
UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

1 of 25 11/4/2009 9:59 AM

 Technical Reports

Working Draft Unicode Technical Standard #46

UNICODE IDNA COMPATIBILITY PROCESSING
Version 2 (draft 4)
Authors Mark Davis (markdavis@google.com), Michel Suignard
Date 2009-11-03
This Version http://www.unicode.org/reports/tr46/tr46-2.html
Previous
Version

http://www.unicode.org/reports/tr46/tr46-1.html

Latest Version http://www.unicode.org/reports/tr46/
Revision 2
Summary

This document provides a specification for processing that provides for
compatibility between older and newer versions of internationalized domain names
(IDN) for lookup in client software. It allows applications such as browsers and
emailers to be able to handle both the original version of internationalized domain
names(IDNA2003) and the newer version (IDNA2008) compatibly, avoiding
possible interoperability and security problems.

[Review Note: At this point, IDNA2008 is still in development, so this draft may
change as IDNA2008 changes. The following is a substantial reorganization of
version 2, draft 3 of this UTS; the changes previous to that version are not tracked
with yellow highlighting.]

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this
document as other than a work in progress.

A Unicode Technical Standard (UTS) is an independent specification.
Conformance to the Unicode Standard does not imply conformance to any
UTS.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this document is
found in the References. For the latest version of the Unicode Standard see
[Unicode]. For a list of current Unicode Technical Reports see [Reports]. For more
information about versions of the Unicode Standard, see [Versions].

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

2 of 25 11/4/2009 9:59 AM

Contents
1 Introduction

1.1 IDNA2003
1.2 IDNA2008
1.3 Security Considerations
1.4 Compatibility Processing
1.5 Display of Internationalized Domain Names
1.6 Notation

2 Conformance
3 Processing
4 IDNA Mapping Table
5 Validity Criteria
6 Mapping Table Derivation

6.1 IDNA2008 Characters
6.2 IDNA Comparison

7 Testing
8 Background

8.1 Handling Deviations
8.2 Handling Label Separators

9 FAQ
Acknowledgements
References
Modifications

1. Introduction
One of the great strengths of domain names is universality. With http://Apple.com,
you can get to Apple's website no matter where you are in the world, and no
matter which browser you are using. With markdavis@google.com, you can send an
email to an author of this specification, no matter which country you are in, and no
matter which emailer you are using.

Initially, domain names were restricted to only handling ASCII characters. This is
was a significant burden on people using other characters. Suppose, for example,
that the domain name system had been invented by Greeks, and one could only
use Greek characters in URLs. Rather than apple.com, one would have to write
something like αππλε.κομ. An English speaker would not only have to be
acquainted with Greek characters, but would also have to pick those Greek letters
that would correspond to the desired English letters. One would have to guess at
the spelling of particular words, because there are not exact matches between
scripts.

A large majority of the world’s population faced this situation until recently,
because their languages use non-ASCII characters.

1.1 IDNA2003

A system is now in place for internationalized domain names (IDN). This system is
called Internationalizing Domain Names for Applications, or IDNA for short. It was

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

3 of 25 11/4/2009 9:59 AM

introduced in 2003, in a series of RFCs collectively known as IDNA2003
[IDNA2003]. This system allows non-ASCII Unicode characters, which includes not
only the characters needed for Latin-script languages other than English (such as
Å, Ħ, or Þ), but also different scripts, such as Greek, Cyrillic, Tamil, or Korean.

The IDNA mechanism for allowing non-ASCII Unicode characters in domain names
involves applying the following steps to each label in the domain name that
contains Unicode characters:

Transforming (mapping) a Unicode string to remove case and other variant
differences.

1.

Checking the resulting mapped string for validity, according to certain rules.2.
Transforming the Unicode characters into a DNS-compatible ASCII string
using a specialized encoding called Punycode.

3.

For example, you can now type in http://Bücher.de into the address bar of any
modern browser, and you will go to a corresponding site, even though the "ü" is
not an ASCII character. This works because the IDN resolves to the Punycode string
which is actually stored by the DNS for that site. Similarly, when a browser
interprets a web page containing a link such as , the
appropriate site is reached. (In this document, when phrasing like "a browser
interprets" is used, it refers both to domain names parsed out of URLs entered in
an address bar and to those contained in links internal to HTML text.)

In this case, for the IDN Bücher.de, the Punycode value actually used for the domain
names on the wire is http://xn--bcher-kva.de . The Punycode version is also typically
transformed back into Unicode form for display. The resulting display string will
be a string which has already been mapped according to the IDNA2003 rules. So in
this example we end up with a display string that has been casefolded to
lowercase:

http://Bücher.de → http://xn--bcher-kva.de → http://bücher.de

1.2 IDNA2008

There is a new version of IDNA under development. This version also consists of a
collection of RFCs and is usually called IDNA2008 [IDNA2008]. The "2008" in that
term does not reflect the actual date of approval, which is still pending and
expected to occur in late 2009 or early 2010.

For the most common cases, the processing in IDNA2003 and IDNA2008 are
identical. Both transform a Unicode domain name in a URL (like http://öbb.at) to the
Punycode version (like http://xn--bb-eka.at). However, IDNA2008 does not
maintain strict backwards compatibility with IDNA2003.

The main differences between the two are:

Additions. Some IDNs are invalid in IDNA2003, but valid in IDNA2008.
Subtractions. Some IDNs are valid in IDNA2003, but invalid in IDNA2008.
Deviations. Some IDNs are valid in both, but resolve to different destinations.
Unpredictable Changes. Some IDNs do not have predictable behavior in

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

4 of 25 11/4/2009 9:59 AM

applications implementing IDNA2008, due to the option of local mappings,
as explained below. They may fail, or may have any of the above
characteristics.

For more detail on the differences, see Section 6.2 IDNA Comparison.

1.3 Security Considerations

The cases of deviations and unpredictable changes introduced by the differences
between IDNA2008 and IDNA2003 may cause both interoperability and security
problems. They affect extremely common characters: all uppercase characters, all
variant-width characters (commonly used in Japan, China, and Korea), and certain
other characters like the German eszett (U+00DF ß LATIN SMALL LETTER SHARP S)
and Greek final sigma (U+03C2 ς GREEK SMALL LETTER FINAL SIGMA).

IDNA2003 requires a mapping phase, which maps http://ÖBB.at to http://öbb.at (for
example). Mapping typically involves mapping uppercase characters to their
lowercase pairs, but it also involves other types of mappings between equivalent
characters, such as mapping half-width katakana characters to normal (full-width)
katakana characters in Japanese. The mapping phase in IDNA2003 was included to
match the insensitivity of ASCII domain names. Users are accustomed to having
both http://CNN.com and http://cnn.com work identically. They would not expect the
addition of an accent to make a difference: they expect that if http://Bruder.com is
the same as http://bruder.com, then of course http://Brüder.com is the same as
http://brüder.com. There are variants similar to case in this respect used in other
scripts. The IDNA2003 mapping is based on data specified by Unicode: what later
became the Unicode property [NFKC_CaseFold].

IDNA2008 does not require a mapping phase, but does permit one (called "Local
Mapping" or "Custom Mapping") with no limitation on what the mapping can do to
disallowed characters (including even ASCII uppercase characters, if they occur in
an IDN). For more information on the permitted mappings, see Section 4.3 and
Section 5.3 in the Protocol document of [IDNA2008]. An implementation of
IDNA2008 which uses custom mapping can, in principle, allow any mappings, with
unpredictable results regarding the exact interpretation of the processed IDNs. For
example, the following mappings show cases where IDNs are mapped to what
would be considered completely different domain names by IDNA2003 rules:

Map http://ÖBB.at to http://öbb.at1.
Map http://ÖBB.at to http://oebb.at2.
Map http://TÜRKIYE.com to http://türkiye.com3.
Map http://TÜRKIYE.com to http://türkıye.com (note the dotless i)—and go to a
different location than #3.

4.

IDNA2008 does define a particular mapping, but it is not normative, and does not
attempt to be compatible with IDNA2003. For more information, see the Mapping
document in [IDNA2008].

1.3.1 Deviations

There are a few situations where the strict application of IDNA2008 will result in

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

5 of 25 11/4/2009 9:59 AM

the resolution of IDNs to different IP addresses than in IDNA2003, unless the
registry or registrant takes special action. This affects a relatively small number of
characters, but some that are common in particular languages and will affect a
significant number of strings in those languages. (For more information on why
IDNA2008 does this, see the FAQ.) These are referred to as "Deviations"; the
significant ones are listed below.

Code Character IDNA2008 IDNA2003 Example:
IDNA2008

Example:
IDNA2003

U+00DF ß ß ss http://faß.de http://fass.de
U+03C2 ς ς σ http://βόλος.com http://βόλοσ.com
U+200D ZWJ ZWJ delete [TBD] [TBD]
U+200C ZWNJ ZWNJ deleted [TBD] [TBD]

These differences allow for security exploits. Consider
http://www.sparkasse-gießen.de , which is for the "Gießen Savings and Loan".

Alice's browser supports IDNA2003. Under those rules,
http://www.sparkasse-gießen.de is mapped to http://www.sparkasse-giessen.de ,
which leads to a site with the IP address oo.kk.aa.yy.

1.

She visits a friend Bob, and checks her bank statement on his browser. His
browser supports IDNA2008. Under those rules,
http://www.sparkasse-gießen.de is also valid, but converts to a different
Punycode domain name in http://www.xn--sparkasse-gieen-2ib.de . This can
lead to a different site with the IP address ee.vv.ii.ll, a spoof site.

2.

Alice ends up at the phishing site, supplies her bank password, and is
robbed. While DENIC might have a policy about bundling all of the variants of
ß together (so that they all have the same owner) it is not required of
registries. It is quite unlikely that all registries will have or enforce such a
bundling policy in all such cases.

There are two Deviations of particular concern. IDNA2008 allows ZWJ and ZWNJ
characters in labels—these were removed by the IDNA2003 mapping. In addition
to mapping differently, they represent a special security concern because they are
normally invisible. That is, the sequence "a<ZWJ>b" looks just like "ab". IDNA2008
does provide a special category for characters like this (called CONTEXTJ), and only
permits them in certain contexts (certain sequences of Arabic or Indic characters,
for example). However, lookup applications are not required to check for these
contexts, so overall security is dependent on registries having correct
implementations. Moreover, those context restrictions do not catch all cases where
distinct domain names have visually confusable appearances.

1.4 Unicode IDNA Compatibility Processing

To allow client-side applications to work around the incompatibilities between
IDNA2003 and IDNA2008 for lookup, this document provides a standardized
processing that allows conformant implementations to minimize the security and
interoperability problems caused by the differences between IDNA2003 and

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

6 of 25 11/4/2009 9:59 AM

IDNA2008. This Unicode IDNA Compatibility Processing, also known as UTS46,
extends IDNA2003 principles to Unicode 5.2 and beyond. It uses Unicode
[NFKC_CaseFold] (the standard Unicode property) for mapping as described in this
document. Thus it will allow http://ÖBB.at (mapping it to http://öbb.at). It also
allows IDNs like http://√.com (which has an associated web page), although
implementations may restrict the characters that they support based on security
considerations, or flag the usage of such characters in a UI.

The result of the processing is a series of labels separated by U+002E (.) FULL
STOP. For DNS lookup, the result of the Unicode IDNA Compatibility Processing is
transformed by Punycoding each label that contains non-ASCII. It can then also be
supplied to IDNA2008 lookup, which does not require checking of Punycode
labels.

The Unicode IDNA Compatibility Processing produces results similar to the tactic
of "try IDNA2008 then try IDNA2003". However, it avoids a dual lookup and has a
much more cohesive approach, allowing browsers and other clients such as search
engines to have a single processing step, without having to maintain two different
implementations and multiple tables. It accounts for a number of edge cases that
would cause problems, and provides a stable definition with predictable results
that will remain absolutely backwards compatible over versions of Unicode. For a
demonstration of differences between IDNA2003, IDNA2008, and the Unicode
IDNA Compatibility Processing, see the IDNA demo.

The main goal of this document is to provide a compability mechanism for dealing
with IDNA domain name lookup, not with IDNA registration. Note that neither the
Unicode IDNA Compatibility Processing nor IDNA2008 address security problems
associated with confusables (the so-called "paypal.com" problem). It is strongly
recommended that UTR#36: Unicode Security Considerations [UTR36] be consulted
for information on dealing with confusables.

1.5 Display of Internationalized Domain Names

For IDNA2003 applications, it has been customary to display the processed string
to the user. This is helpful for security, since it reduces the opportunity for visual
confusability. Thus, for example, http://googIe.com (with a capital I in place of the
L) is revealed as http://googie.com. However, for the case of the Deviations, the
distinction between the original and processed form is especially important. Thus
in displaying domain names, it is strongly recommended that the Display
Processing be applied. This is the same as the Unicode IDNA Compatibility
Processing, except that it excludes the deviations: ß, ς, and joiners.

1.6 Notation

Sets of code pointsare defined by properties according to the syntax of UTS#18:
Unicode Regular Expressions [UTS18] (with additional "+" signs added for clarity).
Thus the set of combining marks is \p{gc=M}.

A label is a substring of a domain name that is bounded by the start or end of the
string, or one of the following:

U+002E (.) FULL STOP1.

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

7 of 25 11/4/2009 9:59 AM

U+FF0E (．) FULLWIDTH FULL STOP2.
U+3002 (。) IDEOGRAPHIC FULL STOP3.
U+FF61 (｡) HALFWIDTH IDEOGRAPHIC FULL STOP4.

2 Conformance
The requirements for conformance on implementations of the Unicode IDNA
Compatibility Processing are as follows:

C1 Given a version of Unicode and a Unicode String, a conformant
implementation shall replicate the results given by applying the algorithm
specified by Section 3, Processing for Lookup Processing.

C2 Given a version of Unicode and a Unicode String, a conformant
implementation shall replicate the results given by applying the algorithm
specified by Section 3, Processing for Display Processing.

These specifications are logical ones, designed to be straightforward to describe.
An actual implementation is free to use different methods as long the result is the
same as the result generated by the logical algorithm.

Any conformant implementation may have tighter validity criteria than imposed by
the Section 5, Validity Criteria. For example, an application could disallow or warn
of domain name labels:

with certain combinations of scripts, as Safari does
with characters outside of the user's specified languages, as IE does
with certain confusable characters, as Firefox does
that are caught by the Google Safe Browsing API [SafeBrowsing]
that do not meet the validity requirements of IDNA2008, including BIDI
and so on

For more information, see UTR#36: Unicode Security Considerations [UTR36].

This specification is targeted at applications doing lookup. There is one
recommendation for registries: to never allow the registration of labels that are
invalid according to Lookup Processing.

[Review Note: We could also add a note saying that "it might still be very
interesting for a registry to accept registration of "unprocessed" labels, if they
really know what they are doing:
- Storing somewhere the unprocessed label as the sequence of characters that the
registrant really wanted to apply for
- Preprocessing themselves and then feeding the regular registration process with
the output of preprocessing.".]

3. Processing
The input to the Processing is a prospective domain_name string in Unicode, which

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

8 of 25 11/4/2009 9:59 AM

is a sequence of labels with dot separators, such as "Bücher.de". (For more about
the parts of a URL, including the domain name, see Section 3.5 of [RFC1034]).

Preparation of the input domain_name string may have involved converting
escapes in an original domain name string to Unicode code points as necessary,
depending on the environment in which it is being used. For example, this can
include converting:

HTML numeric character references (NCRs) like 十 for U+5341 (十) CJK
UNIFIED IDEOGRAPH-5341
Javascript escapes like \u5341 for U+5341 (十) CJK UNIFIED IDEOGRAPH-5341
URI/IRI %-escapes like %C3%A0 for U+00E0 (à) LATIN SMALL LETTER A WITH
GRAVE

The following series of steps, performed in order, successively alters the input
domain_name string, and then outputs it (if there are no errors). The output of this
processing is also a Unicode string, which can then be converted to a string
containing Punycode labels ("asciified"). The processing is idempotent—applying
the processing again to valid output will make no further changes. Where the
processing results in an "abort with error", the processing fails and the input string
is invalid.

There are two types of processing, Lookup Processing and Display Processing.
They differ only in how the mapping table is used.

Process each code point in the domain_name string according to IDNA
Mapping Table (Section 4), based on the status value:

disallowed: Abort with an error.
mapped: Replace the code point by the mapping value
ignored: Remove the code point
display: For Lookup Processing, replace the code point by the mapping
value; for Display Processing, leave the character alone
valid: Leave the character alone

1.

Normalize the domain_name string to Unicode Normalization Form C.2.
Convert any Punycode labels back into Unicode. Abort with an error if such
conversion fails.

3.

domain_name_label = fromPunycode(domain_name_label)
Verify that each label in the domain_name meets the validity criteria in
Validity Criteria (Section 5). Abort with an error if the validity criteria are not
satisfied.

4.

Return the domain_name resulting from these steps if there has been no
error.

5.

Some browsers allow also characters like "_" in domain names. Any such extension
is outside of the scope of this document.

The domain names that do not cause an error in the application of the above
process are valid according to this specification. However, implementations are

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

9 of 25 11/4/2009 9:59 AM

advised to apply additional tests to these labels such as those described in
UTR#36: Unicode Security Considerations [UTR36], and take appropriate actions.
For example, a label with mixed scripts or confusables may be called out in the UI.

[Review Note: Add a section of examples that illustrate each step.]

4. IDNA Mapping Table
For each code point in Unicode, the IDNA Mapping Table provide a status value
and (optionally) a mapping value. The values are defined by the following data
table:

uts46-data-5.1.txt

[Review Note: The format of the table will be changed to match the following
description.]

Each version of Unicode, starting at Unicode 5.1, will have an updated version of
this table. A description of the derivation of these tables is in Section 6, Mapping
Table Derivation. However, the data in the file are normative, not the description
of the derivation. The tables will always be backwards compatible; if the
description of the data generation needs to be changed in order to ensure that, it
will be.

The files use the standard Unicode semicolon-delimited format. The first field is
the hex value of the code point, and second is the status, and third field is a
mapping result in hex, if applicable.

Status Values

valid
disallowed
ignored (= mapped to empty string),
mapped
display

Examples:

0000..002C ; disallowed # NULL..COMMA
002D ; valid # HYPHEN-MINUS
...
0041 ; mapped ; 0061 # LATIN CAPITAL LETTER A
...
00AD ; ignored # SOFT HYPHEN
...

[Review Note: Should tables in the format of a NamePrep profile [RFC3491] also be
made available?]

5. Validity Criteria
Each of the following criteria must be satisfied for a label to be valid:

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

10 of 25 11/4/2009 9:59 AM

The label must contain at least one code point.1.
The label must not contain "--" (two U+002D (-) HYPHEN-MINUS characters)
in the third and fourth positions, and must neither begin nor end with a
U+002D (-) HYPHEN-MINUS character. [Review note: should we point to
other sources for the first 2 of these?]

2.

Each code point in the label must have certain status values according to the
IDNA Mapping Table (Section 4):

For Lookup Processing, the value must be "valid"1.
For Display Processing, the value must be either "valid" or "display"2.

3.

The label must not begin with a combining mark, that is: \p{gc=M}.4.

In addition, the label should meet the requirements for right-to-left characters
specified in the Bidi document of [IDNA2008]. Any particular application may have
tighter validity criteria, as discussed in Section 2, Conformance.

6 Mapping Table Derivation

The following describes the derivation of the mapping table. The data table is
normative, however, not the description of the derivation. The derivation may also
change in the future so as to maintain stability.

Produce an base mapping value

Map each character to its NFKC_CaseFold value [NFKC_CaseFold].1.
Map the following label separator characters to U+002E (.) FULL STOP

U+FF0E (．) FULLWIDTH FULL STOP1.
U+3002 (。) IDEOGRAPHIC FULL STOP2.
U+FF61 (｡) HALFWIDTH IDEOGRAPHIC FULL STOP3.

2.

Derive the base valid set

The definition is based on IDNA2003; when restricted to Unicode 3.2 characters,
this set closely follows the characters allowed in IDNA2003.

Formal Sets Descriptions
[\P{Changes_When_NFKC_Casefolded} Start with characters that are NFKC

Case folded (excluding uppercase, for
example).

- \p{c} - \p{z} Remove Control Characters and
Whitespace

-
\p{Block=Ideographic_Description_Characters}

Remove ideographic description
characters

- \p{ascii} - [\u1806 \uFFFC \uFFFD]

Remove ASCII and three special
characters:
U+1806 (᠆) MONGOLIAN TODO SOFT
HYPHEN
U+FFFC () OBJECT REPLACEMENT

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

11 of 25 11/4/2009 9:59 AM

CHARACTER
U+FFFD (�) REPLACEMENT
CHARACTER

+ [\u002Da-zA-Z1-0] Add back all the valid ASCII

Specify the base exclusion set

The exclusion set consists of characters that were valid in IDNA2003, but would
be mapped differently by later versions of Unicode. For more information, see the
FAQ.

Case Exclusions
U+04C0 (Ӏ) CYRILLIC LETTER PALOCHKA
U+10A0 (Ⴀ) GEORGIAN CAPITAL LETTER AN…U+10C5 (Ⴥ) GEORGIAN
CAPITAL LETTER HOE
U+2132 (Ⅎ) TURNED CAPITAL F
U+2183 (Ↄ) ROMAN NUMERAL REVERSED ONE HUNDRED

Normalization Exclusions (CJK Compatibility Characters)
U+2F868, U+2F874, U+2F91F, U+2F95F, U+2F9BF

Default Ignorable Exclusions
U+3164 () HANGUL FILLER
U+FFA0 () HALFWIDTH HANGUL FILLER
U+115F () HANGUL CHOSEONG FILLER
U+1160 () HANGUL JUNGSEONG FILLER
U+17B4 () KHMER VOWEL INHERENT AQ
U+17B5 () KHMER VOWEL INHERENT AA

Full Stop Exclusions
U+2024 (․) ONE DOT LEADER
..U+2026 (…) HORIZONTAL ELLIPSIS
U+2488 (⒈) DIGIT ONE FULL STOP
..U+249B (⒛) NUMBER TWENTY FULL STOP
U+33C2 (㏂) SQUARE AM
U+33C7 (㏇) SQUARE CO
U+33D8 (㏘) SQUARE PM
U+FE19 (︙) PRESENTATION FORM FOR VERTICAL HORIZONTAL
ELLIPSIS
U+FE30 (︰) PRESENTATION FORM FOR VERTICAL TWO DOT LEADER
U+FE52 (﹒) SMALL FULL STOP

[Review Note: recheck the above list programmatically]

Produce a status and mapping

For each code point:

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

12 of 25 11/4/2009 9:59 AM

If the code point is a Deviation character
the status is "display", and the mapping value is the base mapping
value.

1.

Otherwise, if the code point is in the base exclusion set, or if any code point
in its base mapping value is not in the base valid set

the status is "disallowed", and there is no mapping value.

2.

Otherwise, if the base mapping value is an empty string,
the status is "ignored" and there is no mapping value.

3.

Otherwise, if the base mapping value is the same as the code point,4.
the status is "valid", and there is no mapping value.

Otherwise,
the status is "mapping" and the mapping value is the base mapping
value.

5.

6.1 IDNA2008 Characters

For comparison, the following describes the set of allowed characters defined by
IDNA2008. This set corresponds to the union of the PVALID, CONTEXTJ, and
CONTEXTO characters with rules defined by the Tables document of [IDNA2008].
This is only presented for comparison, and has no bearing on validity of this
specification.

Formal Sets Descriptions
[\P{Changes_When_NFKC_Casefolded} Start with characters that are NFKC

Case folded (as in IDNA2003)
- \p{c} - \p{z} Remove Control Characters and

Whitespace (as in IDNA2003)
- \p{s} - \p{p} - \p{nl} - \p{no} - \p{me} Remove Symbols, Punctuation,

non-decimal Numbers, and Enclosing
Marks

- \p{HST=L} - \p{HST=V} - \p{HST=V} Remove characters used for archaic
Hangul (Korean)

-
\p{block=Combining_Diacritical_Marks_For_Symbols}
- \p{block=Musical_Symbols}
- \p{block=Ancient_Greek_Musical_Notation}

Remove three blocks of technical or
archaic symbols.

- [\u0640 \u07FA \u302E \u302F \u3031-\u3035
\u303B] Remove certain exceptions:

U+0640 (ـ) ARABIC TATWEEL
U+07FA (�) NKO LAJANYALAN
U+302E (〮) HANGUL SINGLE DOT
TONE MARK
U+302F (〯) HANGUL DOUBLE DOT
TONE MARK
U+3031 (〱) VERTICAL KANA
REPEAT MARK
U+3032 (〲) VERTICAL KANA
REPEAT WITH VOICED SOUND MARK
..

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

13 of 25 11/4/2009 9:59 AM

U+3035 (〵) VERTICAL KANA
REPEAT MARK LOWER HALF
U+303B (〻) VERTICAL IDEOGRAPHIC
ITERATION MARK

+ [\u00B7 \u0375 \u05F3 \u05F4 \u30FB]
+ [\u002D \u06FD \u06FE \u0F0B \u3007] Add certain exceptions:

U+00B7 (·) MIDDLE DOT
U+0375 (͵) GREEK LOWER NUMERAL
SIGN
U+05F3 (׳) HEBREW PUNCTUATION
GERESH
U+05F4 (״) HEBREW PUNCTUATION
GERSHAYIM
U+30FB (・) KATAKANA MIDDLE
DOT
plus
U+002D (-) HYPHEN-MINUS
U+06FD (۽) ARABIC SIGN SINDHI
AMPERSAND
U+06FE (۾) ARABIC SIGN SINDHI
POSTPOSITION MEN
U+0F0B (

་
) TIBETAN MARK

INTERSYLLABIC TSHEG
U+3007 (〇) IDEOGRAPHIC NUMBER
ZERO

+ [\u00DF \u03C2]
+ \p{JoinControl}] Add special exceptions (Deviations):

U+00DF (ß) LATIN SMALL LETTER
SHARP S
U+03C2 (ς) GREEK SMALL LETTER
FINAL SIGMA
U+200C () ZERO WIDTH NON-JOINER
U+200D () ZERO WIDTH JOINER

[Review Note: Once IDNA2008 is final, the exact list of characters will be aligned.]

6.2 IDNA Comparison

The following table provides an illustration of the differences between the three
specifications. It omits all code points unassigned in U5.2, and all ASCII, since
those are the same for all three forms. The Count column shows the number of
characters in each bucket. The Differences column calls out some illustrative
character differences: sets with ... are abbreviated. Characters marked * for UTS46
are not modified in display.

[Review Note: the following table is to be updated as follows:

Reorder the list to group similar characters.
Regenerate the figures, since they have changed.

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

14 of 25 11/4/2009 9:59 AM

Under the comments, include one or two illustrative characters, and a
description of the features of that row, and a link to the full list.

]

Count Unicode
Version

IDNA2003 UTS46 IDNA2008 Comments

432 v3.2 DisallowedDisallowedDisallowed
25 v3.2 Ignored Ignored Disallowed[\u034F\u180B-\u180D\u200B\u2060\

2 v3.2 Ignored Ignored* Valid [\u200C\u200D]
2 v3.2 Mapped DisallowedDisallowed[\u3164\uFFA0]

4,619 v3.2 Mapped Mapped Disallowed...ａ𝐚𝑎ⓐＡ𝐀𝐴ⒶªÁÀĂẮẰẴẲÂẤẦ ẪẨǍÅǺÄǞ
2 v3.2 Mapped Mapped* Valid [ßς]
4 v3.2 Valid DisallowedDisallowed[\u17B4\u17B5\u115F\u1160]

41 v3.2 Valid Mapped Disallowed[ↃℲӀႠ-ႦჁႧ-ႬჂႭ-ႲჃႳ-ႾჄႿჀჅ]
3,258 v3.2 Valid Valid Disallowed...℄℈℔℗℘℞℟℣℥⊂⊄⊃⊅⊆⊈⊇���-☯☸-♬�-��-�✁

❵➔➘-➯➱-➾♭-♯〄〒〓〠¤¢£¥...
86,676 v3.2 Valid Valid Valid

14v4.0-5.1DisallowedDisallowedDisallowed
241v4.0-5.1Disallowed Ignored Disallowed
473v4.0-5.1Disallowed Mapped Disallowed

1,226v4.0-5.1Disallowed Valid Disallowed
3,538v4.0-5.1Disallowed Valid Valid

7 Testing
[Review Note: The intent is to supply conformance test files for each Unicode
version starting with Unicode 5.1, so that implementations can test their
implementations against a set of data.]

8 Background
[Review Note: Some or all of this material is probably best moved to the Unicode
FAQ, and just referenced from here, while some is appropriate for inclusion here.
What is left here, if anything, would need to be modified to remove duplication of
material.]

For compatibility in the foreseeable future, special steps need to be taken with
Deviations. While some steps could be taken by top-level domain registries to
mitigate the above problems (the so-called "bundle" option), there are a very large
number of lower level domains that are under the control of millions of other
organizations. For example, the domain names under "blogspot.com", such as
http://café.blogspot.com, are controlled by the company that has registered
"blogspot". For IDNA2008 to avoid problems, no registries—at whatever level
—would allow two IDNs that correspond according to the Deviations table to
resolve to different IP addresses. So blogspot.com would need to disallow
registration of both the registration of http://gefäss.blogspot.com and of
http://gefäß.blogspot.com, to prevent problems (and of other cases like the
normally-invisible ZWJ and ZWNJ). However, applications cannot depend on all

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

15 of 25 11/4/2009 9:59 AM

such registries behaving correctly, because the odds are high that at least some
(and likely very many) of the many thousands of registries will not check for this.
Thus the burden is primarily on applications handling IDNs to prevent the
situation.

The worst of all possible cases is an implementation of IDNA2008 that uses
Custom mappings. Unfortunately, there appears to be no good way to prevent
security problems with these implementations, because it is impossible to
anticipate what such implementations would do. Such an implementation is not
limited to just the above four Deviations for exploits—it could remap even
characters like "Ö" to "oe" or arbitrary other characters. Because there is no way to
predict what it will do, there are no effective countermeasures for security.

Note that IDNA2008 does not make any appreciable difference in reducing
problems with visually-confusable characters (so-called homographs). Thus
programmers still need to be aware of those issues as detailed in UTR#36: Unicode
Security Considerations [UTR36], including the mechanisms for detecting
potentially visually-confusable characters are found in the associated UTS#39:
Unicode Security Mechanisms [UTS39].

8.1 Handling Deviations

Because of the Deviations, even the strict application of IDNA2008 leads to
significant new security issues. The Unicode Technical Committee and invited
experts considered at length various options for dealing with Deviations. Among
those options that were considered but rejected were:

Dual lookups, checking for differences.
One problem with this approach is that the IP lookup may return
spurious differences, because a website may return different IP
addresses for load-balancing.

1.

Not mapping deviations if the registry is trusted. A trusted registry is one
that is complies with this specification, and bundles all allowed Deviations
with their mappings.

For example, http://www.sparkasse-gießen.de (if the registry for "de"
bundles Deviations) would be unaltered, but that
http://www.sparkasse-gießen.com would be mapped to
http://www.sparkasse-giessen.com (if the "com" registry does not bundle
Deviations) before any lookup. Note that this also applies to lower-level
registries. The URL http://www.sparkasse-gießen.blogspot.de would be
remapped to http://www.sparkasse-gießen.blogspot.de unless the registry
for "blogspot.de" is trusted.

2.

In the end, the consensus in the committee was that the distinction between
deviations ({ss, ß, SS}, {σ, ς, Σ}, and joiners) was most important for display. In
particular, it is strongly recommended that any registry that allows for both forms
should always bundle them to avoid security problems. And those registries that
didn't bundle would cause problems. Thus the conclusion was that the distinction
between deviations did not need to be maintained in lookup, because lookup
would always work with registries that are handling the deviations correctly, and
would avoid security problems with the registries that didn't.

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

16 of 25 11/4/2009 9:59 AM

8.2 Handling Label Separators

The Split processing matches what is commonly done with label delimiters by
browsers, whereby characters containing periods are transformed into the NFKC
format before labels are separated. This allows the domain name to be
transformed in a single pass, rather than label by label. Some of the input
characters are effectively forbidden, because they would result in a sequence of
two periods, and thus empty labels. The exact list of characters can be seen with
the Unicode utilities using a regular expression:

http://unicode.org/cldr/utility/list-unicodeset.jsp?a=\p{toNFKC=/\./}

The question also arises as to how to handle escaped periods (such as %2E) and
characters like U+2488 (⒈) DIGIT ONE FULL STOP or U+FF0E (．) FULLWIDTH FULL
STOP that decompose to sequences that include period. While %2E is outside of the
scope of this document, it is useful to see how both of these are handled in
current browsers:

Input http://à%2Ecom %2E http://à⒈com ⒈
Internet
Explorer

http://xn--0ca.com/ =
"."

 http://xn--1-rfa.com/ =
"1."

Firefox http://www.xn--.com-hta.com/≠
"."

 http://xn--1-rfa.com/ =
"1."

Safari /
Chrome

http://xn--0ca.com/ =
"."

 http://xn--1.com-qqa/ ≠
"1."

There are three possible behaviors for characters like U+2488 (⒈) DIGIT ONE FULL
STOP:

The dot behaves like a label separator.1.
The character is rejected2.
The dot is included in the label (the garbled punycode seen above in the ≠
cases).

3.

The conclusion of the committee was that the best behavior was #2, to forbid all
characters (other than the 4 label separators) that contained a FULL STOP in their
compatibility decompositions.

9 FAQ
[Review Note: Some or all of this material is probably best moved to the Unicode
FAQ, and just referenced from here, while some is appropriate for inclusion here.
What is left here, if anything, would need to be modified to remove duplication of
material.]

Q. What are examples of where the different categories of IDNA implementation
behave differently?

A. Here is a table that illustrates the differences, where 2003 is the current
behavior in applications now.

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

17 of 25 11/4/2009 9:59 AM

Yes indicates that the URL would be valid;
No that it wouldn't be; and
?? that it might or might not be, depending on the exact behavior of a
Custom Mapping. Such a Custom mapping might be from Ö to ö, or it might
be from Ö to oe, or might not map at all. Because they are unpredictable, they
are marked with ??.

URL 2003 UTS46 Strict
IDNA2008

IDNA2008 with
Custom
Mapping

Comments

http://öbb.at Yes Yes Yes Yes Simple characters
http://ÖBB.at Yes Yes No ?? Case mapping
http://√.com Yes Yes No ?? Symbol
http://faß.de Yes Yes Yes* Yes* * Deviation (different

resulting IP address)
http://ԛәлп.com No Yes Yes Yes New Unicode

(version 5.1) U+051B
(ԛ) cyrillic qa

Q. How much of a problem is this actually if support for symbols like √ were just
dropped immediately?

A. IDNA2008 removes many characters that were valid under IDNA2003, because
it makes most symbols and punctuation illegal. So while http://√.com is valid in an
IDNA2003 implementation; it would fail on a strict IDNA2008 implementation.
This affects about 3,000 characters, mostly rarely used ones. A small percentage
of those are security risks because of confusability. The vast majority are
unproblematic: for example, having http://I♥NY.com doesn't cause security
problems. IDNA2008 also has additional tests that are based on the context in
which characters are found, but they apply to few characters, and don't provide
any appreciable increase in security.
Q. Doesn't the removal of symbols and punctuation in IDNA2008 help security?

A. Surprisingly, not really. It doesn't do anything about the most frequent sources
of spoofing; look-alike characters that are both letters, like "http://paypal.com" with
a Cyrillic "a". If a symbol that can be used to spoof a letter X is removed, but there
is another letter that can spoof X is retained, there is no net benefit. Weighted by
frequency, according to data at Google the removal of symbols and punctuation in
IDNA2008 reduces opportunities for spoofing by only about 0.000016%. In
another study at Google of 1B web pages, the top 277 confusable URLs used
confusable letters or numbers, not symbols or punctuation. The 278th page had a
confusable URL with × (U+00D7 MULTIPLICATION SIGN - by far the most common
confusable); but that page could could be even better spoofed with х (U+0445
CYRILLIC SMALL LETTER HA), which normally has precisely the same displayed
shape as "x".

Q. What are the main advantages of IDNA2008?

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

18 of 25 11/4/2009 9:59 AM

[Review Note: Is it worth listing the advantages and disadvantages of IDNA2008?]

A. The main advantages are:

Major improvement in updating to Unicode 5.2
Major improvement in making process of updating to future Unicode versions
(mostly) automatic
Significant improvement in allowing needed sequences (combining marks at
end of bidi label).
Significant improvements to the BIDI rules:

restricting sequences that lead to "bidi label hopping". (While these new
bidi rules go a long way towards reducing this problem, they do not
eliminate it because they do not check for inter-label situations.)

Improvements in some user's expectations for display of Deviations: sigma,
sharp s, joiners.
Improvement in clarifying that what people register is the unmapped form.

Q. What are the disadvantages of IDNA2008?

A. If IDNA2003 had not existed, then there would be few disadvantages to
IDNA2008. Given that IDNA2003 does exist, and is widely deployed, the main
disadvantages are:

Major interoperability/security issue with Deviations and Unpredictables
Significant interoperability issue by not continuing IDNA2003 mappings
Significant increase in complexity, reducing the likelihood of correct
implementation

For example, there are new contextual rules that are fairly complicated
to implement, and are not in a machine-readable format. Without a
comprehensive test suite and/or reference implementations to test
against, it is fairly likely that there will be incompatibilities.

Small interoperability issues caused by excluding symbols, punctuation
While there are many such characters, they are relatively rare.

More fragile in that future Unicode versions require a manual step to avoid
instabilities

That is, if Unicode version X changes properties in such a way as to add
or remove characters from PVALID, it requires a manual step to retain
the previous status.

No requirements for stability: that all labels valid under Version X (>= 2008)
must also be valid under all future versions.

Q. What is "bidi label hopping"?

A. It is where bidi reordering causes characters from one label to appear to be part
of another label. For example, "B1.2d" in a right-to-left paragraph (where B stands
for an Arabic or Hebrew letter) would display as "1.2dB". For more information, see
the Unicode bidi demo.
Q. Are the "local" mappings just a UI issue?

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

19 of 25 11/4/2009 9:59 AM

A. No, not if what is meant is that they are only involved in interactions with the
address bar.

Examples:

Alice sees that a URL works in her browser (say http://faß.de or
http://TÜRKIYE.com). She sends it to Bob in an email. Bob clicks on the link in
his email, and doesn't find a site or goes to a wrong (and potentially
malicious) site, because his browser maps to http://fass.de or
http://türkiye.com while Alice's maps to http://faß.de or http://türkıye.com.
Alice creates a web page, using (or
http://TÜRKIYE.com). Bob clicks on the link in his email, and doesn't find a site
or goes to a wrong (and potentially malicious) site.
Alice is in a IM chat with Bob. She copies in http://faß.de (or
http://TÜRKIYE.com) and hits return. Bob clicks on the link he sees in his chat
window. Bob clicks on the link in his email, and doesn't find a site or goes to
a wrong (and potentially malicious) site.
Alice sends a Word document to Bob with a link in it...
Alice creates a PDF document...
...

Q. Do the Custom exploits require unscrupulous registries?

A. No. The exploits do not require unscrupulous registries—it only requires that
registries do not police every URL that they register for possible spoofing behavior.

The custom mappings matter to security, because entering the same URL on two
different browsers may go to two different IP addresses (whenever the two
browsers have different custom mappings). The same thing could happen within
an emailer that is parsing for URLs, and then opening a browser. And for that
matter, there is nothing that prevents two different browsers from applying those
custom mappings to URLs within a page, for example, to a URL in href="...".

Q. Why does IDNA2003 map final sigma (ς) to sigma (σ), map eszett (ß) to "ss",
and delete ZWJ/ZWNJ?

A. This was following the Unicode Standard. These characters are anomalous: the
uppercase of ς is Σ, the same as the uppercase of σ. Note that the text
"ΒόλοΣ.com", which appears on http://Βόλος.com, illustrates this: the normal case
mapping of Σ is to σ. If σ and ς were not treated as case variants in Unicode, there
wouldn't be a match between ΒόλοΣ and Βόλος.

Similarly, the standard uppercase of ß is "SS", the same as the uppercase of "ss".
Note, for example, that on http://www.uni-giessen.de, Gießen is spelled with ß,
but in the top left corner spelled with GIESSEN. The situation is even more
complicated:

In Switzerland, "ss" is uniformly used instead of ß.
The recent spelling reform in Germany and Austria changed whether ß or ss
is used in many words. For example, http://Schloß.de was the spelling before
1996, and http://Schloss.de is "correct" after.

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

20 of 25 11/4/2009 9:59 AM

Recently, in Unicode 5.1, an uppercase version of ß was added (ẞ), because it
is attested in some cases. It is unknown, however, whether it will ever
become the preferred uppercase. Unicode now treats all of these as a single
equivalence class for case-insensitive matching: {ss, ß, SS, ẞ}. See also the
Unicode FAQ.
Both the German and Austrian NICs favored keeping the mapping from ß to
"ss".

For full case insensitivity (with transitivity), {ss, ß, SS} and {σ, ς, Σ} need to be
treated as equivalent, with one of each set chosen as the representative in the
mapping. That is what is done in the Unicode Standard, which was followed by
IDNA2003.

ZWJ and ZWNJ are normally invisible, which allows them to be used for a variety of
spoofs. Invisible characters (like these and soft-hyphen) are allowed on input in
IDNA2003, but deleted so that they do not allow spoofs.

While these are full parts of the orthographies of the languages in question,
neither IDNA2003 nor IDNA2008 ever claimed that all parts of every language's
orthographies are representable in domain names. There are trivial examples even
in English, like the word can't (vs cant) or Wendy's/Arby's Group (NYSE WEN),
which use standard English orthography but cannot be represented faithfully in a
domain name .

The Unicode IDNA Compatibility Processing deals with the Deviations by using a
different display format that preserves these distinctions.

Q. Why allow ZWJ/ZWNJ at all?

During the development of Unicode, the ZWJ and ZWNJ were intended only for
presentation —that is, they would make no difference in the semantics of a word.
Thus the IDNA2003 mapping should and does delete them. That result, however,
should never really be seen by users—it should be just a transient form used for
comparison. Unfortunately, the way IDN works this "comparison format" (with
transformations of eszett, final sigma, and deleted ZWJ/NJ) ends up being visible
to the user, unless a display format is used that differs from the format used to
transform for lookup.

For example, there are words such as the name of the country of Sri Lanka, which
require preservation of these joiners (in this case, ZWJ) in order to appear correct
to the end users when the URL comes back from the DNS server.

Q. Aren't the problems with eszett and final sigma just the same as with l, I, and
1?

A. No, The eszett and sigma are fundamentally different than I,l, and 1. With the
following (using a digit 1), all browsers will go to the same location, whether they
old or new:

http://goog1e.com

With the following, browsers that use IDNA2003 will go to a different location than

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

21 of 25 11/4/2009 9:59 AM

browsers that use a strict version of IDNA2008, unless the registry for xx puts into
place a bundle strategy.

http://gießen.xx

The same goes for Greek sigma, which is a more common character in Greek than
the eszett is in German.

Q. Why doesn't IDNA2008 (or for that matter IDNA2003) restrict allowed domains
on the basis of language?

A. It is extremely difficult to restrict on the basis of language, because the letters
used in a particular language are not well defined. The "core" letters typically are,
but many others are typically accepted in loan words, and have perfectly legitimate
commercial and social use.

It is a bit easier to maintain a bright line based on script differences between
characters: every Unicode character has a defined script (or is Common/Inherited).
Even there it is problematic to have that as a restriction. Some languages
(Japanese) require multiple scripts. And in most cases, mixtures of scripts are
harmless. One can have http://SONY日本.com with no problems at all—while there
are many cases of "homographs" (visually confusable characters) within the same
script that a restriction based on script doesn't deal with.

The rough consensus among the IETF IDNA working group is that script/language
mixing restrictions are not appropriate for the lowest-level protocol. So in this
respect, IDNA2008 is no different than IDNA2003. IDNA doesn't try to attack the
homograph problem, because it is too difficult to have a bright line. Effective
solutions depend on information or capabilities outside of the protocol's control,
such as language restrictions appropriate for a particular registry, the language of
the user looking at this URL, the ability of a UI to display suspicious URLs with
special highlighting, and so on.

Responsible registries can apply such restrictions. For example, a country-level
registry can decide on a restricted set of characters appropriate for that country's
languages. Application software can also take certain precautions—MSIE, Safari,
and Chrome all display domain names in Unicode only if the user's language(s)
typically use the scripts in those domain names. For more information on the kinds
of techniques that implementations can use on the Unicode web site, see UTR#36:
Unicode Security Considerations [UTR36].

Q. Are there differences in mapping between UTS46 and IDNA2003?

No. There are however some cases where IDNA2003 maps characters and UTS46
makes the characters disallowed. For a detailed table of mapping differences, see
section 6.1 IDNA2008 Characters.

In particular, there are collections of characters that would have changed mapping
according to NFKC_CaseFold after Unicode 3.2, unless they were specifically
excluded. All of these characters are extremely rare, and do not require any
special handling.

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

22 of 25 11/4/2009 9:59 AM

Case Pairs. These are characters that did not have corresponding lowercase
characters in Unicode 3.2, but had lowercase characters added later.

U+04C0 (Ӏ) CYRILLIC LETTER PALOCHKA
U+10A0 (Ⴀ) GEORGIAN CAPITAL LETTER AN…U+10C5 (Ⴥ) GEORGIAN
CAPITAL LETTER HOE
U+2132 (Ⅎ) TURNED CAPITAL F
U+2183 (Ↄ) ROMAN NUMERAL REVERSED ONE HUNDRED

Unicode has since stabilized case folding, so that this will not happen in the
future. That is, case pairs will be assigned in the same version of Unicode—so any
newly assigned character will either have a case folding in that version of Unicode,
or it will never have a case folding in the future.

Normalization Mappings. These are characters whose normalizations changed
after Unicode 3.2 (all of them were in Unicode 4.0.0: see Corrigendum #4: Five
Unihan Canonical Mapping Errors). As of Unicode 5.1, normalization is completely
stabilized, so these are the only such characters.

U+2F868 (?) CJK COMPATIBILITY IDEOGRAPH-2F868 → U+2136A (?) CJK
UNIFIED IDEOGRAPH-2136A
U+2F874 (?) CJK COMPATIBILITY IDEOGRAPH-2F874 → U+5F33 (?) CJK
UNIFIED IDEOGRAPH-5F33
U+2F91F (?) CJK COMPATIBILITY IDEOGRAPH-2F91F → U+43AB (?) CJK
UNIFIED IDEOGRAPH-43AB
U+2F95F (?) CJK COMPATIBILITY IDEOGRAPH-2F95F → U+7AAE (?) CJK
UNIFIED IDEOGRAPH-7AAE
U+2F9BF (?) CJK COMPATIBILITY IDEOGRAPH-2F9BF → U+4D57 (?) CJK
UNIFIED IDEOGRAPH-4D57

Q. How do implementations handle normalization for IDNA2003?

There were two corrigenda to normalization issued after 3.2. Formally speaking,
an implementation applying IDNA2003 would disregard these corrigenda, but
browsers do not consistently implement this behavior. In practice this makes no
difference, since the characters and character sequences involved are not found
except in specially-devised test cases, so it is understandable that systems may
not want to maintain the extra code necessary to duplicate the broken Unicode 3.2
behavior.

Corrigendum #4: Five Unihan Canonical Mapping Errors

Corrigendum #4 deals with the 5 characters above.

Example

2F868 (㛼) = xn--g22n
3.2 normalization → xn--j74i = 2136A (𡍪)
5.2 normalization → xn--snl = 36FC (㛼)

Example Behavior

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

23 of 25 11/4/2009 9:59 AM

IE/Chrome/Safari - 3.2
FF - 5.2

Corrigendum #5: Normalization Idempotency

Corrigendum #5 deals with with a subtle algorithmic problem.

Example

1100 0300 1161 0323 (ᄀ̀ᅡ̣) = xn--ksa4ez54cela
3.2 normalization → xn--ksa4ez795d = AC00 0300 0323 (가̣̀)
→ xn--ksa3e0795d = AC00 0323 0300 (가̣̀)
5.2 normalization → xn--ksa4ez54cela = 1100 0300 1161 0323 (ᄀ̀ᅡ̣)

Example Behavior

IE - 5.2
Chrome/Safari - 3.2
FF - 3.2 -- applied twice

Unicode has since stabilized normalization, so such changes will not happen in the
future.

Acknowledgements
For their contributions of ideas or text to this specification, thanks to Matitiahu
Allouche, Peter Constable, Craig Cummings, Martin Dürst, Peter Edberg, Deborah
Goldsmith, Laurentiu Iancu, Gervase Markham, Simon Montagu, Lisa Moore, Eric
Muller, Murray Sargent, Markus Scherer, Jungshik Shin, Shawn Steele, Erik van der
Poel, Chris Weber, and Ken Whistler. The specification builds upon [IDNA2008],
developed in the IETF Idnabis working group, especially contributions from
Matitiahu Allouche, Harald Alvestrand, Vint Cerf, Martin J. Dürst, Lisa Dusseault,
Patrik Fältström, Paul Hoffman, Cary Karp, John Klensin, and Peter Resnick, and
also upon [IDNA2003], authored by Marc Blanchet, Adam Costello, Patrik
Fältström, and Paul Hoffman.

References
References not listed here may be found in
http://www.unicode.org/reports/tr41/#UAX41.

[Feedback] Reporting Errors and Requesting Information Online
http://www.unicode.org/reporting.html

[IDNA2003] The IDNA2003 specification is defined by a cluster of IETF RFCs:
the IDNA base specification [RFC3490], Nameprep [RFC3491],
Punycode [RFC3492], and Stringprep [RFC3454].

[IDNA2008] http://tools.ietf.org/id/idnabis

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

24 of 25 11/4/2009 9:59 AM

[NFKC_CaseFold] The Unicode property specified in [UAX44], and defined by the
data in DerivedNormalizationProps.txt (search for
"NFKC_CaseFold").

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/
For information on the status and development process for
technical reports, and for a list of technical reports.

[RFC1034]
P. Mockapetris. "DOMAIN NAMES - CONCEPTS AND FACILITIES",
RFC1034, November 1987
http://tools.ietf.org/html/rfc1034

[RFC3454] P. Hoffman, M. Blanchet. "Preparation of Internationalized
Strings ("stringprep")", RFC 3454, December 2002.
http://ietf.org/rfc/rfc3454.txt

[RFC3490] Faltstrom, P., Hoffman, P. and A. Costello, "Internationalizing
Domain Names in Applications (IDNA)", RFC 3490, March 2003.
http://ietf.org/rfc/rfc3490.txt

[RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep Profile
for Internationalized Domain Names (IDN)", RFC 3491, March
2003.
http://ietf.org/rfc/rfc3491.txt

[RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA)", RFC
3492, March 2003.
http://ietf.org/rfc/rfc3492.txt

[SafeBrowsing] http://code.google.com/apis/safebrowsing/
[Unicode] The Unicode Standard

For the latest version see:
http://www.unicode.org/versions/latest/.

[Versions] Versions of the Unicode Standard
http://www.unicode.org/versions/
For details on the precise contents of each version of the
Unicode Standard, and how to cite them.

Modifications
The following summarizes modifications from the previous revisions of this
document.

Version 2

Draft 4
Changed title
Draft 3
Added notation section, draft data file (uts46-data-5.1.txt)

UTS#46 Unicode IDNA Compatibility Processing (IDNA46) file:///C:/L2-Doc/Incoming/09390-tr46-4.html

25 of 25 11/4/2009 9:59 AM

Made it clear that applications can choose to have tighter validity criteria.
Fixed the names of Sections 5.1 and 5.2
Added a review note on how this could be extended to registries.
Draft 2
Small changes in wording (not typically marked with yellow).
Additional review notes.
Removed active links from URLs and domain names: replaced by special style.
Fixed references.
Added table of period behavior in 8.2
Added comparison table of IDNA2003, UTS46, and IDNA2008 in section 5.2
Draft 1
Draft UTS posted for public review.
Radical simplification as directed by the UTC.

Version 1

Proposed Draft UTS posted for public review.
Fixed a number of typos and problems pointed out by Marcos (mostly not
noted in the text).
Added draft security and FAQ sections.
Replaced the introduction, and shortened the document overall; with
theNFKC_CaseFolded property, the mapping is considerably simpler.
Added specifications for the Hybrid and Compatibility implementations,
including the two Modes, based on the additional material from the UTC in
early 2008.
Removed the Hybrid variant, and added a discussion of tactics for deviations.

Copyright © 2008-2009 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes
no expressed or implied warranty of any kind, and assumes no liability for errors or
omissions. No liability is assumed for incidental and consequential damages in connection
with or arising out of the use of the information or programs contained or accompanying this
technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some
jurisdictions.

