
http://www.unicode.org/reports/tr46/tr46-2.html

1 of 23 10/28/2009 1:10 PM

 Technical Reports

Draft Unicode Technical Standard #46

UNICODE IDNA COMPATIBLE PREPROCESSSING
Version 2 (draft 2)
Authors Mark Davis (markdavis@google.com), Michel Suignard
Date 2009-10-14
This Version http://www.unicode.org/reports/tr46/tr46-2.html
Previous
Version

http://www.unicode.org/reports/tr46/tr46-1.html

Latest Version http://www.unicode.org/reports/tr46/
Revision 2
Summary

This document provides a specification for processing that provides for
compatibility between older and newer versions of internationalized domain names
(IDN) for lookup in client software. It allows applications such as browsers and
emailers to be able to handle both the original version of internationalized domain
names(IDNA2003) and the newer version (IDNA2008) compatibly, avoiding
possible interoperability and security problems.

[Review Note: At this point, IDNA2008 is still in development, so this draft may
change as IDNA2008 changes. The following is a substantial reorganization of the
earlier proposed draft of this UTS; the changes from that version are not tracked
with yellow highlighting. The text is rough as yet (not yet wordsmithed or
copyedited).]

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this
document as other than a work in progress.

A Unicode Technical Standard (UTS) is an independent specification.
Conformance to the Unicode Standard does not imply conformance to any
UTS.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this document is
found in the References. For the latest version of the Unicode Standard see
[Unicode]. For a list of current Unicode Technical Reports see [Reports]. For more
information about versions of the Unicode Standard, see [Versions].

rick@unicode.org
Text Box
L2/09-386

http://www.unicode.org/reports/tr46/tr46-2.html

2 of 23 10/28/2009 1:10 PM

Contents
1 Introduction

1.1 IDNA2003
1.2 IDNA2008
1.3 Security Considerations
1.4 Compatibility Preprocessing
1.5 Display of Internationalized Domain Names

2 Conformance
3 Preprocessing
4 IDNA Mapping Tables

4.1 Mapping Stability
5 Validity Criteria

5.1 Strict_Allowed
5.2 Lenient_Allowed

6 Data Files
7 Testing
8 Background

8.1 Handling Deviations
8.2 Handling Periods

9 FAQ
Acknowledgements
References
Modifications

1. Introduction
One of the great strengths of domain names is universality. With http://Apple.com,
you can get to Apple's website no matter where you are in the world, and no
matter which browser you are using. With markdavis@google.com, you can send an
email to the author of this specification, no matter which country you are in, and
no matter which emailer you are using.

Initially, domain names were restricted to only handling ASCII characters. This is
was a significant burden on people using other characters. Suppose, for example,
that the domain name system had been invented by Greeks, and one could only
use Greek characters in URLs. Rather than apple.com, one would have to write
something like αππλε.κομ. An English speaker would not only have to be
acquainted with Greek characters, but would also have to pick those Greek letters
that would correspond to the desired English letters. One would have to guess at
the spelling of particular words, because there are not exact matches between
scripts.

A large majority of the world’s population faced this situation until recently,
because their languages use non-ASCII characters.

1.1 IDNA2003

A system is now in place for internationalized domain names (IDN). This system is
called Internationalizing Domain Names for Applications, or IDNA for short. It was

http://www.unicode.org/reports/tr46/tr46-2.html

3 of 23 10/28/2009 1:10 PM

introduced in 2003, in a series of RFCs collectively known as IDNA2003
[IDNA2003]. This system allows non-ASCII Unicode characters, which includes not
only the characters needed for Latin-script languages other than English (such as
Å, Ħ, or Þ), but also different scripts, such as Greek, Cyrillic, Tamil, or Korean.

The IDNA mechanism for allowing non-ASCII Unicode characters in domain names
involves the following steps:

Transforming (mapping) a Unicode string to remove case and other variant
differences.

1.

Checking the resulting mapped string for validity, according to certain rules.2.
Transforming the Unicode characters into a DNS-compatible ASCII string
using a specialized encoding called Punycode.

3.

For example, you can now type in http://Bücher.de into the address bar of any
modern browser, and you will go to a corresponding site, even though the "ü" is
not an ASCII character. This works because the IDN resolves to the Punycode
string which is actually stored by the DNS for that site. Similarly, when a browser
interprets a web page containing a link such as , the
appropriate site is reached. (In this document, when phrasing like "a browser
interprets" is used, it refers both to domain names parsed out of URLs entered in
an address bar and to those contained in links internal to HTML text.)

In this case, for the IDN Bücher.de, the Punycode value actually used for the domain
names on the wire is http://xn--bcher-kva.de . The Punycode version is also typically
transformed back into Unicode form for display. The resulting display string will
be a string which has already been mapped according to the IDNA2003 rules. So in
this example we end up with a display string that has been casefolded to
lowercase:

http://Bücher.de → http://xn--bcher-kva.de → http://bücher.de

1.2 IDNA2008

There is a new version of IDNA under development. This version also consists of a
collection of RFCs and is usually called IDNA2008 [IDNA2008]. The "2008" in that
term does not reflect the actual date of approval, which is still pending and
expected to occur in late 2009 or early 2010.

For the most common cases, the processing in IDNA2003 and IDNA2008 are
identical. Both map a Unicode for a domain name in a URL (like http://öbb.at) to the
Punycode version (like http://xn--bb-eka.at). However, IDNA2008 does not
maintain strict backwards compatibility with IDNA2003.

The main differences between the two are:

Additions. Some IDNs are invalid in IDNA2003, but valid in IDNA2008.
Subtractions. Some IDNs are valid in IDNA2003, but invalid in IDNA2008.
Deviations. Some IDNs are valid in both, but resolve to different destinations.
Unpredictable Changes. Some IDNs do not have predictable behavior in
applications implementing IDNA2008, due to the option of local mappings,

http://www.unicode.org/reports/tr46/tr46-2.html

4 of 23 10/28/2009 1:10 PM

as explained below. They may fail, or may have any of the above
characteristics.

1.3 Security Considerations

The cases of deviations and unpredictable changes introduced by the differences
between IDNA2008 and IDNA2003 may cause both interoperability and security
problems. They affect extremely common characters: all uppercase characters, all
variant-width characters (commonly used in Japan, China, and Korea), and certain
other characters like the German eszett (U+00DF ß LATIN SMALL LETTER SHARP S)
and Greek final sigma (U+03C2 ς GREEK SMALL LETTER FINAL SIGMA).

IDNA2003 requires a mapping phase, which maps http://ÖBB.at to http://öbb.at (for
example). Mapping typically involves mapping uppercase characters to their
lowercase pairs, but it also involves other types of mappings between equivalent
characters, such as mapping half-width katakana characters to normal (full-width)
katakana characters in Japanese. The mapping phase in IDNA2003 was included to
match the insensitivity of ASCII domain names. Users are accustomed to having
both http://CNN.com and http://cnn.com work identically. They would not expect the
addition of an accent to make a difference: they expect that if http://Bruder.com is
the same as http://bruder.com, then of course http://Brüder.com is the same as
http://brüder.com. There are variants similar to case in this respect used in other
scripts. The IDNA2003 mapping is based on data specified by Unicode: what later
became the Unicode property [NFKC_CaseFold].

IDNA2008 does not require a mapping phase, but does permit one (called "Local
Mapping" or "Custom Mapping") with no limitation on what the mapping can do to
disallowed characters (including even ASCII uppercase characters, if they occur in
an IDN). For more information on the permitted mappings, see Section 4.3 and
Section 5.3 in the Protocol document of [IDNA2008]. An implementation of
IDNA2008 which uses custom mapping can, in principle, allow any mappings, with
unpredictable results regarding the exact interpretation of the processed IDNs. For
example, the following mappings show cases where IDNs are mapped to what
would be considered completely different domain names by IDNA2003 rules:

Map http://ÖBB.at to http://øbb.at1.
Map http://ÖBB.at to http://oebb.at2.
Map http://TÜRKIYE.com to http://türkiye.com3.
Map http://TÜRKIYE.com to http://türkıye.com (note the dotless i)—and go to a
different location than #3.

4.

IDNA2008 does define a particular mapping, but it is not normative, and does not
attempt to be compatible with IDNA2003. For more information, see the Mapping
document in [IDNA2008].

1.3.1 Deviations

There are a few situations where the strict application of IDNA2008 will always
result in the resolution of IDNs to different IP addresses than in IDNA2003, unless
the registry or registrant takes special action. This affects a relatively small
number of characters, but some that are common in particular languages and will

http://www.unicode.org/reports/tr46/tr46-2.html

5 of 23 10/28/2009 1:10 PM

affect a significant number of strings in those languages. (For more information on
why IDNA2008 does this, see the FAQ.) These are referred to as "Deviations"; the
significant ones are listed below.

Code Character IDNA2008 IDNA2003 Example:
IDNA2008

Example:
IDNA2003

U+00DF ß ß ss http://faß.de http://fass.de
U+03C2 ς ς σ http://βόλος.com http://βόλοσ.com
U+200D ZWJ ZWJ delete [TBD] [TBD]
U+200C ZWNJ ZWNJ deleted [TBD] [TBD]

These differences allow for security exploits. Consider
http://www.sparkasse-gießen.de , which is for the "Gießen Savings and Loan".

Alice's browser supports IDNA2003. Under those rules,
http://www.sparkasse-gießen.de is mapped to http://www.sparkasse-giessen.de ,
which leads to a site with the IP address oo.kk.aa.yy.

1.

She visits a friend Bob, and checks her bank statement on his browser. His
browser supports IDNA2008. Under those rules,
http://www.sparkasse-gießen.de is also valid, but converts to a different
Punycode domain name in http://www.xn--sparkasse-gieen-2ib.de . Unless the
"DE" registry bundles, this can lead to a different site with the IP address
ee.vv.ii.ll, a spoof site.

2.

Alice ends up at the phishing site, supplies her bank password, and is
robbed. While DENIC might have a policy about bundling all of the variants of
ß together (so that they all have the same owner) it is not required of
registries. It is quite unlikely that all registries will have or enforce such a
bundling policy in all such cases.

There are two Deviations of particular concern. IDNA2008 allows ZWJ and ZWNJ
characters in labels—these were removed by the IDNA2003 mapping. In addition
to mapping differently, they represent a special security concern because they are
normally invisible. That is, the sequence "a<ZWJ>b" looks just like "ab". IDNA2008
does provide a special category for characters like this (called CONTEXTJ), and only
permits them in certain contexts (certain sequences of Arabic or Indic characters,
for example). However, lookup applications are not required to check for these
contexts, so overall security is dependent on registries having correct
implementations. Moreover, those context restrictions do not catch all cases where
distinct domain names have visually confusable appearances.

1.4 Compatible Preprocessing

To allow client-side applications to work around the incompatibilities between
IDNA2003 and IDNA2008 for lookup, this document provides a standardized
preprocessing that allows conformant implementations to minimize the security
and interoperability problems caused by the differences between IDNA2003 and
IDNA2008. This Compatible Preprocessing extends IDNA2003 to Unicode 5.2 and
beyond, but adds bidi validity constraints from IDNA2008. It uses Unicode

http://www.unicode.org/reports/tr46/tr46-2.html

6 of 23 10/28/2009 1:10 PM

[NFKC_CaseFold] (the standard Unicode property) for mapping as described in this
document. Thus it will allow http://ÖBB.at (mapping it to http://öbb.at). It also
allows IDNs like http://√.com (which has an associated web page), although
implementations may restrict the characters that they support based on security
considerations, or flag the usage of such characters in a UI. For use with
IDNA2008, the result of the Compatible Preprocessing is converted to Punycode
(label-by-label). The result can then be supplied to IDNA2008 lookup, which does
not require further checking of Punycode labels.

The Compatible Preprocessing produces results similar to the tactic of "try
IDNA2008 then try IDNA2003". However, it has a much more cohesive approach,
allowing browsers and other clients such as search engines to have a single
processing step, without having to maintain two different implementations and
multiple tables. It also provides a stable definition with predictable results. For a
demonstration of differences between IDNA2003, IDNA2008, and the Compatible
Preprocessing, see the IDNA demo.

The main goal of this document is to provide a compability mechanism for dealing
with IDNA domain name lookup, not with IDNA registration. Note that neither the
Compatible Preprocessing nor IDNA2008 address security problems associated
with confusables (the so-called "paypal.com" problem). It is strongly recommended
that UTR#36: Unicode Security Considerations [UTR36] be consulted for
information on dealing with confusables.

[Review Note: The technical committee decided to drop an alternative present in
an earlier draft, called Hybrid, which restricted valid characters to those in
IDNA2008. The consensus was that a single Compatible version was sufficient.]

1.5 Display of Internationalized Domain Names

For IDNA2003 applications, it has been customary to display the preprocessed
string to the user. This is helpful for security, since it reduces the opportunity for
visual confusability. Thus, for example, http://googIe.com (with a capital I in place
of the L) is revealed as http://googie.com. However, for the case of the Deviations,
the distinction between the original and preprocessed form is especially important.
Thus in displaying domain names, it is strongly recommended that a Display
Preprocessing be applied which is the same as the Compatible Preprocessing,
except that it excludes the deviations: ß, ς, and joiners.

2 Conformance
The requirements for conformance on implementations of the Unicode IDNA
Compatible Preprocessing are as follows:

C1 Given a version of Unicode and a Unicode String, a conformant
implementation shall replicate the results given by applying the algorithm
specified by Section 3, Preprocessing for the Compatible Proprocessing and
the Display Preprocessing.

These specifications are logical ones, designed to be straightforward to describe.
An actual implementation is free to use different methods as long the result is the

http://www.unicode.org/reports/tr46/tr46-2.html

7 of 23 10/28/2009 1:10 PM

same as the result generated by the logical algorithm.

3. Preprocessing
The input to the preprocessing is a prospective domain_name string in Unicode,
which is a sequence of labels with dot separators, such as "Bücher.de". (For more
about the parts of a URL, including the domain name, see [RFC3987]).

Preparation of the input domain_name string may have involved converting
escapes in an original domain name string to Unicode code points as necessary,
depending on the environment in which it is being used. For example, this can
include converting:

HTML numeric character references (NCRs) like 十 for U+5341 (十) CJK
UNIFIED IDEOGRAPH-5341
Javascript escapes like \u5341 for U+5341 (十) CJK UNIFIED IDEOGRAPH-5341
URI/IRI %-escapes like %C3%A0 for U+00E0 (à) LATIN SMALL LETTER A WITH
GRAVE.

The following series of steps, performed in order, successively alters the input
domain_name string, and then outputs it (if there are no errors). The output of this
preprocessing is also a Unicode string, which can then be converted to a Punycode
string ("asciified"). The preprocessing is idempotent—applying the preprocessing
again to the output will make no further changes. Where the preprocessing results
in an "abort with error", the processing fails and the input string is invalid.

There are two types of preprocessing, Compatibility Preprocessing and Display
Preprocessing. They differ only in the mapping table applied in the first step.

Map each character in the domain_name string using the appropriate
mapping from IDNA Mapping Table (Section 4).

domain_name = map(domain_name)

1.

Normalize the domain_name string to Unicode Normalization Form C:
domain_name = toNFC(domain_name)

2.

Split the domain_name string into one or more labels, using as the following
as label delimiter:

U+002E (.) FULL STOP
Note that the dot may have resulted from a mapping from other
characters, such as U+2488 (⒈) DIGIT ONE FULL STOP or U+FF0E (．)
FULLWIDTH FULL STOP. For more information, see Handling Periods.

3.

Verify that each label in the domain_name meets the validity criteria in
Validity Criteria (Section 5)

If any label is in Punycode, and does not come from a trusted source,
convert all such labels to Unicode and reapply Steps 1-3. [Review note:
this bullet could be rewritten for clarity as a step 3a: "Convert any
Punycode labels back to Unicode", with explanation of what a Punycode
lable is, and aborting with an error if such conversion fails.]
Abort with error if the label does not comply with the validity criteria
from Section 5.

4.

http://www.unicode.org/reports/tr46/tr46-2.html

8 of 23 10/28/2009 1:10 PM

Return the string resulting from the successive application of the above
steps, the domain_name resulting from Step 2 if there has been no error.

5.

Some browsers allow also characters like "_" in domain names. Any such treatment
is outside of the scope of this document.

The domain names that do not cause an error in the application of the above
process are valid. However, implementations are advised to apply additional tests
to these labels such as those described in UTR#36: Unicode Security
Considerations [UTR36], and take appropriate actions. For example, a label with
mixed scripts or confusables may be called out in the UI.

4. IDNA Mapping Tables
There are two IDNA Mappings: one for the Compatibility Preprocessing, and one
for the Display Preprocessing. The only difference between them is in the handling
of the Deviations. Both are based on the Unicode Property [NFKC_CaseFold], and
are defined by the following:

Compatible Mapping

Map each character to its NFKC_CaseFold value.1.
Also map U+3002 (。) IDEOGRAPHIC FULL STOP and any of its compatibility
equivalents to U+002E (.) FULL STOP.

2.

Display Mapping

Map each character that is not a Deviation character to its NFKC_CaseFold
values. The Deviation characters are: U+00DF, U+03C2, U+200D, and
U+200C

1.

Also map U+3002 (。) IDEOGRAPHIC FULL STOP and any of its compatibility
equivalents to U+002E (.) FULL STOP.

2.

[Review Note: In order to improve the appearance of Greek, should we add to this
that uppercase sigma is mapped to lowercase final sigma if there is at least one
Greek character before it and no Greek characters after it?]

For Unicode 5.2, the characters affected by item #2 in each case consist of exactly
two characters:

U+3002 (。) IDEOGRAPHIC FULL STOP
U+FF61 (｡) HALFWIDTH IDEOGRAPHIC FULL STOP

4.1 Data Tables and Stability

While the above describes the generation of the mapping tables, the normative
values are supplied in the linked data files referenced in this section. For each
version of Unicode there will be an updated version of this table: implementations
will never need to actually use the above method algorithm for generating the
tables—they can just use the data from these tables.

The tables will always be backwards compatible; if the description of the

http://www.unicode.org/reports/tr46/tr46-2.html

9 of 23 10/28/2009 1:10 PM

generation needs to be changed in order to ensure that, it will be.

[Review Note: A full list of the mappings will be maintained and linked from this
document.]

5. Validity Criteria
Each of the following criteria must be satisfied for a label to be valid:

The label must contain at least one code point.1.
All code points in the label must be in the set defined as Lenient_Allowed
(Section 5.1).

[Review Note: should add "or if Display Preprocessing, in the
Deviations"]

1.

2.

The label must not contain "--" (two U+002D (-) HYPHEN-MINUS characters)
in the third and fourth positions, and must neither begin nor end with a
U+002D (-) HYPHEN-MINUS character.

3.

The label must not begin with a combining mark, that is: [:gc=M:]4.
If the label contains any [:Join_Control:] characters, any such characters must
only occur in contexts specified in the Tables document of [IDNA2008] for
CONTEXTJ characters. [Review Note: This condition should be removed, since
the Join Controls will not appear in the result anyway.]

5.

The label must meet the requirements for right-to-left characters specified in
the Bidi document of [IDNA2008].

6.

[Review Note: A previous review note suggested that once IDNA2008 is final, the
exact specification be substituted for the last bullet. However, it would probably
be best to retain the pointer. It does raise another issue, of whether the BIDI spec
should be part of the validity test or not: IDNA2008 doesn't require it in clients.]

Except for list of allowed code points in condition 2, these conditions are
equivalent to those required on lookup in the Protocol document of [IDNA2008].

5.1 Lenient_Allowed

The following characters are allowed in labels. The sets are defined by properties
according to the syntax of UTS#18: Unicode Regular Expressions [UTS18] (with
additional "+" signs added for clarity). The definition is based on IDNA2003; when
restricted to Unicode 3.2 characters, this set matches the characters allowed in
IDNA2003.

As with Unicode Character properties, while this list specifies the derivation of the
set, the Data Files supply the normative values. The tables will always be
backwards compatible; if the description of the generation needs to be changed in
order to ensure that, it will be.

Formal Sets Descriptions
[[:^Changes_When_NFKC_Casefolded:] Start with characters that are NFKC

Case folded (excluding uppercase, for
example).

http://www.unicode.org/reports/tr46/tr46-2.html

10 of 23 10/28/2009 1:10 PM

- [:c:] - [:z:] Remove Control Characters and
Whitespace

-
[:Block=Ideographic_Description_Characters:]

Remove ideographic description
characters

- [:ascii:] - [\u1806 \uFFFC \uFFFD]

Remove ASCII and three special
characters:
U+1806 (᠆) MONGOLIAN TODO
SOFT HYPHEN
U+FFFC () OBJECT REPLACEMENT
CHARACTER
U+FFFD (�) REPLACEMENT
CHARACTER

+ [\u002D] Add back all the valid ASCII
[Ed note: should include
[a-zA-Z1-0]]

5.2 Strict_Allowed

For comparison, the following defines the set of allowed characters defined by
IDNA2008. This set corresponds to the union of the PVALID, CONTEXTJ, and
CONTEXTO characters with rules defined by the Tables document of [IDNA2008].
This is only presented for comparison, and has no bearing on validity of this
specification.

Formal Sets Descriptions
[[:^Changes_When_NFKC_Casefolded:] Start with characters that are NFKC

Case folded (as in IDNA2003)
- [:c:] - [:z:] Remove Control Characters and

Whitespace (as in IDNA2003)
- [:s:] - [:p:] - [:nl:] - [:no:] - [:me:] Remove Symbols, Punctuation,

non-decimal Numbers, and Enclosing
Marks

- [:HST=L:] - [:HST=V:] - [:HST=V:] Remove characters used for archaic
Hangul (Korean)

-
[:block=Combining_Diacritical_Marks_For_Symbols:]
- [:block=Musical_Symbols:]
- [:block=Ancient_Greek_Musical_Notation:]

Remove three blocks of technical or
archaic symbols.

- [\u0640 \u07FA \u302E \u302F \u3031-\u3035
\u303B] Remove certain exceptions:

U+0640 (ـ) ARABIC TATWEEL
U+07FA (ߚ) NKO LAJANYALAN
U+302E (〮) HANGUL SINGLE DOT
TONE MARK
U+302F (〯) HANGUL DOUBLE DOT
TONE MARK
U+3031 (〱) VERTICAL KANA
REPEAT MARK

http://www.unicode.org/reports/tr46/tr46-2.html

11 of 23 10/28/2009 1:10 PM

U+3032 (〲) VERTICAL KANA
REPEAT WITH VOICED SOUND MARK
..
U+3035 (〵) VERTICAL KANA
REPEAT MARK LOWER HALF
U+303B (〻) VERTICAL IDEOGRAPHIC
ITERATION MARK

+ [\u00B7 \u0375 \u05F3 \u05F4 \u30FB]
+ [\u002D \u06FD \u06FE \u0F0B \u3007] Add certain exceptions:

U+00B7 (·) MIDDLE DOT
U+0375 (͵) GREEK LOWER NUMERAL
SIGN
U+05F3 (׳) HEBREW PUNCTUATION
GERESH
U+05F4 (״) HEBREW PUNCTUATION
GERSHAYIM
U+30FB (・) KATAKANA MIDDLE
DOT
plus
U+002D (-) HYPHEN-MINUS
U+06FD (۽) ARABIC SIGN SINDHI
AMPERSAND
U+06FE (۾) ARABIC SIGN SINDHI
POSTPOSITION MEN
U+0F0B (་) TIBETAN MARK
INTERSYLLABIC TSHEG
U+3007 (〇) IDEOGRAPHIC NUMBER
ZERO

+ [\u00DF \u03C2]
+ [:JoinControl:]] Add special exceptions (Deviations):

U+00DF (ß) LATIN SMALL LETTER
SHARP S
U+03C2 (ς) GREEK SMALL LETTER
FINAL SIGMA
U+200C () ZERO WIDTH NON-JOINER
U+200D () ZERO WIDTH JOINER

[Review Note: Once IDNA2008 is final, the exact list of characters will be aligned.]

The following table provides an illustration of the differences between the three
specifications. It omits all code points unassigned in U5.2, and all ASCII, since
those are the same for all three forms. The Count column shows the number of
characters in each bucket. The Differences column calls out some illustrative
character differences: sets with ... are abbreviated. Characters marked * for UTS46
are not modified in display.

Count Unicode
Version

IDNA2003 UTS46 IDNA2008 Comments

432 v3.2 Disallowed Disallowed Disallowed

http://www.unicode.org/reports/tr46/tr46-2.html

12 of 23 10/28/2009 1:10 PM

25 v3.2 Ignored Ignored Disallowed[\u034F\u180B-\u180D\u200B\u2060
2 v3.2 Ignored Ignored* Valid [\u200C\u200D]
2 v3.2 Remapped Disallowed Disallowed[\u3164\uFFA0]

4,619 v3.2 Remapped Remapped Disallowed...ａ𝐀𝐀ⓐＡ𝐀𝐀ⒶªÁÀĂẮẰẴẲÂẤẦ ẪẨǍ
㍳...

2 v3.2 RemappedRemapped* Valid [ßς]
4 v3.2 Valid Disallowed Disallowed[\u17B4\u17B5\u115F\u1160]

41 v3.2 Valid Remapped Disallowed[ↃℲӀႠ-ႦჁႧ-ႬჂႭ-ႲჃႳ-ႾჄႿჀჅ]
3,252 v3.2 Valid Valid Disallowed...℄℈℔℗℘℞℟℣℥⊂⊄⊃⊅⊆⊈⊇☖☗☙-☯☸-♬

-❒❖❘-❞❡-❵➔➘-➯➱-➾♭-♯〄〒〓〠¤¢£¥
86,682 v3.2 Valid Valid Valid

14v4.0-5.1Disallowed Disallowed Disallowed
241v4.0-5.1Disallowed Ignored Disallowed
473v4.0-5.1Disallowed Remapped Disallowed

1,225v4.0-5.1Disallowed Valid Disallowed
3,539v4.0-5.1Disallowed Valid Valid

[Review note: in order for UTS46 to better agree with IDNA2003, the following
mappings would need to be added. These are already reflected in the above table.

[\u200E\u200F\u202A-\u202E\u2061-\u2063\u206A-\u206F\U0001D173-\U000
-> \uFFFF // causing them to be disallowed
[\u17B4\u17B5\u115F\u1160\u3164\uFFA0] -> \uFFFF // causing them to
be disallowed
[᠆] -> "" // causing them to be ignored

6 Data Files
[Review Note: The information above will be used to generate data files in the
standard Unicode property file format for each version of Unicode starting with
Unicode 5.2. Tables for a NamePrep profile [RFC3491] will also be made available.]

7 Testing
[Review Note: Conformance test files will be added for each Unicode version
starting with Unicode 5.2, so that implementations can test their implementations
against a set of data.]

8 Background
[Review Note: Some of this material is below duplicates some material in the
introduction, and can be coalesced.]

For compatibility in the foreseeable future, special steps need to be taken with
Deviations. While some steps could be taken by top-level domain registries to
mitigate the above problems (the so-called "bundle" option), there are a very large
number of lower level domains that are under the control of millions of other
organizations. For example, the domain names under "blogspot.com", such as
http://café.blogspot.com, are controlled by the company that has registered

http://www.unicode.org/reports/tr46/tr46-2.html

13 of 23 10/28/2009 1:10 PM

"blogspot". For IDNA2008 to avoid problems, no registries—at whatever level
—would allow two IDNs that correspond according to the Deviations table to
resolve to different IP addresses. So blogspot.com would need to disallow
registration of both the registration of http://gefäss.blogspot.com and of
http://gefäß.blogspot.com, to prevent problems (and of other cases like the
normally-invisible ZWJ and ZWNJ). However, applications cannot depend on all
such registries behaving correctly, because the odds are high that at least some
(and likely very many) of the many thousands of registries will not check for this.
Thus the burden is primarily on applications handling IDNs to prevent the
situation.

The worst of all possible cases is an implementation of IDNA2008 that uses
Custom mappings. Unfortunately, there appears to be no good way to prevent
security problems with these implementations, because it is impossible to
anticipate what such implementations would do. Such an implementation is not
limited to just the above four Deviations for exploits—it could remap even
characters like "Ö" to "oe" or arbitrary other characters. Because there is no way to
predict what it will do, there are no effective countermeasures for security.

Note that IDNA2008 does not make any appreciable difference in reducing
problems with visually-confusable characters (so-called homographs). Thus
programmers still need to be aware of those issues as detailed in UTR#36: Unicode
Security Considerations [UTR36], including the mechanisms for detecting
potentially visually-confusable characters are found in the associated UTS#39:
Unicode Security Mechanisms [UTS39].

8.1 Handling Deviations

Because of the Deviations, even the strict application of IDNA2008 leads to
significant new security issues. The Unicode Technical Committee and invited
experts considered at length various options for dealing with Deviations. Among
those options were:

Dual lookups, checking for differences.
One problem with this approach is that the IP lookup may return
spurious differences, because a website may return different IP
addresses for load-balancing.

1.

Not mapping deviations if the registry is trusted. A trusted registry is one
that is complies with this specification, and bundles all allowed Deviations
with their mappings.

For example, http://www.sparkasse-gießen.de (if the registry for "de"
bundles Deviations) would be unaltered, but that
http://www.sparkasse-gießen.com would be mapped to
http://www.sparkasse-giessen.com (if the "com" registry does not bundle
Deviations) before any lookup. Note that this also applies to lower-level
registries. The URL http://www.sparkasse-gießen.blogspot.de would be
remapped to http://www.sparkasse-gießen.blogspot.de unless the registry
for "blogspot.de" is trusted.

2.

In the end, the consensus in the committee was that the distinction between
deviations ({ss, ß, SS}, {σ, ς, Σ}, and joiners) was most important for display

http://www.unicode.org/reports/tr46/tr46-2.html

14 of 23 10/28/2009 1:10 PM

essentially a display issue, for the preferred visual representation. In particular, it
is strongly recommended that any registry that allows for both forms should
always bundle them to avoid security problems. And those registries that didn't
bundle would cause problems. Thus the conclusion was that the distinction
between deviations did not need to be maintained in lookup, because lookup
would always work with registries that are handling the deviations correctly, and
would avoid security problems with the registries that didn't.

8.2 Handling Periods

The Split processing matches what is commonly done with label delimiters by
browsers, whereby characters containing periods are transformed into the NFKC
format before labels are separated. This allows the domain name to be
transformed in a single pass, rather than label by label. Some of the input
characters are effectively forbidden, because they would result in a sequence of
two periods, and thus empty labels. The exact list of characters can be seen with
the Unicode utilities using a regular expression:

http://unicode.org/cldr/utility/list-unicodeset.jsp?a=[:toNFKC=/\./:]

The question also arises as to how to handle escaped periods (such as %2E) and
characters like U+2488 (⒈) DIGIT ONE FULL STOP or U+FF0E (．) FULLWIDTH FULL
STOP that decompose to sequences that include period. While %2E is outside of
the scope of this document, it is useful to see how both of these are handled in
current browsers:

Input http://à%2Ecom %2E http://à⒈com ⒈
Internet
Explorer

http://xn--0ca.com/ =
"."

 http://xn--1-rfa.com/ =
"1."

Firefox http://www.xn--.com-hta.com/≠
"."

 http://xn--1-rfa.com/ =
"1."

Safari /
Chrome

http://xn--0ca.com/ =
"."

 http://xn--1.com-qqa/ ≠
"1."

There are three possible behaviors for characters like U+2488 (⒈) DIGIT ONE FULL
STOP:

The dot behaves like a label separator.1.
The character is rejected2.
The dot is included in the label (the garbled punycode seen above in the ≠
cases).

3.

[Review note: the current TR46 specification decomposes before breaking into
labels. That step is included because it represents the predominant browser
behavior (both FF and IE). This behavior on the part of the browsers may be due to
simplicity -- it allows the entire domain name to be mapped/normalized at once.

Formally, this behavior is not compatible with IDNA2003, which uses all and only
the following as label delimiters:

http://www.unicode.org/reports/tr46/tr46-2.html

15 of 23 10/28/2009 1:10 PM

U+002E (.) FULL STOP
U+3002 (。) IDEOGRAPHIC FULL STOP
U+FF0E (．) FULLWIDTH FULL STOP
U+FF61 (｡) HALFWIDTH IDEOGRAPHIC FULL STOP

However, strict compatibility with IDNA2003 can be obtained even when
mapping/normalizing the entire domain name at once. That is done by changing
the mapping to specially map all characters whose normalizations contains a
U+002E (.) FULL STOP, aside from the IDNA2003 delimiters. That is, the "bad"
characters could be mapped to an invalid character (such as U+0001), so that the
domain name would be invalidated by further steps.

Is there good reason to change this behavior -- and if so, would the browsers
change to follow it?]

[Review Note: Should we add other "full-stop" characters to the list of separators,
like U+06D4 (۔) ARABIC FULL STOP?]

9 FAQ
[Review Note: Some of this material is probably best moved to the Unicode FAQ,
and just referenced from here, while some is appropriate for inclusion above. What
is left here, if anything, would need to be modified to remove duplication of
material.]

Q. What are examples of where the different categories of IDNA implementation
behave differently?

A. Here is a table that illustrates the differences, where 2003 is the current
behavior in applications now.

Yes indicates that the URL would be valid;
No that it wouldn't be; and
?? that it might or might not be, depending on the exact behavior of a
Custom Mapping. Such a Custom mapping might be from Ö to ö, or it might
be from Ö to oe, or might not map at all. Because they are unpredictable, they
are marked with ??.

URL 2003 With
Compatible
Preprocessing

Strict
IDNA2008

IDNA2008
with Custom
Mapping

Comments

http://öbb.at Yes Yes Yes Yes Simple
characters

http://ÖBB.at Yes Yes No ?? Case mapping
http://√.com Yes Yes No ?? Symbol
http://faß.de Yes Yes Yes* Yes* * Deviation

(different

http://www.unicode.org/reports/tr46/tr46-2.html

16 of 23 10/28/2009 1:10 PM

resulting IP
address)

http://ԛәлп.com No Yes Yes Yes New Unicode
(version 5.1)
U+051B (ԛ)
cyrillic qa

Q. How much of a problem is this actually if support for symbols like √ .com were
just dropped immediately?

A. IDNA2008 removes many characters that were valid under IDNA2003, because
it makes most symbols and punctuation illegal. So while http://√.com is valid in an
IDNA2003 implementation; it would fail on a strict IDNA2008 implementation.
This affects about 2,900 characters, mostly rarely used ones. A small percentage
of those 2,900 cases are security risks because of confusability. The vast majority
are unproblematic: for example, having http://I♥NY.com doesn't cause security
problems. IDNA2008 also has additional tests that are based on the context in
which characters are found, but they apply to few characters, and don't provide
any appreciable increase in security.
Q. What are the main advantages of IDNA2008?

[Review Note: Is it worth listing the advantages and disadvantages of IDNA2008?]

A. The main advantages are:

Major improvement in updating to Unicode 5.2
Major improvement in making process of updating to future Unicode versions
mostly-automatically
Significant improvement in allowing needed sequences (combining marks at
end of bidi label).
Significant improvements to the BIDI rules:

allowing for some sequences that 2003 should not have restricted (for
example, trailing combining marks, needed for Thaana), and restricting
sequences that lead to "bidi label hopping". (While these new bidi rules
go a long way towards reducing this problem, they do not eliminate it
because they do not check for inter-label situations.)

Improvements in some user's expectations for display of Deviations: sigma,
sharp s, joiners.
Improvement in clarifying that what people register is the unmapped form.

Q. What are the disadvantages of IDNA2008?

A. If IDNA2003 had not existed, then there would be few disadvantages to
IDNA2008. Given that IDNA2003 does exist, and is widely deployed, the main
disadvantages are:

Major interoperability/security issue with Deviations and Unpredictables
Of particular interest are the invisible ZWJ/ZWNJ characters, which offer
opportunities for spoofing if not properly restricted.

http://www.unicode.org/reports/tr46/tr46-2.html

17 of 23 10/28/2009 1:10 PM

The goal of improving user's expectations for display of Deviations did
not require the incompatibilities.

Significant interoperability issue by not continuing 2003 mappings
Significant increase in complexity, reducing the likelihood of correct
implementation

For example, there are new contextual rules that are fairly complicated
to implement, and are not in a machine-readable format. Without a
comprehensive test suite and/or reference implementations to test
against, it is fairly likely that there will be incompatibilities.

Small interoperability issue caused by excluding symbols, punctuation
More fragile in that future Unicode versions require a manual step to avoid
instabilities

That is, if Unicode version X changes properties in such a way as to add
or remove characters from PVALID, it requires a manual step to retain
the previous status.

No requirements for stability: that all labels valid under Version X (>= 2008)
must also be valid under all future versions.

Q. What is "bidi label hopping"?

A. It is where bidi reordering causes characters from one label to appear to be part
of another label. For example, with "B1.d" in a right-to-left paragraph (where B
stands for an Arabic or Hebrew letter), the display would be "1.dB".
Q. Are the "local" mappings just a UI issue?

A. No, not if what is meant is that they are only involved in interactions with the
address bar.

Examples:

Alice sees that a URL works in her browser (say http://faß.de or
http://TÜRKIYE.com). She sends it to Bob in an email. Bob clicks on the link in
his email, and doesn't find a site or goes to a wrong (and potentially
malicious) site, because his browser maps to http://fass.de or
http://türkiye.com while Alice's maps to http://faß.de or http://türkıye.com.
Alice creates a web page, using (or
http://TÜRKIYE.com). Bob clicks on the link in his email, and doesn't find a site
or goes to a wrong (and potentially malicious) site.

It is generally understood at the W3C that all attributes that take URLs
should take full IRIs, not punycoded-URIs, so for example SVG, MathML,
XLink, XML, etc, all take IRIs now, as does HTML5. [Editorial note: this
bullet seems out of place.]

Alice is in a IM chat with Bob. She copies in http://faß.de (or
http://TÜRKIYE.com) and hits return. Bob clicks on the link he sees in his chat
window. Bob clicks on the link in his email, and doesn't find a site or goes to
a wrong (and potentially malicious) site.
Alice sends a Word document to Bob with a link in it...
Alice creates a PDF document...

http://www.unicode.org/reports/tr46/tr46-2.html

18 of 23 10/28/2009 1:10 PM

...

Q. Do the Custom exploits require unscrupulous registries?

A. No. The exploits do not require unscrupulous registries—it only requires that
registries do not police every URL that they register for possible spoofing behavior.

The custom mappings matter to security, because entering the same URL on two
different browsers may go to two different IP addresses (whenever the two
browsers have different custom mappings). The same thing could happen within
an emailer that is parsing for URLs, and then opening a browser. And for that
matter, there is nothing that prevents two different browsers from applying those
custom mappings to URLs within a page, for example, to a URL in href="...".

Q. Why does IDNA2003 map final sigma (ς) to sigma (σ), map eszett (ß) to "ss",
and delete ZWJ/ZWNJ?

A. This is to provide full case insensitivity, was following the Unicode Standard.
These characters are anomalous: the uppercase of ς is Σ, the same as the
uppercase of σ. Note that the text "ΒόλοΣ.com", which appears on
http://Βόλος.com, illustrates this: the normal case mapping of Σ is to σ. If σ and ς
were not treated as case variants in Unicode, there wouldn't be a match between
ΒόλοΣ and Βόλος.

Similarly, the standard uppercase of ß is "SS", the same as the uppercase of "ss".
Note, for example, that on http://www.uni-giessen.de, Gießen is spelled with ß,
but in the top left corner spelled with GIESSEN. The situation is even more
complicated:

In Switzerland, "ss" is uniformly used instead of ß.
The recent spelling reform in Germany and Austria changed whether ß or ss
is used in many words. For example, http://Schloß.de was the spelling before
1996, and http://Schloss.de is "correct" after.
Recently, in Unicode 5.1, an uppercase version of ß was added (ẞ), because it
is attested in some cases. It is unknown, however, whether it will ever
become the preferred uppercase. Unicode now treats all of these as a single
equivalence class for case-insensitive matching: {ss, ß, SS, ẞ}. See also the
Unicode FAQ.

For full case insensitivity (with transitivity), {ss, ß, SS} and {σ, ς, Σ} need to be
treated as equivalent, with one of each set chosen as the representative in the
mapping. That is what is done in the Unicode Standard, which was followed by
IDNA2003.

ZWJ and ZWNJ are normally invisible, which allows them to be used for a variety of
spoofs. Invisible characters (like these and soft-hyphen) are allowed on input in
IDNA2003, but deleted so that they do not allow spoofs.

While these are full parts of the orthographies of the languages in question,
neither IDNA2003 nor IDNA2008 ever claimed that all parts of every language's
orthographies are representable in domain names. There are trivial examples even
in English, like "can't" (vs "cant") or "Wendy's/Arby's Group" (NYSE WEN), which

http://www.unicode.org/reports/tr46/tr46-2.html

19 of 23 10/28/2009 1:10 PM

cannot be represented faithfully in a domain name using standard English
orthography.

The Unicode IDNA Compatible Preprocesssing deals with these cases by using a
different display format that preserves these distinctions.

Q. Why allow ZWJ/ZWNJ at all?

During the development of Unicode, the ZWJ and ZWNJ were intended only for
presentation —that is, they would make no difference in the semantics of a word.
Thus the IDNA2003 mapping should and does delete them. That result, however,
should never really be seen by users—it should be just a transient form used for
comparison. Unfortunately, the way IDN works this "comparison format" (with
transformations of eszett, final sigma, and deleted ZWJ/NJ) ends up being visible
to the user, unless a display format is used that differs from the format used to
transform for lookup.

For example, there are words such as the name of the country of Sri Lanka, which
require preservation of these joiners (in this case, ZWJ) in order to appear correct
to the end users when the URL comes back from the DNS server.

Q. Aren't the problems with eszett and final sigma just the same as with l, I, and
1?

A. No, The eszett and sigma are fundamentally different than I,l, and 1. With the
following (using a digit 1), all browsers will go to the same location, whether they
old or new:

http://goog1e.com

With the following, browsers that use IDNA2003 will go to a different location than
browsers that use a strict version of IDNA2008, unless the registry for xx puts into
place a bundle strategy.

http://gießen.xx

The same goes for Greek sigma, which is a more common character in Greek than
the eszett is in German.

Q. Why doesn't IDNA2008 (or for that matter IDNA2003) restrict allowed domains
on the basis of language?

A. It is extremely difficult to restrict on the basis of language, because the letters
used in a particular language are not well defined. The "core" letters typically are,
but many others are typically accepted in loan words, and have perfectly legitimate
commercial and social use.

It is a bit easier to maintain a bright line based on script differences between
characters: every Unicode character has a defined script (or is Common/Inherited).
Even there it is problematic to have that as a restriction. Some languages
(Japanese) require multiple scripts. And in most cases, mixtures of scripts are
harmless. One can have http://SONY日本.com with no problems at all—while there

http://www.unicode.org/reports/tr46/tr46-2.html

20 of 23 10/28/2009 1:10 PM

are many cases of "homographs" (visually confusable characters) within the same
script that a restriction based on script doesn't deal with.

The rough consensus among the IETF IDNA working group is that script/language
mixing restrictions are not appropriate for the lowest-level protocol. So in this
respect, IDNA2008 is no different than IDNA2003. IDNA doesn't try to attack the
homograph problem, because it is too difficult to have a bright line. Effective
solutions depend on information or capabilities outside of the protocol's control,
such as language restrictions appropriate for a particular registry, the language of
the user looking at this URL, the ability of a UI to display suspicious URLs with
special highlighting, and so on.

Responsible registries can apply such restrictions. For example, a country-level
registry can decide on a restricted set of characters appropriate for that country's
languages. Application software can also take certain precautions—MSIE, Safari,
and Chrome all display domain names in Unicode only if the user's language(s)
typically use the scripts in those domain names. For more information on the kinds
of techniques that implementations can use on the Unicode web site, see UTR#36:
Unicode Security Considerations [UTR36].

Q. Are there differences in mapping between the IDNA_Mapping_Table and
IDNA2003?

Yes, there are two collections of characters that changed mapping in Unicode after
Unicode 3.2. All of these characters are extremely rare, and do not require any
special handling.

Case Pairs. These are characters that did not have corresponding lowercase
characters in Unicode 3.2, but had lowercase characters added later.

U+04C0 (Ӏ) CYRILLIC LETTER PALOCHKA
U+10A0 (Ⴀ) GEORGIAN CAPITAL LETTER AN…U+10C5 (Ⴥ) GEORGIAN
CAPITAL LETTER HOE
U+2132 (Ⅎ) TURNED CAPITAL F
U+2183 (Ↄ) ROMAN NUMERAL REVERSED ONE HUNDRED

Unicode has since stabilized case folding, so that this will not happen in the
future. That is, case pairs will be assigned in the same version of Unicode—so any
newly assigned character will either have a case folding in that version of Unicode,
or it will never have a case folding in the future.

Normalization Mappings. These are characters whose normalizations changed
after Unicode 3.2 (all of them were in Unicode 4.0.0: see Corrigendum #4: Five
Unihan Canonical Mapping Errors). As of Unicode 5.1, normalization is completely
stabilized, so these are the only such characters.

U+2F868 (?) CJK COMPATIBILITY IDEOGRAPH-2F868 → U+2136A (?) CJK
UNIFIED IDEOGRAPH-2136A
U+2F874 (?) CJK COMPATIBILITY IDEOGRAPH-2F874 → U+5F33 (?) CJK
UNIFIED IDEOGRAPH-5F33
U+2F91F (?) CJK COMPATIBILITY IDEOGRAPH-2F91F → U+43AB (?) CJK

http://www.unicode.org/reports/tr46/tr46-2.html

21 of 23 10/28/2009 1:10 PM

UNIFIED IDEOGRAPH-43AB
U+2F95F (?) CJK COMPATIBILITY IDEOGRAPH-2F95F → U+7AAE (?) CJK
UNIFIED IDEOGRAPH-7AAE
U+2F9BF (?) CJK COMPATIBILITY IDEOGRAPH-2F9BF → U+4D57 (?) CJK
UNIFIED IDEOGRAPH-4D57

Unicode has since stabilized normalization, so that this will not happen in the
future.
Q. Doesn't the removal of symbols and punctuation in IDNA2008 help security?

A. Surprisingly, not really. It doesn't do anything about the most frequent sources
of spoofing; look-alike characters that are both letters, like "http://paypal.com" with
a Cyrillic "a". If a symbol that can be used to spoof a letter X is removed, but there
is another letter that can spoof X is retained, there is no net benefit. Weighted by
frequency, according to data at Google the removal of symbols and punctuation in
IDNA2008 reduces opportunities for spoofing by only about 0.000016%. In
another study at Google of 1B web pages, the top 277 confusable URLs used
confusable letters or numbers, not symbols or punctuation. The 278th page had a
confusable URL with × (U+00D7 MULTIPLICATION SIGN - by far the most common
confusable); but that page could could be even better spoofed with х (U+0445
CYRILLIC SMALL LETTER HA), which normally has precisely the same displayed
shape as "x".

Acknowledgements
For their contributions of ideas or text to this specification, thanks to Peter
Constable, Craig Cummings, Martin Dürst, Peter Edberg, Deborah Goldsmith,
Laurentiu Iancu, Gervase Markham, Simon Montagu, Lisa Moore, Eric Muller,
Murray Sargent, Markus Scherer, Jungshik Shin, Shawn Steele, Erik van der Poel,
Chris Weber, and Ken Whistler. The specification builds upon [IDNA2008],
developed in the IETF Idnabis working group, especially contributions from
Matitiahu Allouche, Harald Alvestrand, Vint Cerf, Martin J. Dürst, Lisa Dusseault,
Patrik Fältström, Paul Hoffman, Cary Karp, John Klensin, and Peter Resnick, and
also upon [IDNA2003], authored by Marc Blanchet, Adam Costello, Patrik
Fältström, and Paul Hoffman.

References
References not listed here may be found in
http://www.unicode.org/reports/tr41/#UAX41.

[Feedback] Reporting Errors and Requesting Information Online
http://www.unicode.org/reporting.html

[IDNA2003] The IDNA2003 specification is defined by a cluster of IETF
RFCs: the IDNA base specification [RFC3490], Nameprep
[RFC3491], Punycode [RFC3492], and Stringprep [RFC3454].

[IDNA2008] http://tools.ietf.org/id/idnabis

http://www.unicode.org/reports/tr46/tr46-2.html

22 of 23 10/28/2009 1:10 PM

[NFKC_CaseFold] The Unicode property specified in [UAX44], and defined by the
data in DerivedNormalizationProps.txt (search for
"NFKC_CaseFold").

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/
For information on the status and development process for
technical reports, and for a list of technical reports.

[RFC3454] P. Hoffman, M. Blanchet. "Preparation of Internationalized
Strings ("stringprep")", RFC 3454, December 2002.
http://ietf.org/rfc/rfc3454.txt

[RFC3490] Faltstrom, P., Hoffman, P. and A. Costello, "Internationalizing
Domain Names in Applications (IDNA)", RFC 3490, March 2003.
http://ietf.org/rfc/rfc3490.txt

[RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep Profile
for Internationalized Domain Names (IDN)", RFC 3491, March
2003.
http://ietf.org/rfc/rfc3491.txt

[RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA)", RFC
3492, March 2003.
http://ietf.org/rfc/rfc3492.txt

[Unicode] The Unicode Standard
For the latest version see:
http://www.unicode.org/versions/latest/.

[Versions] Versions of the Unicode Standard
http://www.unicode.org/versions/
For details on the precise contents of each version of the
Unicode Standard, and how to cite them.

Modifications
The following summarizes modifications from the previous revisions of this
document.

Version 2

Draft 2
Small changes in wording (not typically marked with yellow).
Additional review notes.
Removed active links from URLs and domain names: replaced by special
style.
Fixed references.
Added table of period behavior in 8.2
Added comparison table of IDNA2003, UTS46, and IDNA2008 in section 5.2
Draft 1

http://www.unicode.org/reports/tr46/tr46-2.html

23 of 23 10/28/2009 1:10 PM

Draft UTS posted for public review.
Radical simplification as directed by the UTC.

Version 1

Proposed Draft UTS posted for public review.
Fixed a number of typos and problems pointed out by Marcos (mostly not
noted in the text).
Added draft security and FAQ sections.
Replaced the introduction, and shortened the document overall; with
theNFKC_CaseFolded property, the mapping is considerably simpler.
Added specifications for the Hybrid and Compatibility implementations,
including the two Modes, based on the additional material from the UTC in
early 2008.
Removed the Hybrid variant, and added a discussion of tactics for deviations.

Copyright © 2008-2009 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes
no expressed or implied warranty of any kind, and assumes no liability for errors or
omissions. No liability is assumed for incidental and consequential damages in connection
with or arising out of the use of the information or programs contained or accompanying this
technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some
jurisdictions.

