversion routine stops with an error, the routine should communicate
the cause of the error and the length and contents of the bad sequence. It should
be possible to resume the conversion after the caller handles the bad sequence.

There is an important difference between the case where a sequence represents a
real REPLACEMENT CHARACTER in a legacy encoding, as opposed to just being
unassigned, and thereby mapped to REPLACEMENT CHARACTER (using an API
substitution option). 

An API may choose to signal an illegal sequence in a legacy character set by
mapping it to a noncharacter code point (Definition D7b in the Unicode Standard),
such as U+FFFF. However, this mechanism runs the risk of these values being
transmitted in Unicode text (which is thus non-conformant), and should be used
with caution. 

Unassigned sequences can be handled with any of the above options, plus some
additional ones. They should always be treated as a single code point: for
example, 0xA3BF is treated as a single code point when mapping into Unicode
from CP950. Especially because unassigned characters may actually come from a
more recent version of the character encoding, it is often important to preserve
round-trip mappings if possible. This can be done by mapping to private use 
space. Unicode (and some other character encodings) provide a large area of
Private Use characters. These can be used to provide round-trip mappings for
private use characters from other character encodings, as well as provisional
mappings for characters that have not yet been encoded in Unicode. A second
option is to represent unassigned sequences by hex escape sequences. For
example, when mapping from U+1234 to other code pages, it can be represented
by "&#x1234;" in XML or HTML, "\u1234" in Java, C99 or C++, or "\x{1234}" in
Perl.

For unmappable sequences, an additional option of mapping to a fallback
character sequence may be available. In this case, an unmappable sequence is 
given a "best fit" mapping. For example, an encoding might not have curly quotes;
the generic quotes could be used as a fallback; or if EM DASH is unmappable, a
sequence of two HYPHEN-MINUS characters could be used as a fallback.

It is important that systems be able to distinguish between the fallback mappings
and regular mappings. Systems like XML allow the use of decimal or hexadecimal
escape sequences (Numeric Character References) to preserve round-trip integrity;
use of fallback characters in that case corrupts the data.

Because illegal sequences represent some corruption of the data stream,
conversion routines may be directed to handle them differently than unassigned or
unmappable sequences. For example, a routine might map an unassigned
sequence to a substitution character, but throw an exception when it encounters
an illegal sequence.

1.1.1 Best-Fit Mappings



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

5 of 27 8/4/2009 5:35 PM

In cases where a specified character mapping table is not available, a best-fit 
mapping table can be used. This technique should be used with caution because
data can be corrupted. For example, in XML there are different strategies
depending on whether the process is parsing or generating.

Suppose that there are two sets X and SUB_X, where X is a superset of SUB_X.
(That is, every roundtrip mapping that is in SUB_X is also in X, and X may
contain additional round-trip mappings.) Then:

It is acceptable to parse with X when the file is tagged as SUB_X. Because
X is a superset, all the characters will be read correctly. Any characters
that are not in SUB_X will be encoded as NCRs (for example, &#xABCD;),
and will work.
It is acceptable to generate the file with SUB_X, and tag the file as X.
Everything works as long as the characters that are not in SUB_X are
converted into NCRs.
It is NOT acceptable to parse with SUB_X when the file is tagged with X
because characters will be corrupted.
It is NOT acceptable to generate the file with X, and tag the file with 
SUB_X because characters will be corrupted.

Therefore, looking up a best-fit character mapping needs to yield different results
depending on whether a subset or a superset is required. Section 4, Alias Table 
Format describes data that can be used for this.

1.1.2 Dual Substitution Handling

Some mapping tables for multibyte code pages define an additional, alternate code
page substitution character "subchar1" which is always a single-byte code. In this
case, the regular substitution character is always a double-byte code. These
mapping tables then also list which unassigned code points should map to this
alternate subchar1 instead of to the regular substitution character.

The XML character mapping table format provides for the specification of the
"subchar1" byte sequence as a sub1 attribute of the assignments element, and for
the use of sub1 elements to specify which Unicode code points should map to
"subchar1" instead of to the regular substitution character.

Usage:

In this context characters are thought of as being "wide" or "narrow." In legacy
code pages, this is identified with the codes being single-byte or double-byte
codes.

In mappings between two legacy code pages: When a wide (double-byte) character
is unassigned, it results in a double-byte substitution character. When a narrow
(single-byte) character is unassigned, it results in a single-byte "subchar1".

This is emulated in mapping tables by declaring the additional "subchar1", and by 
adding one-way mappings from Unicode to the code page-"subchar1" where
desired for "narrow" characters. When a "subchar1" is specified, then conversion



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

6 of 27 8/4/2009 5:35 PM

routines use U+001A as a "Unicode subchar1."

Typically, all unassigned Latin-1 characters (Unicode code points
U+0000-U+00FF) have subchar1 mappings, but some other code points do also.

This means that when one converts from Unicode to such a code page and finds an
unassigned code point, then if a "subchar1" mapping is defined for this code
point, output the "subchar1" byte sequence, otherwise output the regular
substitution character. When one converts from such a code page to Unicode and
finds an unassigned code, then if the input sequence is of length 1 and a
"subchar1" is specified for the code page, output U+001A, otherwise output
U+FFFD.

Some converter implementations seem to not distinguish between
roundtrip/fallback/subchar[1] and just include the desired default results in the 
runtime mapping tables.

1.2 Completeness

It is important that a mapping file be a complete description. Using the data in the
file, it must be possible to tell whether any sequence of bytes is assigned,
unassigned, or illegal. It must also be possible to tell if characters need to be
rearranged to be in Unicode standard order (visual order, combining marks after
base forms, etc). In addition,

All mappings for control characters (C0 controls, DELETE, and C1 controls; 
U+0000..U+001F and U+007F..U+009F) must be explicitly listed if these 
characters are mapped.
All legacy private use (for example, user defined) characters must be 
explicitly mapped, either to the private use zone in Unicode, or to the correct
characters outside of that zone.
Only a real legacy replacement character can be mapped explicitly to
REPLACEMENT CHAR in the body of the mapping table; unassigned characters
must not be mapped explicitly to it. (They may be mapped implicitly in
conversion, depending on conversion parameters.)
Similarly, when mapping from Unicode to a code page, only the
REPLACEMENT CHAR (or U+001A in a table with Dual Substitution Handling)
can be mapped to SUBSTITUTE or other legacy equivalent.
Incomplete sequences and other illegal sequences must be explicitly
indicated.
All fallback mappings must be clearly indicated. This is especially important
for modern software that guarantees round-trip conversion to and from
Unicode.

If two byte sequences are considered to be duplicate encodings, then they can
map to the same Unicode value, in which case one of them is a fallback.

Legacy Unicode

X X



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

7 of 27 8/4/2009 5:35 PM

X'

If they are not, they must map to distinct Unicode values (for example, using a
private use character). Otherwise data would be lost when converting to and from
Unicode.

Legacy Unicode

X X
X' X' (Private Use)

If a future version of Unicode incorporates a character that was represented by a
private use character, the mapping should be changed as follows:

Old Version

Legacy Unicode

X' X' (Private Use)
New Version

Legacy Unicode

X' X'

X' (Private Use)

 

1.3 Canonical Equivalence

The Unicode Standard has two equivalent ways of representing accented characters
such as â. The standard provides for two normalized formats that provide for
unique representations of data in UAX #15: Unicode Normalization Forms
[Normal]. Where possible, each code page character should be mapped to a
precomposed Unicode character, or to a Unicode sequence which is in
Normalization Form C. However, this does not guarantee that the result of the
conversion of the entire text into Unicode will be normalized, because individual
characters in the source encoding may separately map to an unnormalized
sequence.

For example, suppose the source encoding maps 0x83 to U+030A in Unicode 
(combining ring above), and 0x61 to U+0061 (a). Then the sequence
<0x61,0x83> will map to <U+0061, U+030A> in Unicode, which is not in
Normalization Form C.

This situation will only arise when the source encoding has separate characters



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

8 of 27 8/4/2009 5:35 PM

that, in the proper context, would not be present in normalized text. If a process
wishes to guarantee that the result is in a particular Unicode normalization form, it
should normalize after conversion. (See the description of the normalization
attribute of the characterMapping element below.)

1.4 Charset Alias Matching

Names and aliases of charsets are often spelled with small variations. To recognize
accidental but unambiguous misspellings and avoid adding each possible variation
to a list of recognized names, it is customary to match names case-insensitively
and to ignore some punctuation. For best results, names should be compared after
applying the following transformations:

Delete all characters except a-z, A-Z, and 0-9.1.
Map uppercase A-Z to the corresponding lowercase a-z.2.
From left to right, delete each 0 that is not preceded by a digit.3.

For example, the following names should match: "UTF-8", "utf8", "u.t.f-008", but
not "utf-80" or "ut8".

Note: These rules are in place because in practice implementations are faced with
many gratuitous variations in the use and omission of punctuation. There are a
small number of IANA names for different charsets that match under these rules,
but they appear to be rarely used, obscure charsets: "iso-ir-9-1" and "iso-ir-9-2"
match "iso-ir-91" and "iso-ir-92", respectively. (There are also names in the IANA
charset registry that violate the registry's own name syntax rules.)

2 Conformance
There are many different ways to describe character mapping tables and alias
tables, and the Unicode Standard does not restrict the ways in which
implementations can do this. However, any Unicode-conformant implementation
that purports to implement this specification must do so as described in the
following clause. Implementations are free to deviate from this, as long as they do
not purport to conform to this specification.

C1 A character mapping table or alias table that claims conformance to this
standard must be a well-formed XML document and must be valid according
to the CharacterMapping DTD described in the next section.

C2 A character mapping table that claims conformance to this standard must
specify valid assignments; in particular, valid Unicode code points, and byte
sequences that conform to the table's validity specification.

C3 Conformance to this specification requires conformance to Unicode 2.0.0 or
later.

3 Character Mapping Table Format
A character mapping specification file starts with the following lines. Note that
there is a difference between the encoding of the XML file, and the encoding of the
mapping data. The encoding of the file can be any valid XML encoding. Only the



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

9 of 27 8/4/2009 5:35 PM

characters in the ASCII repertoire are required in the specification of the mapping
data, but the full repertoire of the mapping file's encoding may be used in
comments and in attribute values (where permitted by the specification). The
example below happens to use UTF-8.
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE characterMapping

  SYSTEM "http://www.unicode.org/reports/tr22/CharacterMapping.dtd">

In the rest of this specification, very short attribute and element names are used
just to conserve space where there may be a large number of items, or for
consistency with other elements that may have a large number of items.

3.1 Header

A mapping file begins with a header. The following is not a real-world example but
illustrates all of the attributes:
<characterMapping
 id="windows-1252-2000"
 version="2"
 description="Code page for Western Europe"
 contact="mailto:somebody@example.com"
 registrationAuthority="Microsoft"
 registrationName="cp1252"
 copyright="Microsoft"
 bidiOrder="logical"
 normalization="NFC"
>

The element characterMapping (required) is the root. It contains a number of
attributes:

<!ELEMENT characterMapping (history?, ((validity|stateful_siso), assignments)|iso2022)>

<!ATTLIST characterMapping
    id CDATA #REQUIRED
    version CDATA #REQUIRED
    description CDATA #IMPLIED
    contact CDATA #IMPLIED
    registrationAuthority CDATA #IMPLIED
    registrationName CDATA #IMPLIED
    copyright CDATA #IMPLIED
    bidiOrder (logical|RTL|LTR) "logical"
    combiningOrder (before|after) "after"
    normalization (undetermined|neither|NFC|NFD|NFC_NFD) "undetermined"
>

The attribute id (required) gives a canonical identifier which uniquely distinguishes
this mapping table from all others. This identifier has the form:
<source>-<name_on_source>-<version>, such as "iso-8859-1999". The
identifier syntax was chosen so that the resulting string can be used as a filename
on most systems.

<source> Name of standards authority, government, vendor, or product
<name_on_source> Most common name used on source. If the name is used 

ambiguously on the source, it should be qualified for
uniqueness: for example, "cp936_Alt1"



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

10 of 27 8/4/2009 5:35 PM

<version> Version number, typically the first year the encoding was 
introduced. If this is not sufficient for uniqueness, an
additional letter can be appended: "1999a", "1999b", etc.

All three fields must be present, except in the case of Unicode encodings, which 
do not need a version field. Fields are limited to ASCII letters, digits and "_". Any
other characters should be converted to "_" or letters. The id value is matched 
leniently as recommended for all charset names, see Section 1.4, Charset Alias 
Matching. It must be unique; if two mapping tables differ in the mapping of any
characters, in the specification of illegal characters, in their bidi ordering, in their
combining character ordering, and so on, then their identifiers must not match
according to the algorithm in Section 1.4, Charset Alias Matching.

If a source only has one name for two mappings that differ by bidi-order, one
must be given a qualification. For example, "cp543_RTL" (see below).

Different organizations may assign different id values for the same mapping table,
for example, if they happen to choose different names for the same source or
happen to document the same mapping table from different sources. 

These identifiers are not meant to compete with the IANA character set registry
[IANA], which is the most useful collection of cross-platform names available.
Future registration of many of these mappings with IANA seems likely because the
current usage of IANA names is not sufficiently precise. For example, many
character set mappings advertise themselves as being "Shift-JIS", but actually have
different mappings to and from Unicode on different platforms.

Some sources do not rename a character set when they add mappings by providing
mappings for characters that were either previously unmapped or mapped to 
private use characters. These added mappings can be incorporated into the same
mapping file, using a version attribute (see below). If only additions are made,
then the same identifier can be retained. However, if mappings are changed in
ways other than pure additions, then a new identifier must be used. Any change in 
the validity of character sequences also requires a new identifier.

The attribute version (required) specifies the version of the data, a small integer
normally starting at one. Any time the data is modified, the value must be
increased.

The attribute description (optional) contains a string which describes the mapping
enough to distinguish it from other similar mappings. This string must be limited
to the Unicode range U+0020 - U+007E and should be in English. The string
normally contains the set of mappings, the script, language, or locale for which it
is intended, and optionally the variation. For instance, "Windows Japanese
JIS-1990", "EBCDIC Latin 1 with Euro", "PC Greek".

The attribute contact (optional) provides the person to contact in case errors are 
found in the data. This must be a URL.

The attribute registrationAuthority (optional) indicates the organization 
responsible for the encoding.



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

11 of 27 8/4/2009 5:35 PM

The attribute registrationName (optional) contains a string that provides the name 
and version of the mapping, as known to that authority.

The attribute copyright (optional) provides the copyright information. While this
can be provided in comments, use of an attribute allows copyright propagation
when converting to a binary form of the table. (Typically the right to use the
information is granted, but not the right to erase the copyright or imply that the
implementer created the information.)

The attribute bidiOrder (optional) specifies whether the character encoding is to be
interpreted in one of three orders: "RTL", "LTR", or "logical". Unicode text is always
stored and processed in logical order (basically keystroke order). Application of 
the Unicode Bidirectional Algorithm is required to map to a visual-order character
encoding; application of a reverse bidirectional algorithm is required to map back
to Unicode. The default value for this attribute is "logical". It is only relevant for
character encodings for the Arabic and Hebrew. For more information, see UAX #9:
The Bidirectional Algorithm [BIDI]. If mapping tables differ only in bidiOrder, this
should be reflected in the <name_from_source>, for example, "cp999",
"cp999_RTL", "cp999_LTR".

The attribute normalization (optional) specifies whether the result of conversion
into Unicode using this mapping will be automatically in Normalization Form C or
D. The possible values are "undetermined" (the default), "neither", "NFC", "NFD", or
"NFC_NFD". While this information can be derived from an analysis of the
assignment statements (see UAX #15: Unicode Normalization Forms [Normal]), 
providing the information in the header is a useful validity check, and saves
processing. Most mappings specifications will have the value "NFC". Character
encodings that contain neither composite characters nor combining marks (such
as 7-bit ASCII) will have the value "NFC_NFD". For example, ISO Arabic is "neither" 
(because of the order of multiple combining marks) and ISO Latin-1 is "NFC".

Note: Any charset that contains combining marks with different, non-zero values
for the Canonical_Combining_Class property cannot be marked either as "NFC" or 
as "NFD".

The attribute combiningOrder (optional) specifies whether combining marks are
stored after their base character (as in Unicode) or before their base character (as
in some legacy charsets).

3.2 History
 <history>
  <modified version="2" date="1999-09-25">
   Added Euro.
  </modified>
  <modified version="1" date="1997-01-01">
   Made out of whole cloth for illustration.
  </modified>
 </history>

The element history (optional) provides information about the changes to the file
and relations to other encodings.

<!ELEMENT history (modified+)>



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

12 of 27 8/4/2009 5:35 PM

The element modified provides information about the changes to the file,
coordinated with the version. The latest version should be first. The version
attribute of the element modified has the same format as that of the
characterMapping element. The date attribute value must be in ISO 8601 format
(yyyy-mm-dd).

<!ELEMENT modified (#PCDATA)>
<!ATTLIST modified
    version CDATA #REQUIRED
    date CDATA #REQUIRED
>

3.3 Validity Specification

As discussed above, it is important to be able to distinguish whether sequences
are valid (assigned or unassigned) or invalid (illegal). Valid sequences are specified 
by the validity element; all other sequences are invalid.

<!ELEMENT validity (state+)>

Here is an example of what this might look like, for the validity specification for
Microsoft's SJIS ("windows-932-2000"):
<validity>
  <state type="FIRST" next="VALID" s="00" e="80" />
  <state type="FIRST" next="VALID" s="A0" e="DF" />
  <state type="FIRST" next="VALID" s="FD" e="FF" />
  <state type="FIRST" next="LAST" s="81" e="9F" />
  <state type="FIRST" next="LAST" s="E0" e="FC" />
  <state type="LAST" next="VALID" s="40" e="7E" />
  <state type="LAST" next="VALID" s="80" e="FC" max="FFFF"/>
</validity>

The subelements are states. Their attributes are listed here.
<!ELEMENT state EMPTY>
<!ATTLIST state
    type CDATA #REQUIRED
    next CDATA #REQUIRED
    s CDATA #REQUIRED
    e CDATA #IMPLIED
    max CDATA #IMPLIED
>

The attribute type (required) specifies the type of the given bytes. The one
distinguished value for this attribute is FIRST. Other values can be assigned, as
long as they do not cause an error condition, as listed below.

The attribute s (required) specifies the start of the byte range.

The attribute e (optional) specifies the end of the byte range. A missing value is 
interpreted as being the same as the value for the s attribute (thus is a range with
one single value).

The attribute next (required) specifies the resulting type. There are three 
distinguished values. Other values (identifiers) can be freely chosen, as long as
they do not cause an error condition.

The distinguished values are VALID, INVALID, and UNASSIGNED. VALID indicates 
valid completion and is the default value for the state element. INVALID indicates 



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

13 of 27 8/4/2009 5:35 PM

that the sequence is invalid. UNASSIGNED indicates that the sequence is valid, but 
that none of the matching byte sequences are assigned.

The attribute max (optional) can only occur if the next value is VALID. Its value
must be greater or equal to the largest possible Unicode code point for any
matching byte sequence.

For a pure definition of the mapping tables, neither max nor UNASSIGNED or 
INVALID are necessary. max and UNASSIGNED could both be determined by
analyzing the assignment statements in the table. However, their inclusion allows
implementations to optimize their internal tables. INVALID can be used as explicit 
documentation of invalid byte sequences.

All values referring to code units are hexadecimal. Looking at the above table, the
first three lines show that the single bytes 00-80, A0-DF, FD-FF are legal. The
next two lines say that the bytes in the ranges 81-9F and E0-FC are legal, if they 
are followed by a byte of type="LAST". The next two lines show that the LAST byte
must be in 40-7E, 80-FC More detailed samples for a complex validity
specification are given in Section 5, Samples.

Note: The byte sequences in assignment statements are a subset of the valid byte
sequences. There can be 0, a few, or very many valid byte sequences that are not
listed in assignment elements. UNASSIGNED can be used to optimize internal 
tables.

The validity specification is interpreted by setting the current state to FIRST, and
using the following process:

Fetch a byte.
From the current state and that byte, find the next value.
If it is VALID, then the sequence is valid.
If it is INVALID or there is no state, then the sequence is invalid.
Otherwise set the current state to the next value.

The following is a sample of how this could be implemented in Java. It would be
very similar in C or C++ except that type would be an output parameter and not
an array, and the mask with 0xFF is unnecessary if byte is a typedef for unsigned 
char.



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

14 of 27 8/4/2009 5:35 PM

Sample Validity Checking

/**
* Checks byte stream for validity
* @return number of valid bytes, and sets a flag.
* @param type VALID, INVALID, PARTIAL indicates invalid sequence.
* PARTIAL occurs at the end of a buffer, and indicates that a new buffer needs to be load
* If there are no more bytes, it is equivalent to INVALID.
* @param length the number of bytes up to <b>and including</b> the final byte
* that caused the problem.
*/

public int check(byte[] source, int position, int limit, byte[] type) {
  int p = position;
  byte state = FIRST;

  try {
    while (p < limit) {
      state = stateMap[state][source[p++] & 0xFF]; // mask in Java
      if (state < FIRST) { // VALID and INVALID are negative values
        type[0] = state;
        return p-position;
      }
    }
  } catch (ArrayIndexOutOfBoundsException e) {} // fall through

  type[0] = (state < FIRST) ? state : PARTIAL;
  return p - position;
}

static final byte FIRST = 0;



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

15 of 27 8/4/2009 5:35 PM

3.3.1 Error Conditions

The following describes conditions under which a validity specification is invalid.

Two state elements conflict if they have the same type and their byte ranges
intersect.
If a type attribute has the value VALID, UNASSIGNED, or INVALID, then it 
conflicts.
If there is a type value  (other than FIRST) with no matching next value in 
another element, the element is incomplete.
If there is a next value (other than VALID or UNASSIGNED) with no matching
type value in another element, the element is incomplete.
If there are any conflicts or any incomplete elements, or if there is not at least
one valid byte sequence, the file is invalid.

3.3.2 Simple SI/SO-Stateful Encodings

EBCDIC-based multi-byte encodings use exactly two states and change between
them with Shift-In and Shift-Out (SI/SO) ISO control codes. There are a few
ASCII-based SI/SO encodings as well. (As it happens, the byte values for SI and SO
are the same in EBCDIC and ASCII.)

Such stateful encodings are announced and tracked with a single CCSID (IBM
encoding ID) and are listed in the ICU Unicode conversion table repository [Conv]
with one single mapping table that lists mappings for both states. The mappings
are implicitly (and at runtime) distinguished by the number of bytes per character:
1 in the initial state, and 2 in the other state. Note that the double-byte lead byte
ranges overlap a lot with the single-byte codes.

These encodings are expressed in the XML character mapping tables by defining
two validity specifications, one for the single-byte state, and one for the
double-byte state. A stateful_siso element is used instead of the normal validity 
element, and stateful_siso itself contains two validity elements.

<!ELEMENT stateful_siso (validity, validity)>

In the assignment elements below, the mappings for the two states need not be in
any particular order.

Example:
  <!-- EBCDIC Mixed SBCS/DBCS validity specification -->
  <stateful_siso>
    <!-- SBCS part -->
    <validity>
      <!-- all byte values are valid except for SI/SO, which are handled algorithmically 
      <state type="FIRST" next="VALID" s="00" e="0d" />
      <state type="FIRST" next="VALID" s="10" e="ff" />
    </validity>

    <!-- DBCS part -->
    <validity>
      <!-- DBCS space: 4040 -->
      <state type="FIRST" next="SPACE_LAST" s="40" />
      <state type="SPACE_LAST" next="VALID" s="40" />



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

16 of 27 8/4/2009 5:35 PM

      <!-- DBCS characters other than space: 4141..FEFE -->
      <state type="FIRST" next="LAST" s="41" e="fe" />
      <state type="LAST" next="VALID" s="41" e="fe" />
    </validity>
  </stateful_siso>

3.4 Assignments

The main part of the table provides the assignments of mappings between byte
sequences and Unicode characters. Here is an example:
 <assignments sub="FC FC" sub1="1A">

  <!--Roundtrip mappings-->
  <a b="A1" u="FF61" c="｡" />
  <a b="A2" u="FF62" c="｢" />
  <a b="A3" u="FF63" c="｣" />
  <a b="A4" u="E000" />
  <a b="A4" u="FF64" c="､" v="1995a"/>
  <a b="81 41" u="3001" c="、" />
  <a b="81 42" u="3002" c="。" />
  <a b="81 43" u="FF0C" c="，" />
  <a b="81 44" u="FF0E FF03" c="．" />

  <!--Fallbacks-->
  <fub u="00A1" b="21" ru="0021" c="¡" rc="!" />
  <fub u="00A2" b="81 91" ru="FFE0" c="¢" rc="￠" />
  <fub u="00A3" b="81 92" ru="FFE1" c="£" rc="￡" />
  <fub u="00A5" b="5C" ru="005C" c="¥" rc="\" />
  <fub u="00A6" b="7C" ru="007C" c="¦" rc="|" />
  <fub u="00A9" b="63" ru="0063" c="©" rc="c" />

  <!--Reverse Fallbacks-->
  <fbu u="00A6" b="EE FA" />
  <fbu u="2116" b="87 82" />

  <!--Unassigned code points using the sub1 code for substitution-->
  <sub1 u="FFA0" c="" />
  <sub1 u="FFA1" />

  <!--Ranges-->
  <range bFirst="90 30 81 30" bLast="E3 32 9A 35"
    uFirst="10000" uLast="10ffff"
    bMin="90 30 81 30" bMax="E3 39 FE 39"/>

 </assignments>

The element assignments contains a list of any number of a, fub, fbu, sub1, or 
range elements. It has two optional attributes: sub, which specifies the
replacement character used in the legacy character encoding (U+FFFD
REPLACEMENT CHARACTER is used in Unicode), and sub1, which is IBM-specific
and specifies a single-byte replacement character for MBCS encodings with a
multi-byte sub value.

<!ELEMENT assignments (a*, fub*, fbu*, sub1*, range*)>
<!ATTLIST assignments
sub NMTOKENS "1A"
sub1 NMTOKEN #IMPLIED
>

The value of the sub attribute is a sequence of bytes, as described under b below.
The default is the ASCII control value SUB = "1A".

The value of the sub1 attribute is one byte; if it is missing, then the encoding uses



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

17 of 27 8/4/2009 5:35 PM

only one replacement character (the character specified with sub) for all code
points. In addition, if sub1 is specified, then conversion routines must use two
Unicode replacement characters. For details see Section 1.1.2, Dual Substitution 
Handling.

The element a specifies a mapping from byte sequences to Unicode and back. It
has the following attributes:

<!ELEMENT a EMPTY>
<!ATTLIST a
    b NMTOKENS #REQUIRED
    u NMTOKENS #REQUIRED
    c CDATA #IMPLIED
    v CDATA #IMPLIED
>

The attribute b (required) contains a sequence of bytes. Each byte always has
two unsigned hex digits. Multiple values are separated by spaces.

The attribute u (required) contains a sequence of Unicode code points. Each
code point has one or more unsigned hex digits. Multiple values must be
separated by spaces. Where possible, this should be in Normalization Form C.

The attribute v (optional) specifies the version. It has the same format as the 
<version> field in the id in Section 3.1, Header. There is no default value.

The v version matches the version part of a mapping table id (it matches the
version part of the current table id, or of a previous-version table id, see
Section 3.1, Header) and is different from the version attribute in the
mapping table history (see Section 3.2, History) which is incremented even for
editorial changes.

If someone requests a mapping table of a certain version, such as
"source-myname-1999b", then any table with a later version can be used,
such as "source-myname-2000". All the assignment elements in the later file
that have a version that is lexically less than or equal to the requested version
are used.

If there are any such assignment elements that would conflict except for
version, then the lexically larger version is chosen.

The attribute c (optional) provides the actual character(s) expressed in u. This
information is redundant, but provides readability.

The element fub specifies a fallback mapping from Unicode to bytes, to be used if
an API requests a "best effort." It has the same attributes as a, plus two additional 
optional attributes. These are provided for readability, and are not required.

<!ELEMENT fub EMPTY>
<!ATTLIST fub
    b NMTOKENS #REQUIRED
    u NMTOKENS #REQUIRED
    c CDATA #IMPLIED
    ru CDATA #IMPLIED
    rc CDATA #IMPLIED
    v CDATA #IMPLIED
>



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

18 of 27 8/4/2009 5:35 PM

The attribute ru (optional) indicates the roundtrip mapping: The Unicode 
code points resulting from mapping the fallback byte sequence back to
Unicode.

The attribute rc (optional) indicates the actual character value of the
roundtrip mapping.

Note: The attributes c, ru, and rc could have been XML comments, however as
attributes, they display better by typical browsers. Their contents are not checked
for validity, and they are not to be used in generating internal mapping tables.

The element fbu specifies a fallback mapping from bytes to Unicode, to be used if
an API requests a "best effort." Normally this element is neither required nor
desired. Byte sequences with no Unicode equivalent should be assigned to private
use characters (E000..F8FF, E0000..EFFFD, 100000..10FFFD). See Section 1.2, 
Completeness. This element has the same attributes as a, except that it excludes 
the attribute c.

<!ELEMENT fbu EMPTY>
<!ATTLIST fbu
    b NMTOKENS #REQUIRED
    u NMTOKENS #REQUIRED
    v CDATA #IMPLIED
>

The element sub1 specifies a Unicode code point that is unassigned (unmappable
to the encoding) and maps to the "narrow" sub1 replacement character instead of
the (default) "wide" sub replacement character. This element has only the two
attributes u (required) and c (optional).

<!ELEMENT sub1 EMPTY>
<!ATTLIST sub1
    u NMTOKENS #REQUIRED
    c CDATA #IMPLIED
    v CDATA #IMPLIED
>

Summary of Attributes for Assignment Elements
Attribute Elements to 

which it 
applies

Required/Optional Value

u a, fub, fbu, 
sub1

Required Sequence of Unicode code 
points

c a, fub, sub1 Optional Character(s) expressed by u
b a, fub, fbu Required Sequence of bytes
v a, fub, fbu, 

sub1
Optional Version part of a mapping table

id
ru fub Optional Sequence of Unicode code 

points; u result of another a or
fbu mapping of the b bytes

rc fub Optional Character(s) expressed by ru

The element range specifies that a range of byte sequences and Unicode values
map together. It is simply a way to abbreviate a list of a elements. The attributes



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

19 of 27 8/4/2009 5:35 PM

are bFirst, bLast, uFirst, uLast, bMin, bMax and v. The range of Unicode code 
points varies continuously from uFirst to uLast. For enumerating the byte
sequences, the values are incremented from bFirst to bLast in lexical order. That
is, the last byte is incremented. If the byte value exceeds the corresponding byte in
bMax, it is reset to the corresponding byte in bMin, and the previous byte in the 
sequence is incremented. This process is repeated for each of the bytes from
bFirst to bLast. The v attribute is interpreted the same as it is in the a element.

<!ELEMENT range EMPTY>
<!ATTLIST range
    bFirst NMTOKENS #REQUIRED
    bLast NMTOKENS #REQUIRED
    uFirst NMTOKENS #REQUIRED
    uLast NMTOKENS #REQUIRED
    bMin NMTOKENS #REQUIRED
    bMax NMTOKENS #REQUIRED
    v CDATA #IMPLIED
>

3.4.1 Mapping Multiple Characters

A mapping may specify multiple characters on the Unicode side in the u attribute, 
the code page side in the b attribute, or both. Such mappings are used when
Unicode represents a code page character with a character sequence, for example
U+304B U+309A for a Ka with a semi-voiced mark in JIS X 0213.

Each one of the multiple Unicode code points must be represented by a
hexadecimal number between 0000 and 10FFFF, for example "304B 309A".

A multi-character byte sequence must consist of consecutive complete
single-character byte sequences that are each valid according to the validity
specification. For example, with the windows-932-2000 validity specification, the
byte sequence "84 44 45 E2 F3" is a valid three-character byte sequence, but "84
44 45 E2" is not valid because it contains one incomplete byte sequence "E2" after
two valid ones ("84 44" and "45").

3.4.2 Error Conditions

All byte sequences that are specified in assignment elements must be valid
according to the validity specification. Otherwise the file is invalid. Each byte 
sequence must consist of one or more complete single-character byte sequences
that are each valid according to the validity specification. Otherwise the file is
invalid. If an assignment element's byte sequence is UNASSIGNED in the validity
specification, the file is invalid.

All Unicode code point sequences must contain one or more Unicode code points,
each represented by a hexadecimal number between 0000 and 10FFFF. Otherwise 
the file is invalid. If a code point exceeds the max value in the validity specification
associated with the byte sequence in that assignment statement, it is invalid. If
normalization is specified in the header to be "NFC", "NFD", or "NFC_NFD", then 
the code point sequence must be valid in the respective normalization form.

This specification does not require that Unicode code point sequences are
well-formed UTF-32 code unit sequences. Therefore, the use of CharMapML in and
of itself does not guarantee that the result of a mapping is in a Unicode Encoding



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

20 of 27 8/4/2009 5:35 PM

Form.

Sequences cannot map assigned legacy characters to Unicode code points that are 
unassigned in the latest version of the Unicode Standard. They can map 
unassigned legacy code positions to unassigned Unicode code points, where those
unassigned legacy code positions are defined as corresponding to Unicode code 
points, such as is done in GB 18030. If there are valid characters in the legacy
encoding that are not yet in Unicode, they must be mapped to private use
characters if they are mapped: (E000..F8FF, E0000..EFFFD, 100000..10FFFD).

A range is treated as if it were expanded to a list of a elements in terms of
assessing the validity of the mapping table. In addition, the element is invalid if:

bFirst, bLast, bMin, bMax do not all have the same number of bytes.
Each byte in bFirst, bLast is not between the corresponding bytes in bMin, 
bMax.
bLast does not match the final byte sequence reached in the process of
generating the a elements.

The sub1 attribute of assignments must be exactly one byte if specified. Otherwise
the file is invalid.

A sub1 element must not be used without specifying the sub1 attribute of
assignments. Otherwise the file is invalid.

For the purpose of validity (and selecting versions) an a element is treated as if it
expanded into an fub element and an fbu element.

An fub or sub1 element conflicts with any other fub or sub1 element that has the 
same Unicode code point sequence and the same version.

An fbu element conflicts with any other fbu element that has the same byte
sequence and the same version.

In the case of conflicts, the file is invalid.

3.5 ISO 2022

Country- or vendor-specific ISO 2022 [ISO2022] encodings are used frequently on 
the Internet. They each use a subset of the ISO 2022 framework and allow only few
embedded encodings. The "very stateful" nature of an ISO 2022 encoding makes it
infeasible to describe it fully with one XML file. Instead, the XML character
mapping table format provides for a kind of table of contents for an ISO 2022
encoding as an alternative to the usual validity specification(s) and assignments. It
allows the identification of the invocation sequences and state shifts that are
associated with each mapping table (identified by its canonical name). It does not
fully specify all the elements and semantics of the particular ISO 2022 subset.

ISO 2022 Terminology:

An escape sequence announces an embedded encoding and immediately
changes to that encoding.



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

21 of 27 8/4/2009 5:35 PM

A designator sequence announces an embedded encoding but does not cause
an immediate change to that encoding. Instead, such a change is later
invoked with a permanent Shift-In or Shift-Out (SI/SO) control code, or with a
one-time Single-Shift 2 or 3 (SS2/SS3).

In the XML format, designator sequences are listed under the codes that shift to
them. The details of how designator sequences interact with shift codes are not
specified in the XML format. The initial state is generally US-ASCII. Otherwise, it
must be specified with a default2022 element.

<!ELEMENT iso2022 (default2022?, (escape|si|so|ss2|ss3)+)>
<!ELEMENT default2022 EMPTY>
<!ATTLIST default2022
    name NMTOKEN #REQUIRED
>

Example:

This example shows all the features of ISO-2022 specifications; it is not a
real-world encoding.
  <!--
    ISO 2022 encoding:
    Specifying names of mapping tables of embedded encodings,
    and escape and designator sequences
  -->
  <iso2022>
    <!-- Default single-byte encoding (US-ASCII is implied) -->
    <default2022 name="jis-x_201"/>

    <!-- Escape sequences switch directly to the specified encoding -->
    <escape sequence="1B 28 4A" name="jis-roman"/>

    <!-- Designator sequences specify which encoding to switch to when the shift code occ
    <so>
      <designator sequence="1B 24 29 41" name="gb-2312_80-1980"/>
      <designator sequence="1B 24 29 47" name="cns-11643_2-1992"/>
      <designator sequence="1B 24 29 45" name="iso-ir_165-1992"/>
    </so>

    <ss2>
      <designator sequence="1B 24 2A 48" name="cns-11643_2-1992"/>
    </ss2>

    <ss3>
      <designator sequence="1B 24 2B 49" name="cns-11643_3-1992"/>
      <designator sequence="1B 24 2B 4a" name="cns-11643_4-1992"/>
    </ss3>
  </iso2022>

4 Alias Table Format
A mapping alias table is a separate XML file that provides information associated
with multiple character mapping tables. It provides display names suitable for
display to end-users, aliases, and best-fit mappings for each character mapping
table.

characterMappingAliases (required) is the root. It contains any number of mapping
elements.

<!ELEMENT characterMappingAliases (mapping*)>



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

22 of 27 8/4/2009 5:35 PM

mapping (optional) marks an element that contains any number of display, alias, 
and bestFit elements. It has one required attribute, id. This provides the mapping
table id in the canonical format, for example, "us-ascii-1968".

<!ELEMENT mapping (display*, alias*, bestFit*)>
<!ATTLIST mapping
    id CDATA #REQUIRED
>

display (optional) provides names in different languages, suitable for user menus. It
has two required attributes, the language (xml:lang) and the name in that language.

<!ELEMENT display EMPTY>
<!ATTLIST display
    name CDATA #REQUIRED
    xml:lang CDATA #REQUIRED
>

<display name="Western Europe (Latin-1, 8859-1)" xml:lang="en"/>

alias
(optional) provides common aliases for the canonical names. It has one required
attribute, which is name. This provides the alias name, which should be spelled as
specified by a standard or publication, if applicable.

<!ELEMENT alias EMPTY>
<!ATTLIST alias
    name CDATA #REQUIRED
    preferredBy CDATA #IMPLIED
>

Charset names and aliases should be matched according to Section 1.4, Charset 
Alias Matching. The preferredBy attribute is optional. It is a space-delimited list of
environments where that particular alias is used, for example, preferredBy="IANA
IBM". If two different aliases for the same mapping have the same environment in
their preferredBy attributes, then the first listed one is the preferred output alias
for that environment. If an alias has two conflicting preferredBy attributes (to get
the preferred output aliases correct), it is expressed as two different alias
elements.
<alias name="iso-8859-1" preferredBy="MIME"/>

Because aliases reflect current practice, the same alias may be applied to different
mappings.

bestFit (optional) indicates a best-fit mapping (B) to use if the specified mapping
(A) is not installed. It has three required attributes:

<!ELEMENT bestFit EMPTY>
<!ATTLIST bestFit 
    id CDATA #REQUIRED
    matchingA CDATA #REQUIRED
    matchingB CDATA #REQUIRED
>

id is the canonical id of the bestFit mapping (B)
matchingA is the percentage of identical round-trip mappings out of A [that
is, count(A∩B)/count(A)]
matchingB is the percentage of identical round-trip mappings out of B [that
is, count(A∩B)/count(B)].



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

23 of 27 8/4/2009 5:35 PM

For example, consider the above situation. Mapping A has 876 roundtrip
mappings. Mapping B has 5,432 roundtrip mappings. Of these, 765 are identical.
Then the resulting values would be:
<bestFit id="..." matchingA="87.3%" matchingB="14.08%"/>

Each percentage must be specified to sufficient accuracy such that when multiplied
and rounded, the result precisely represents the number of common elements
count(A∩B). Thus "14%" and "14.1%" are both insufficiently accurate (for example,
5432 x 0.141 = 765.912, which rounds to the incorrect value 766), while "14.08%"
is sufficiently accurate (5432 x 0.1408 = 764.8256, which rounds to the correct
value 765).

Example

Here is an example of a mapping element.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE characterMappingAliases
  SYSTEM "http://www.unicode.org/reports/tr22/CharacterMappingAliases.dtd">

<characterMappingAliases>
 <mapping id="us-ascii-1968">
  <display xml:lang="en" name="US (ASCII)"/>
  <alias name="us-ascii" preferredBy="MIME"/>
  <alias name="ansi_x3.4-1968"/>
  <alias name="iso-ir-6"/>
  <alias name="ansi_x3.4-1"/>
  <alias name="iso_646.irv:1991"/>
  <alias name="ascii"/>
  <alias name="iso646-us"/>
  <alias name="us"/>
  <alias name="ibm367"/>
  <alias name="cp367"/>
  <alias name="csASCII"/>
  <bestFit id="..." matchingA="87.3%" matchingB="14.08%"/>
 </mapping>

</characterMappingAliases>

5 Samples
The following provide samples that illustrate features of the format.



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

24 of 27 8/4/2009 5:35 PM

5.1 Full Sample

The samples used in this document, plus DTDs are found in Data Files. A sample 
of mapping tables constructed programmatically is provided in the ICU Conversion
Table Repository [Conv] It can be viewed directly with Internet Explorer, which will
interpret the XML.

5.2 UTF-8 Sample

While a mapping file is never required for UTF-8 in practice because it is
algorithmically derived, it is instructive to see the use of the validity element in
examples.

5.2.1 Partial Validity Checks

Here is a simple version of the UTF-8 validity specification, with the shortest-form
bounds checking, surrogates, and exact limit bounds checking omitted. This
specification only checks the bounds for the first byte, and that there are the
appropriate number (0, 1, 2, or 3) of following bytes in the right ranges. The single
byte form does not need to be explicitly set; it is simply any single byte that
neither is illegal nor requires additional bytes.
<validity>
 <!--Validity specification for UTF-8, partial boundary checks-->
 <state type="FIRST" next="VALID" s="00" e = "7F"/>

 <!-- 2 byte form -->
 <state type="FIRST" s="C0" e="DF" next="final" />
 <state type="final" s="80" e="BF" />

 <!-- 3 byte form -->
 <state type="FIRST" s="E0" e="EF" next="prefinal" />
 <state type="prefinal" s="80" e="BF" next="final" />

 <!-- 4 byte form -->
 <state type="FIRST" s="F0" e="F4" next="preprefinal" />
 <state type="preprefinal" s="80" e="BF" next="prefinal" />
</validity> 

5.2.2 Full Validity Checks

The following provides the full validity specification for UTF-8.
<validity>
 <!--Validity specification for UTF-8, full boundary checks-->
 <state type="FIRST" next="VALID" s="00" e = "7F"/>

 <!-- Normal Final Bytes -->
 <state type="final" s="80" e="BF" next="VALID"/>
 <state type="prefinal"  s="80" e="BF" next="final" />
 <state type="preprefinal" s="80" e="BF" next="prefinal" />

 <!-- 2 byte form, Normal -->
 <state type="FIRST" s="C2" e="DF" next="final" />

 <!-- 3 byte form; Low range is special-->
 <state type="FIRST" s="E0"        next="prefinalLow" />
 <state type="prefinalLow" s="A0" e="BF" next="final" />

 <!-- 3 byte form, Normal -->
 <state type="FIRST" s="E1" e="EC" next="prefinal"  />



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

25 of 27 8/4/2009 5:35 PM

 <state type="FIRST" s="EE" e="EF" next="prefinal"  />

 <!-- 3 byte form, Omitting Surrogates -->
 <state type="FIRST" s="ED" next="prefinalBelowSurrogate"  />
 <state type="prefinalBelowSurrogate"  s="80" e="9F" next="final" /> 

 <!-- 4 byte form, Low range is special -->
 <state type="FIRST" s="F0"        next="preprefinalLow" />
 <state type="preprefinalLow" s="90" e="BF" next="prefinal"/>

 <!-- 4 byte form, Normal -->
 <state type="FIRST" s="F1" e="F3" next="preprefinal"   />

 <!-- 4 byte form, High range is special-->
 <state type="FIRST" s="F4"        next="preprefinalHigh" />
 <state type="preprefinalHigh" s="80" e="8F" next="prefinal"/>
</validity>

Data Files
CharacterMapping.dtd DTD file for the Character Mapping Data format:
CharacterMapping-5.dtd latest version, and the version associated with this 

document
CharacterMappingAliases.dtd DTD file for the Character Mapping Alias format:
CharacterMappingAliases-3.dtdlatest version, and the version associated with this 

document
SampleMappings.xml Sample mapping file
SampleAliases.xml Sample alias file
SampleAliases2.xml Sample alias file #2

References
[BIDI]

Unicode Standard Annex #9: The Bidirectional Algorithm
http://www.unicode.org/reports/tr9/

[Conv] ICU Conversion Table Repository
http://icu.sourceforge.net/charts/charset/

[FAQ] Unicode Frequently Asked Questions
http://www.unicode.org/faq/
For answers to common questions on technical issues.

[Feedback] Reporting Errors and Requesting Information Online
http://www.unicode.org/reporting.html

[Glossary] Unicode Glossary
http://www.unicode.org/glossary/
For explanations of terminology used in this and other documents.

[IANA]
IANA character set registry
http://www.iana.org/assignments/character-sets

[ISO2022] International Organization for Standardization. Information processing —
ISO 7-bit and 8-bit coded character sets — Code Extension techniques.
(ISO/IEC 2022:1994). For availability see http://www.iso.org/
Identical to ECMA-35 Character Code Structure and Extension Techniques.
For availability see 



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

26 of 27 8/4/2009 5:35 PM

http://www.ecma-international.org/publications/standards/Ecma-035.htm
[Normal]

Unicode Standard Annex #15, Unicode Normalization Forms
http://www.unicode.org/reports/tr15/

[NormCharts]Normalization Charts
http://www.unicode.org/charts/normalization/

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/
For information on the status and development process for technical
reports, and for a list of technical reports.

[Unicode] The Unicode Standard
For the latest version see: http://www.unicode.org/versions/latest/.
For the last major version see: The Unicode Consortium. The Unicode
Standard, Version 4.0. (Boston, MA, Addison-Wesley, 2003. 
0-321-18578-1) or online as 
http://www.unicode.org/versions/Unicode4.0.0/

[Versions] Versions of the Unicode Standard
http://www.unicode.org/versions/
For details on the precise contents of each version of the Unicode Standard,
and how to cite them.

Modification History
The following summarizes modifications from the previous versions of this
document.

6
Changed the next attribute of the state element from #REQUIRED to 
default to "VALID".
Added "Unicode" to the title.
Fixed reported typos and omissions.

5
Promoted to Unicode Technical Standard; inserted Conformance section
(new section 2).
Added explicit text about multi-character mappings.
Many editorial changes
Fixed typo in version number

4 Revision 4 being a proposed update, only changes between revision 5 and 3 are
noted here.

3
Added new sections

1.1.2 Dual Substitution Handling
1.4 Charset Alias Matching
2.3.1 Simple SI/SO- Stateful Encodings
2.5 ISO 2022

Added some references to the new section.



UTS #22: CharMapML http://www.unicode.org/reports/tr22/tr22-6.html

27 of 27 8/4/2009 5:35 PM

Updated DTD with the new elements and attributes.
DTD files now versioned (although these and other changes will
always be backwards-compatible.) The previous DTD files are on
X-2.2.dtd.

Minor editing

2.2
Removed imports.
Added discussion of bestFit mapping tables.
Changed fallback aliases to bestFit. Changed ranks to percentages.
Added diagram and discussion of PU mappings.
Added UNASSIGNED, max to the validity spec.
Added range.
Added more error conditions.
Added note that we anticipate extending this for complex mappings.
Deleted combiningOrder, since it may not be necessary or conflict with
future mechanisms for complex mappings.
Moved Alias table to separate section.
Added DTDs and samples
Minor editing.

2.1
The aliases and display names have been moved into a separate,
centralized table. A sample is also provided.
The syntax of the fallback assignments and validity specification have
been simplified, and some of the identifiers changed for clarity.
Pointers are provided to sample tables.
Minor editing

Acknowledgments
Thanks to Kent Karlsson, Ken Borgendale, Bertrand Damiba, Mark Leisher, Tony
Graham, Markus Scherer, Peter Constable, Martin Duerst, Martin Hoskin, Ken
Whistler and Frank Ellermann for their feedback on versions of this document.
Thanks especially to Markus Scherer for contributing most of the text for version
3.

Copyright © 1999-2009 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes
no expressed or implied warranty of any kind, and assumes no liability for errors or
omissions. No liability is assumed for incidental and consequential damages in connection
with or arising out of the use of the information or programs contained or accompanying this
technical report.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some
jurisdictions.




