
 Technical Reports

Proposed Update Unicode Technical Standard #18

Version 14 draft 1
Editors Mark Davis, Andy Heninger
Date 2011-04-11
This Version http://www.unicode.org/reports/tr18/tr18-14.html
Previous
Version

http://www.unicode.org/reports/tr18/tr18-13.html

Latest Version http://www.unicode.org/reports/tr18/
Proposed
Update,
Current Draft

http://www.unicode.org/reports/tr18/proposed.html

Revision 14

Summary

This document describes guidelines for how to adapt regular expression engines
to use Unicode.

Status

This is a draft document which may be updated, replaced, or superseded by
other documents at any time. Publication does not imply endorsement by the
Unicode Consortium. This is not a stable document; it is inappropriate to cite this
document as other than a work in progress.

A Unicode Technical Standard (UTS) is an independent specification.
Conformance to the Unicode Standard does not imply conformance to any
UTS.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this document is
found in [References]. For the latest version of the Unicode Standard see
[Unicode]. For a list of current Unicode Technical Reports see [Reports]. For more
information about versions of the Unicode Standard, see [Versions].

Contents
0 Introduction

0.1 Notation
0.2 Conformance

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

1 of 45 5/6/2011 8:29 AM

1 Basic Unicode Support: Level 1
1.1 Hex notation
1.2 Properties
1.3 Subtraction and Intersection
1.4 Simple Word Boundaries
1.5 Simple Loose Matches
1.6 Line Boundaries
1.7 Code Points

2 Extended Unicode Support: Level 2
2.1 Canonical Equivalents
2.2 Extended Grapheme Clusters
2.3 Default Word Boundaries
2.4 Default Case Conversion
2.5 Name Properties
2.6 Wildcards in Property Values
2.7 Full Properties

3 Tailored Support: Level 3
3.1 Tailored Punctuation
3.2 Tailored Grapheme Clusters
3.3 Tailored Word Boundaries
3.4 Tailored Loose Matches
3.5 Tailored Ranges
3.6 Context Matching
3.7 Incremental Matches
3.8 Unicode Set Sharing
3.9 Possible Match Sets
3.10 Folded Matching
3.11 Submatchers

Annex A Character Blocks
Annex B Sample Collation Grapheme Cluster Code
Annex C Compatibility Properties
References
Acknowledgments
Modifications

0 Introduction

[Review Note: see also PRI #179 Changes to Unicode Regular Expression
Guidelines.]

The following describes general guidelines for extending regular expression
engines (Regex) to handle Unicode. The following issues are involved in such
extensions.

Unicode is a large character set—regular expression engines that are only
adapted to handle small character sets will not scale well.
Unicode encompasses a wide variety of languages which can have very
different characteristics than English or other western European text.

There are three fundamental levels of Unicode support that can be offered by
regular expression engines:

Level 1: Basic Unicode Support. At this level, the regular expression

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

2 of 45 5/6/2011 8:29 AM

engine provides support for Unicode characters as basic logical units. (This
is independent of the actual serialization of Unicode as UTF-8, UTF-16BE,
UTF-16LE, UTF-32BE, or UTF-32LE.) This is a minimal level for useful
Unicode support. It does not account for end-user expectations for
character support, but does satisfy most low-level programmer
requirements. The results of regular expression matching at this level are
independent of country or language. At this level, the user of the regular
expression engine would need to write more complicated regular
expressions to do full Unicode processing.
Level 2: Extended Unicode Support. At this level, the regular expression
engine also accounts for extended grapheme clusters (what the end-user
generally thinks of as a character), better detection of word boundaries, and
canonical equivalence. This is still a default level—independent of country or
language—but provides much better support for end-user expectations than
the raw level 1, without the regular-expression writer needing to know
about some of the complications of Unicode encoding structure.
Level 3: Tailored Support. At this level, the regular expression engine also
provides for tailored treatment of characters, including country- or
language-specific behavior. For example, the characters ch can behave as a
single character in Slovak or traditional Spanish. The results of a particular
regular expression reflect the end-users' expectations of what constitutes a
character in their language, and the order of the characters. However, there
is a performance impact to support at this level.

In particular:

Level 1 is the minimally useful level of support for Unicode. All regex
implementations dealing with Unicode should be at least at Level 1.

1.

Level 2 is recommended for implementations that need to handle additional
Unicode features. This level is achievable without too much effort. However,
some of the subitems in Level 2 are more important than others: see Level 2.

2.

Level 3 contains information about extensions only useful for specific
applications. Features at this level may require further investigation for
effective implementation.

3.

One of the most important requirements for a regular expression engine is to
document clearly what Unicode features are and are not supported. Even if
higher-level support is not currently offered, provision should be made for the
syntax to be extended in the future to encompass those features.

Note: Unicode is a constantly evolving standard: new characters will be
added in the future. This means that a regular expression that tests for
currency symbols, for example, has different results in Unicode 2.0 than in
Unicode 2.1, where the Euro currency symbol was added.

At any level, efficiently handling properties or conditions based on a large
character set can take a lot of memory. A common mechanism for reducing the
memory requirements — while still maintaining performance — is the two-stage
table, discussed in Chapter 5 of The Unicode Standard [Unicode]. For example,
the Unicode character properties required in RL1.2 Properties can be stored in
memory in a two-stage table with only 7 or 8 Kbytes. Accessing those properties

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

3 of 45 5/6/2011 8:29 AM

only takes a small amount of bit-twiddling and two array accesses.

Note: For ease of reference, the section ordering for this document is
intended to be as stable as possible over successive versions. That may lead,
in some cases, to the ordering of the sections being less than optimal.

0.1 Notation

In order to describe regular expression syntax, an extended BNF form is used:
x y the sequence consisting of x then y
x* zero or more occurrences of x
x? zero or one occurrence of x

x | y either x or y
(x) for grouping
"XYZ" terminal character(s)

The following syntax for character ranges will be used in successive examples.

Note: This is only a sample syntax for the purposes of examples in this
document. Regular expression syntax varies widely: the issues discussed
here would need to be adapted to the syntax of the particular
implementation. However, it is important to have a concrete syntax to
correctly illustrate the different issues. In general, the syntax here is similar
to that of Perl Regular Expressions [Perl].) In some cases, this gives multiple
syntactic constructs that provide for the same functionality.

LIST := "[" NEGATION? ITEM (SEP? ITEM)* "]"
ITEM := CODE_POINT2
 := CODE_POINT2 "-" CODE_POINT2 // range

CODE_POINT2 := ESCAPE CODE_POINT
 := CODE_POINT

NEGATION := "^"
SEP := "" // no separator = union
 := "||" // union
ESCAPE := "\"

CODE_POINT refers to any Unicode code point from U+0000 to U+10FFFF,
although typically the only ones of interest will be those representing characters.
Whitespace is allowed between any elements, but to simplify the presentation the
many occurrences of " "* are omitted.

Code points that are syntax characters or whitespace are typically escaped. For
more information see [UAX31]. In examples, the syntax \s to mean white space is
sometimes used. See also Annex C. Compatibility Properties.

Examples:
[a-z || A-Z || 0-9]Match ASCII alphanumerics
[a-z A-Z 0-9]
[a-zA-Z0-9]

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

4 of 45 5/6/2011 8:29 AM

[^a-z A-Z 0-9] Match anything but ASCII alphanumerics
[\] \- \] Match the literal characters], -, <space>

Where string offsets are used in examples, they are from zero to n (the length of
the string), and indicate positions between characters. Thus in "abcde", the
substring from 2 to 4 includes the two characters "cd".

The following notation is defined for use here and in other Unicode documents:
\n As used within regular expressions, expands to the text matching the nth

parenthesized group in regular expression. (à la Perl). Note that most
engines limit n to be [1-9]; thus \456 would be the reference to the 4th
group followed by the literal '56'.

$n As used within replacement strings for regular expressions, expands to the
text matching the nth parenthesized group in a corresponding regular
expression. The value of $0 is the entire expression.(à la Perl)

$xyzAs used within regular expressions or replacement strings, expands to an
assigned variable value. The 'xyz' is of the form of an identifier. For
example, given $greek_lower = [[:greek:]&&[:lowercase:]], the regular
expression pattern "ab$greek_lower" is equivalent to "ab[[:greek:]&&
[:lowercase:]]".

Note: Because any character could occur as a literal in a regular expression,
when regular expression syntax is embedded within other syntax it can be
difficult to determine where the end of the regex expression is. Common
practice is to allow the user to choose a delimiter like '/' in /ab(c)*/. The
user can then simply choose a delimiter that is not in the particular regular
expression.

0.2 Conformance

The following describes the possible ways that an implementation can claim
conformance to this technical standard.

All syntax and API presented in this document is only for the purpose of
illustration; there is absolutely no requirement to follow such syntax or API.
Regular expression syntax varies widely: the features discussed here would need
to be adapted to the syntax of the particular implementation. In general, the
syntax in examples is similar to that of Perl Regular Expressions [Perl], but it may
not be exactly the same. While the API examples generally follow Java style, it is
again only for illustration.

C0. An implementation claiming conformance to this specification at any Level
shall identify the version of this specification and the version of the Unicode
Standard.

C1. An implementation claiming conformance to Level 1 of this specification shall
meet the requirements described in the following sections:

RL1.1 Hex Notation
RL1.2 Properties
RL1.2a Compatibility Properties

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

5 of 45 5/6/2011 8:29 AM

RL1.3 Subtraction and Intersection
RL1.4 Simple Word Boundaries
RL1.5 Simple Loose Matches
RL1.6 Line Boundaries
RL1.7 Supplementary Code Points

C2. An implementation claiming conformance to Level 2 of this specification shall
satisfy C1, and meet the requirements described in the following sections:

RL2.1 Canonical Equivalents
RL2.2 Extended Grapheme Clusters
RL2.3 Default Word Boundaries
RL2.4 Default Case Conversion
RL2.5 Name Properties
RL2.6 Wildcards in Property Values
RL2.7 Full Properties

C3. An implementation claiming conformance to Level 3 of this specification shall
satisfy C1 and C2, and meet the requirements described in the following
sections:

RL3.1 Tailored Punctuation
RL3.2 Tailored Grapheme Clusters
RL3.3 Tailored Word Boundaries
RL3.4 Tailored Loose Matches
RL3.5 Tailored Ranges
RL3.6 Context Matching
RL3.7 Incremental Matches
RL3.9 Possible Match Sets
RL3.10 Folded Matching
RL3.11 Submatchers

C4. An implementation claiming partial conformance to this specification shall
clearly indicate which levels are completely supported (C1-C3), plus any
additional supported features from higher levels.

For example, an implementation may claim conformance to Level 1, plus
Context Matching, and Incremental Matches. Another implementation may
claim conformance to Level 1, except for Subtraction and Intersection.

Notes:

A regular expression engine may be operating in the context of a larger
system. In that case some of the requirements may be met by the overall
system. For example, the requirements of Section 2.1 Canonical Equivalents
might be best met by making normalization available as a part of the larger
system, and requiring users of the system to normalize strings where
desired before supplying them to the regular-expression engine. Such usage
is conformant, as long as the situation is clearly documented.
A conformance claim may also include capabilities added by an optional

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

6 of 45 5/6/2011 8:29 AM

add-on, such as an optional library module, as long as this is clearly
documented.
For backwards compatibility, some of the functionality may only be available
if some special setting is turned on. None of the conformance requirements
require the functionality to be available by default.

1 Basic Unicode Support: Level 1
Regular expression syntax usually allows for an expression to denote a set of
single characters, such as [a-z A-Z 0-9]. Because there are a very large number of
characters in the Unicode standard, simple list expressions do not suffice.

1.1 Hex notation

The character set used by the regular expression writer may not be Unicode, or
may not have the ability to input all Unicode code points from a keyboard.

RL1.1 Hex Notation
To meet this requirement, an implementation shall supply a mechanism for
specifying any Unicode code point (from U+0000 to U+10FFFF), based on
the hexadecimal code point represention.

A sample notation for listing hex Unicode characters within strings is by
prefixing four hex digits with "\u" and prefixing eight hex digits with "\U". This
would provide for the following addition:

<codepoint> := <character>
<codepoint> := ESCAPE U_SHORT_MARK
 HEX_CHAR HEX_CHAR HEX_CHAR HEX_CHAR

<codepoint> := ESCAPE U_LONG_MARK
 HEX_CHAR HEX_CHAR HEX_CHAR HEX_CHAR
 HEX_CHAR HEX_CHAR HEX_CHAR HEX_CHAR

U_SHORT_MARK := "u"
U_LONG_MARK := "U"

Examples:
[\u3040-\u309F \u30FC]Match Hiragana characters, plus prolonged sound sign
[\u00B2 \u2082] Match superscript and subscript 2
[a \U00010450] Match "a" or U+10450 SHAVIAN LETTER PEEP

Notes:

Instead of using \u for some values and \U for others, an alternate unified
syntax is [...\x{3040}...], as in Perl 5.6 and later.

[Review Note: should we use the cleaner \x{…} syntax within this
document?]

More advanced regular expression engines can also offer the ability to use
the Unicode character name for readability. See 2.5 Name Properties.
The syntax must use the hexadecimal representation for the code point, so

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

7 of 45 5/6/2011 8:29 AM

syntax such as \x{D800}\x{DC00} or \x{F0}\x{90}\x{80}\x{80} does not
meet this requirement for expressing U+10000. Syntax such as
\U00010000 or \x{10000} does satisfy the requirement for expressing
U+10000.

1.1.1 Hex Notation and Normalization

The Unicode Standard treats certain sequences of characters as equivalent, such
as the following:

1 u + grave U+0075 (u) LATIN SMALL LETTER U +
U+0300 (̀) COMBINING GRAVE ACCENT

2 u-grave U+00F9 (ù) LATIN SMALL LETTER U WITH GRAVE

Literal text in regular expressions may be normalized (converted to equivalent
characters) in transmission, out of the control of the authors of of that text. For
example, a regular expression may contain a sequence of literal characters 'u' and
grave, such as the expression [aeiou ̀ ́ ̈̈] (the last three character being U+0300 (̀)
COMBINING GRAVE ACCENT, U+0301 (́) COMBINING ACUTE ACCENT, and U+0308
(̈) COMBINING DIAERESIS. In transmission, the two adjacent characters in Row 1
might be changed to the different expression containing just one character in
Row 2, thus changing the meaning of the regular expression. Hex notation can
be used to avoid this problem. In the above example, the regular expression
should be written as [aeiou\u0300\u0301\u0308] for safety.

A regular expression engine may also enforce a single, uniform interpretation of
regular expressions by always normalizing input text to Normalization Form NFC
before interpreting that text. For more information, see UAX #15: Unicode
Normalization Forms [UAX15].

1.2 Properties

Because Unicode is a large character set, a regular expression engine needs to
provide for the recognition of whole categories of characters as well as simply
ranges of characters; otherwise the listing of characters becomes impractical and
error-prone. This is done by providing syntax for sets of characters based on the
Unicode character properties, and allowing them to be mixed with lists and
ranges of individual code points.

There are a large number of Unicode Properties defined in the Unicode Character
Database (UCD), which also provides the official data for mapping Unicode
characters (and code points) to property values. See Section 2.7, Full Properties,
also UAX #44, Unicode Character Database [UAX44] and Chapter 4 in The
Unicode Standard [Unicode]. The defined Unicode string functions, such as
isNFC() and isLowercase(), also apply to single code points and are useful to
support in regular expressions.

The recommended names for UCD properties and property values are in
PropertyAliases.txt [Prop] and PropertyValueAliases.txt [PropValue]. There are
both abbreviated names and longer, more descriptive names. It is strongly
recommended that both names be recognized, and that loose matching of
property names be used, whereby the case distinctions, whitespace, hyphens, and
underbar are ignored.

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

8 of 45 5/6/2011 8:29 AM

Note: it may be a useful implementation technique to load the Unicode
tables that support properties and other features on demand, to avoid
unnecessary memory overhead for simple regular expressions that do not
use those properties.

Where a regular expression is expressed as much as possible in terms of
higher-level semantic constructs such as Letter, it makes it practical to work with
the different alphabets and languages in Unicode. Here is an example of a syntax
addition that permits properties.

Notice that following Perl Syntax, the p is lowercase to indicate a positive
match, and uppercase to indicate a negative match.

ITEM := POSITIVE_SPEC | NEGATIVE_SPEC
POSITIVE_SPEC := ("\p{" PROP_SPEC "}") | ("[:" PROP_SPEC ":]")
NEGATIVE_SPEC := ("\P{" PROP_SPEC "}") | ("[:^" PROP_SPEC ":]")
PROP_SPEC := <binary_unicode_property>
PROP_SPEC := <unicode_property> (":" | "=" | "≠") VALUE
PROP_SPEC := <script_or_category_property_value> ("|"
<script_or_category_property_value>)*
PROP_VALUE := <unicode_property_value> ("|" <unicode_property_value>)*

Examples:
[\p{L} \p{Nd}] Match all letters and decimal digits
[\p{letter} \p{decimal
number}]
[\p{letter|decimal number}]
[\p{L|Nd}]
\P{script=greek} Match anything that does not have the Greek script
\P{script:greek}
\p{script≠greek}
[:^script=greek:]
[:^script:greek:]
[:script≠greek:]
\p{East Asian Width:Narrow} Match anything that has the East Asian Width

property value of Narrow
\p{Whitespace} Match anything that has the binary property

Whitespace

Some properties are binary: they are either true or false for a given code point. In
that case, only the property name is required. Others have multiple values, so for
uniqueness both the property name and the property value need to be included.
For example, Alphabetic is both a binary property and a value of the Line_Break
enumeration, so \p{Alphabetic} would mean the binary property, and \p{Line
Break:Alphabetic} or \p{Line_Break=Alphabetic} would mean the enumerated
property. There are two exceptions to this: the properties Script and General
Category commonly have the property name omitted. Thus \p{Not_Assigned} is
equivalent to \p{General_Category = Not_Assigned}, and \p{Greek} is equivalent
to \p{Script:Greek}.

RL1.2 Properties

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

9 of 45 5/6/2011 8:29 AM

To meet this requirement, an implementation shall provide at least a
minimal list of properties, consisting of the following:

General_Category
Script
Alphabetic
Uppercase
Lowercase
White_Space
Noncharacter_Code_Point
Default_Ignorable_Code_Point
ANY, ASCII, ASSIGNED

The values for these properties must match the Unicode definitions.

RL1.2aCompatibility Properties
 To meet this requirement, an implementation shall provide the properties

listed in Annex C. Compatibility Properties, with the property values as
listed there. Such an implementation shall document whether it is using
the Standard Recommendation or POSIX-compatible properties.

In order to meet requirements RL1.2 and RL1.2a, the implementation has to
satisfy the Unicode definition of the properties for the supported version of
Unicode, not other possible definitions. However, the names used for the
properties might need to be different for compatibility. For example, if a regex
engine already has "Alphabetic", for compatibility it may need a different name,
such as "Unicode_Alphabetic" for the property in RL1.2.

For more information on properties, see UAX #44, Unicode Character Database
[UAX44].

Of the properties in RL1.2, only General Category and Script have multiple values;
the rest are binary. An implementation that does not support non-binary
enumerated properties can essentially "flatten" the enumerated type. Thus, for
example, instead of \p{script=latin} the syntax could be \p{script_latin}.

General Category Property

The most basic overall character property is the General Category, which is a
basic categorization of Unicode characters into: Letters, Punctuation, Symbols,
Marks, Numbers, Separators, and Other. These property values each have a single
letter abbreviation, which is the uppercase first character except for separators,
which use Z. The official data mapping Unicode characters to the General
Category value is in UnicodeData.txt [UData].

Each of these categories has different subcategories. For example, the
subcategories for Letter are uppercase, lowercase, titlecase, modifier, and other
(in this case, other includes uncased letters such as Chinese). By convention, the
subcategory is abbreviated by the category letter (in uppercase), followed by the
first character of the subcategory in lowercase. For example, Lu stands for
Uppercase Letter.

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

10 of 45 5/6/2011 8:29 AM

Note: Because it is recommended that the property syntax be lenient as to
spaces, casing, hyphens and underbars, any of the following should be
equivalent: \p{Lu}, \p{lu}, \p{uppercase letter}, \p{uppercase letter},
\p{Uppercase_Letter}, and \p{uppercaseletter}

The General Category property values are listed below. For more information on
the meaning of these values, seeUAX #44, Unicode Character Database [UAX44].

Abb. Long form
L Letter
Lu Uppercase Letter
Ll Lowercase Letter
Lt Titlecase Letter
Lm Modifier Letter
Lo Other Letter
M Mark
Mn Non-Spacing Mark
Mc Spacing Combining

Mark
Me Enclosing Mark
N Number
Nd Decimal Digit

Number
Nl Letter Number
No Other Number

Abb. Long form
S Symbol
Sm Math Symbol
Sc Currency Symbol
Sk Modifier Symbol
So Other Symbol
P Punctuation
Pc Connector

Punctuation
Pd Dash Punctuation
Ps Open Punctuation
Pe Close Punctuation
Pi Initial Punctuation
Pf Final Punctuation
Po Other Punctuation

Abb. Long form
Z Separator
Zs Space Separator
Zl Line Separator
Zp Paragraph Separator
C Other
Cc Control
Cf Format
Cs Surrogate
Co Private Use
Cn Not Assigned
- Any*
- Assigned*
- ASCII*

* The last few properties are not part of the General Category.

Any matches all code points. This could also be captured with [\u0000-
\u10FFFF], but with Tailored Ranges off. In some regular expression
languages, \p{Any} may be expressed by a period, but that may exclude
newline characters.
Assigned is equivalent to \P{Cn}, and matches all assigned characters (for
the target version of Unicode). It also includes all private use characters.
It is useful for avoiding confusing double negatives. Note that Cn
includes noncharacters, so Assigned excludes them.
ASCII is equivalent to [\u0000-\u007F], but with Tailored Ranges off.

Script Property

A regular-expression mechanism may choose to offer the ability to identify
characters on the basis of other Unicode properties besides the General Category.
In particular, Unicode characters are also divided into scripts as described in UAX
#24: Unicode Script Property [UAX24] (for the data file, see Scripts.txt
[ScriptData]). Using a property such as \p{Greek} allows implementations to test
whether letters are Greek or not.

Note, however, that the usage model for the script property normally requires
that people construct somewhat more complex regular expressions, because a

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

11 of 45 5/6/2011 8:29 AM

great many characters are shared between scripts. Documentation should point
users to the description in UAX #24.

There are situations where characters are regularly used with multiple script
values, including common characters like U+30FC (ー) KATAKANA-HIRAGANA
PROLONGED SOUND MARK. To account for such cases, support of the Script
Extensions data as a regular expression property Script Extensions (abbreviated
as scx) is recommended. Note, however, that the values for such a property is
likely be extended over time as new information is gathered on the use of
characters with different scripts. For more information, see Multiple Script Values
in UAX #24: Unicode Script Property [UAX24].

Other Properties

Other recommended properties are described in 2.7 Full Properties. See also 2.5
Name Properties and 2.6 Wildcards in Property Values.

For example:

String properties Description
[:toNFC=Å:] The set of all characters X such that toNFC(X) = "a"
[:toNFD=A\u0300:] The set of all characters X such that toNFD(X) = "A\u0300"
[:toNFKC=A:] The set of all characters X such that toNFKC(X) = "A"
[:toNFKD=A\u0300:] The set of all characters X such that toNFKD(X) = "a"
[:toLowercase=a:] The set of all characters X such that toLowercase(X) = "a"
[:toUppercase=A:] The set of all characters X such that toUppercase(X) = "A"
[:toTitlecase=A:] The set of all characters X such that toTitlecase(X) = "A"
[:toCaseFold=a:] The set of all characters X such that toCasefold(X) = "A"
Binary properties Description
[:isNFC:] The set of all characters X such that toNFC(X) = X
[:isNFD:] The set of all characters X such that toNFD(X) = X
[:isNFKC:] The set of all characters X such that toNFKC(X) = X
[:isNFKD:] The set of all characters X such that toNFKD(X) = X
[:isLowercase:] The set of all characters X such that toLowercase(X) = X
[:isUppercase:] The set of all characters X such that toUppercase(X) = X
[:isTitlecase:] The set of all characters X such that toTitlecase(X) = X
[:isCaseFolded:] The set of all characters X such that toCasefo(X) = X
[:isCased:] The set of all

Age

The DerivedAge data file in the UCD provides the deltas between versions, for
compactness. However, when using the property all characters included in that
version are included. Thus \p{age=3.0} includes the letter a, which was included
in Unicode 1.0. To get characters that are new in a particular version, subtract off
the previous version as described in 1.3 Subtraction and Intersection. For
example: [\p{age=3.1} -- \p{age=3.0}].The name of the Age property is
somewhat confusing, because it does not really refer to the age of a character,
but rather specifies the first version of the standard in which it was assigned. A

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

12 of 45 5/6/2011 8:29 AM

better name for the property might have been "Version_First_Encoded".

Blocks

Unicode blocks can sometimes also be a useful enumerated property. However,
there are some very significant caveats to the use of Unicode blocks for the
identification of characters: see Annex A. Character Blocks. If blocks are used,
some of the names can collide with Script names, so they should be
distinguished, with syntax such as \p{Greek Block} or \p{Block=Greek}.

1.3 Subtraction and Intersection

As discussed earlier, character properties are essential with a large character set.
In addition, there needs to be a way to "subtract" characters from what is already
in the list. For example, one may want to include all non-ASCII letters without
having to list every character in \p{letter} that is not one of those 52.

RL1.3 Subtraction and Intersection
To meet this requirement, an implementation shall supply mechanisms for
union, intersection and set-difference of Unicode sets.

ITEM := "[" ITEM "]" // for grouping
OPERATOR := "" // no separator = union
 := "||" // union: A∪B
 := "&&" // intersection: A∩B
 := "--" // set difference: A-B
 := "~~" // symmetric difference: A⊖B = (A∪B)-(A∩B)

Implementations may also choose to offer other set operations. The symmetric
difference of two sets is particularly useful. It is defined as being the union minus
the intersection. Thus [\p{letter}~~\p{ascii}] is equivalent to [[\p{letter}
\p{ascii}]--[\p{letter}&&\p{ascii}]].

For compatibility with industry practice, symbols are doubled in the above
notation. This practice provides for better backwards compatibility with
expressions using older syntax, because they are unlikely to contain doubled
characters. It also allows the operators to appear adjacent to ranges without
ambiguity, such as [\p{letter}--a-z].

Binding or precedence may vary by regular expression engine, so it is safest to
always disambiguate using brackets to be sure. In particular, precedence may put
all operators on the same level, or may take union as binding more closely. For
example, where A..E stand for expressions, not characters:

Expression Equals When
[ABC--DE] [[AB]C]--[DE]] Union binds more closely. That is, it means:

form the union of A, B, and C, and then subtract the
union of D and E.

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

13 of 45 5/6/2011 8:29 AM

[[[[[AB]C]--D]E]] Operators are on the same level. That is, it means:

form the union of A, B, and C, and then subtract D,
and then add E.

Even where an expression is not ambiguous, extra grouping brackets may be
useful for clarity.

Examples:
[\p{L}--QW] Match all letters but Q and W
[\p{N}--[\p{Nd}--0-9]] Match all non-decimal numbers, plus 0-9.
[\u0000-\u007F--\P{letter}] Match all letters in the ASCII range, by

subtracting non-letters.
[\p{Greek}--\N{GREEK SMALL LETTER
ALPHA}]

Match Greek letters except alpha
[\p{Assigned}--\p{Decimal Digit
Number}--a-fA-Fａ-ｆＡ-Ｆ]

Match all assigned characters except for
hex digits (using a broad definition).

1.4 Simple Word Boundaries

Most regular expression engines allow a test for word boundaries (such as by
"\b" in Perl). They generally use a very simple mechanism for determining word
boundaries: one example of that would be having word boundaries between any
pair of characters where one is a <word_character> and the other is not, or at the
start and end of a string. This is not adequate for Unicode regular expressions.

RL1.4 Simple Word Boundaries
To meet this requirement, an implementation shall extend the word
boundary mechanism so that:

The class of <word_character> includes all the Alphabetic values from
the Unicode character database, from UnicodeData.txt [UData], plus
the U+200C ZERO WIDTH NON-JOINER and U+200D ZERO WIDTH
JOINER. See also Annex C: Compatibility Properties.

1.

Nonspacing marks are never divided from their base characters, and
otherwise ignored in locating boundaries.

2.

Level 2 provides more general support for word boundaries between arbitrary
Unicode characters which may override this behavior.

1.5 Simple Loose Matches

Most regular expression engines offer caseless matching as the only loose
matching. If the engine does offers this, then it needs to account for the large
range of cased Unicode characters outside of ASCII.

RL1.5 Simple Loose Matches

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

14 of 45 5/6/2011 8:29 AM

To meet this requirement, if an implementation provides for
case-insensitive matching, then it shall provide at least the simple, default
Unicode case-insensitive matching.

To meet this requirement, if an implementation provides for case
conversions, then it shall provide at least the simple, default Unicode case
conversion.

In addition, because of the vagaries of natural language, there are situations
where two different Unicode characters have the same uppercase or lowercase. To
meet this requirement, implementations must implement these in accordance
with the Unicode Standard. For example, the Greek U+03C3 "σ" small sigma,
U+03C2 "ς" small final sigma, and U+03A3 "Σ" capital sigma all match.

Some caseless matches may match one character against two: for example,
U+00DF "ß" matches the two characters "SS". And case matching may vary by
locale. However, because many implementations are not set up to handle this, at
Level 1 only simple case matches are necessary. To correctly implement a caseless
match, see Chapter 3 of the Unicode Standard [Unicode]. The data file supporting
caseless matching is CaseFolding.txt [CaseData].

To meet this requirement, where an implementation also offers case conversions,
these must also follow Chapter 3 Conformance of [Unicode]. The relevant data
files are SpecialCasing.txt [SpecialCasing] and UnicodeData.txt [UData].

[Review Note: as part of PRI #179 Changes to Unicode Regular Expression
Guidelines, text would be added here to to describe more precisely how to match
text case-insensitively. The discussion will outline how a regular expression
pattern P can be made to match insensitively, by making the following changes in
the interpretation of P:

Each string is matched case-insensitively. That is, it is logically expanded
into a sequence of OR expressions, where each OR expression lists all of the
characters that have a simple case-folding to the same value.

For example, /Dåb/ matches as if it were expanded into /(?:d|D)
(?:å|Å|Å)(?:b|B)/
Back references are subject to this logical expansion, such as
/(?i)(a.c)\1/, where \1 matches what is in the first grouping.

1.

Each character class is closed under case. That is, it is logically expanded
into a set of code points, and then closed by adding all simple case
equivalents of each of those code points.

For example, [\p{Block=Phonetic_Extensions} [A-E]] is a character class
that matches 133 code points (under Unicode 6.0). Its case-closure
adds 7 more code points: a-e, Ᵽ, and Ᵹ, for a total of 140 code points.

2.

For both property character classes and explicit character classes, closing under
simple case-insensitivity means including characters not in the set. For example:

The case-closure of \p{Block=Phonetic_Extensions} includes two characters
not in that set, namely Ᵽ and Ᵹ.

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

15 of 45 5/6/2011 8:29 AM

The case-closure of [A-E] includes five characters not in that set, namely
[a-e].

1.6 Line Boundaries

Most regular expression engines also allow a test for line boundaries:
end-of-line or start-of-line. This presumes that lines of text are separated by
line (or paragraph) separators.

RL1.6 Line Boundaries
To meet this requirement, if an implementation provides for line-boundary
testing, it shall recognize not only CRLF, LF, CR, but also NEL (U+0085), PS
(U+2029) and LS (U+2028).

Formfeed (U+000C) also normally indicates an end-of-line. For more
information, see Chapter 3 of [Unicode].

These characters should be uniformly handled in determining logical line
numbers, start-of-line, end-of-line, and arbitrary-character implementations.
Logical line number is useful for compiler error messages and the like. Regular
expressions often allow for SOL and EOL patterns, which match certain
boundaries. Often there is also a "non-line-separator" arbitrary character pattern
that excludes line separator characters.

The behavior of these characters may also differ depending on whether one is in
a "multiline" mode or not. For more information, see Anchors and Other
"Zero-Width Assertions" in Chapter 3 of [Friedl].

A newline sequence is defined to be any of the following:
\u000A | \u000B | \u000C | \u000D | \u0085 | \u2028 | \u2029 | \u000D\u000A

Logical line number
The line number is increased by one for each occurrence of a newline
sequence.
Note that different implementations may call the first line either line
zero or line one.

1.

Logical beginning of line (often "^")
SOL is at the start of a file or string, and depending on matching
options, also immediately following any occurrence of a newline
sequence.
There is no empty line within the sequence \u000D\u000A, that is,
between the first and second character.
Note that there may be a separate pattern for "beginning of text" for a
multiline mode, one which matches only at the beginning of the first
line, e.g., in Perl \A.

2.

Logical end of line (often "$")
EOL at the end of a file or string, and depending on matching options,
also immediately preceding a final occurrence of a newline sequence.
There is no empty line within the sequence \u000D\u000A, that is,
between the first and second character.

3.

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

16 of 45 5/6/2011 8:29 AM

SOL and EOL are not symmetric because of multiline mode: EOL can be
interpreted in at least three different ways:

EOL matches at the end of the stringa.
EOL matches before final newlineb.
EOL matches before any newlinec.

Arbitrary character pattern (often ".")
Where the 'arbitrary character pattern' matches a newline sequence, it
must match all of the newline sequences, and \u000D\u000A (CRLF)
should match as if it were a single character. (The recommendation
that CRLF match as a single character is, however, not required for
conformance to RL1.6.)
Note that ^$ (an empty line pattern) should not match the empty string
within the sequence \u000D\u000A, but should match the empty string
within the reversed sequence \u000A\u000D.

4.

It is strongly recommended that there be a regular expression meta-character,
such as "\R", for matching all line ending characters and sequences listed above
(e.g. in #1). It would thus be shorthand for:

(\u000D\u000A | [\u000A\u000B\u000C\u000D\u0085\u2028\u2029])

Note: For some implementations, there may be a performance impact in
recognizing CRLF as a single entity, such as with an arbitrary pattern
character ("."). To account for that, an implementation may also satisfy R1.6
if there is a mechanism available for converting the sequence CRLF to a
single line boundary character before regex processing.

For more information on line breaking, see [UAX14].

1.7 Code Points

A fundamental requirement is that Unicode text be interpreted semantically by
code point, not code units.

RL1.7 Supplementary Code Points
To meet this requirement, an implementation shall handle the full range of
Unicode code points, including values from U+FFFF to U+10FFFF. In
particular, where UTF-16 is used, a sequence consisting of a leading
surrogate followed by a trailing surrogate shall be handled as a single code
point in matching.

UTF-16 uses pairs of Unicode code units to express code points above FFFF16.
Surrogate pairs (or their equivalents in other encoding forms) are be handled
internally as single code point values. In particular, [\u0000-\U0010000] will match
all the following sequence of code units:

Code Point UTF-8 Code Units UTF-16 Code
Units

UTF-32 Code
Units

7F 7F 007F 0000007F
80 C2 80 0080 00000080
7FF DF BF 07FF 000007FF

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

17 of 45 5/6/2011 8:29 AM

800 E0 A0 80 0800 00000800
FFFF EF BF BF FFFF 0000FFFF
10000 F0 90 80 80 D800 DC00 00010000

Note: It is permissible, but not required, to match an isolated surrogate code
point (such as \x{D800}) in text that supports it (Unicode 16-bit strings and
Unicode 32-bit characters).

2 Extended Unicode Support: Level 2
Level 1 support works well in many circumstances. However, it does not handle
more complex languages or extensions to the Unicode Standard very well.
Particularly important cases are canonical equivalence, word boundaries,
extended grapheme cluster boundaries, and loose matches. (For more
information about boundary conditions, see UAX #29: Unicode Text
Segmentation [UAX29].)

Level 2 support matches much more what user expectations are for sequences of
Unicode characters. It is still locale-independent and easily implementable.
However, for compatibility with Level 1, it is useful to have some sort of syntax
that will turn Level 2 support on and off.

The features comprising Level 2 are not in order of importance. In particular, the
most useful and highest priority features in practice are:

RL2.3 Default Word Boundaries
RL2.5 Name Properties
RL2.6 Wildcards in Property Values
RL2.7 Full Properties

2.1 Canonical Equivalents

[Review Note: as a part of PRI #179 Changes to Unicode Regular Expression
Guidelines, this section would be withdrawn. Instead, text will be added
describing how to construct patterns that will match against NFD (or NFKD) text,
and the description in UTS #18 will be changed to reflect that. That is, it will
describe a process whereby:

The text being matched is put into into a defined normalization form (NFD
or NFKD).

1.

The pattern is not modified in any way from what the user provides.2.
Matching proceeds on a code point by code point basis, as usual.3.

There are many instances where a character can be equivalently expressed by two
different sequences of Unicode characters. For example, [ä] should match both
"ä" and "a\u0308". (See UAX #15: Unicode Normalization [UAX15] and Sections
2.5 and 3.9 of The Unicode Standard [Unicode] for more information.)

RL2.1 Canonical Equivalents
To meet this requirement, an implementation shall provide a mechanism
for ensuring that all canonically equivalent literal characters match.

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

18 of 45 5/6/2011 8:29 AM

One of the most effective ways to implement canonical equivalence is by having a
special mode that only matches on extended grapheme cluster boundaries, since
it avoids the reordering problems that can happen in normalization. See RL2.2
Extended Grapheme Clusters.

There are two other options for implementing this:

Before (or during) processing, translate text (and pattern) into a normalized
form. This is the simplest to implement, because there are available code
libraries for doing normalization.

1.

Expand the regular expression internally into a more generalized regular
expression that takes canonical equivalence into account. For example, the
expression [a-z ä] can be internally turned into ([a-z ä] | (a \u0308)). While
this can be faster, it may also be substantially more difficult to generate
expressions capturing all of the possible equivalent sequences.

2.

It may be useful to distinguish a regular-expression engine from the larger
software package which uses it. For example, the requirements of this section
can be met by requiring the package to normalize text before supplying it to the
regular expression engine. However, where the regular expression engine returns
offsets into the text, the package may need to map those back to what the
offsets would be in the original, unnormalized text.

Note: Combining characters are required for many languages. Even when
text is in Normalization Form C, there may be combining characters in the
text.

2.2 Extended Grapheme Clusters

One or more Unicode characters may make up what the user thinks of as a
character. To avoid ambiguity with the computer use of the term character, this is
called a grapheme cluster. For example, "G" + acute-accent is a grapheme
cluster: it is thought of as a single character by users, yet is actually represented
by two Unicode characters. The Unicode Standard defines extended grapheme
clusters that keep Hangul syllables together and do not break between base
characters and combining marks. The precise definition is in UAX #29: Unicode
Text Segmentation [UAX29]. These extended grapheme clusters are not the same
as tailored grapheme clusters, which are covered in Level 3, Tailored Grapheme
Clusters.

RL2.2 Extended Grapheme Clusters
To meet this requirement, an implementation shall provide a mechanism
for matching against an arbitrary extended grapheme cluster, a literal
cluster, and matching extended grapheme cluster boundaries.

For example, an implementation could interpret \X as matching any extended
grapheme cluster, while interpreting "." as matching any single code point. It
could interpret \b{g} as a zero-width match against any extended grapheme
cluster boundary, and \B{g} as the negation of that.

More generally, it is useful to have zero width boundary detections for each of

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

19 of 45 5/6/2011 8:29 AM

the different kinds of segment boundaries defined by Unicode ([UAX29] and
[UAX14]). For example:

Syntax Description
\b{g} Zero-width match at a Unicode extended grapheme cluster boundary
\b{w} Zero-width match at a Unicode word boundary. Note that this is different

than \b alone, which corresponds to \w and \W. See Annex C:
Compatibility Properties.

\b{l} Zero-width match at a Unicode line break boundary
\b{s} Zero-width match at a Unicode sentence boundary

Thus \X is equivalent to .+?\b{g}; proceed the minimal number of characters (but
at least one) to get to the next extended grapheme cluster boundary.

Regular expression engines should also provide some mechanism for easily
matching against literal clusters, because they are more likely to match user
expectations for many languages. One mechanism for doing that is to have
explicit syntax for literal clusters, as in the following syntax:
ITEM := "\q{" CODE_POINT + "}"

This syntax can also be used for tailored grapheme clusters (see Tailored
Grapheme Clusters).

Examples:
[a-z\q{x\u0323}] Match a-z, and x with an under-dot (used in American

Indian languages)
[a-z\q{aa}] Match a-z, and aa (treated as a single character in

Danish).
[a-z ñ \q{ch} \q{ll}
\q{rr}]

Match some lowercase characters in traditional Spanish.

In implementing extended grapheme clusters, the expression /[a-m \q{ch}
\q{rr}]/ should behave like /(?: ch | rr | [a-m])/. That is, the expression
would:

match ch or rr and advance by two code points, or
match a-m and advance one code point, or
fail to match

Note that the strings need to be ordered as longest first to work correctly in
arbitrary regex engines, because some regex engines try the leftmost matching
alternative first. For example, the expression /[a-m {ch} {chh}]/ would need to
behave like /(?: chh | ch | [a-m])/, with "chh" before "ch".

Matching a complemented set containing strings like \q{ch} may behave
differently in the two different modes: the normal mode where code points are
the unit of matching, or the mode where extended grapheme clusters are the unit
of matching. That is, the expression [^ a-m \q{ch} \q{rr}] should behave in the
following way:

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

20 of 45 5/6/2011 8:29 AM

Mode Behavior Description
normal (?! ch | rr | [a-m])

[\x{0}-\x{10FFFF}]
failing with strings starting with a-m, ch,
or rr, and
otherwise advancing by one code point

grapheme
cluster

(?! ch | rr | [a-m])
\X

failing with strings starting with a-m, ch,
or rr, and
otherwise advancing by one extended
grapheme cluster

A complex character set containing strings like \q{ch} plus embedded
complement operations is interpreted as if the complement were pushed up to
the top of the expression, using the following rewrites recursively:

Original Rewrite
^^x x

^x || ^y ^(x && y)
^x || y ^(x -- y)
x || ^y ^(y -- x)

^x && ^y ^(x || y)^x -- y
^x && y y -- x^x -- ^y
x && ^y x -- y
x -- ^y x && y

^x ~~ ^y x ~~ y
^x ~~ y ^(x ~~ y)x ~~ ^y

Applying these rewrites results in a simplification of the regex expression. Either
the complement operations will be completely eliminated, or a single remaining
complement operation will remain at the top level of the expression. Logically,
then, the rest of the expression consists of a flat list of characters and/or multi-
character strings; matching strings can then can be handled as described above.

2.2.1 Grapheme Cluster Mode

A grapheme cluster mode behaves more like users' expectations for character
boundaries, and is especially useful for handling canonically equivalent matching.
In a grapheme cluster mode, matches are guaranteed to be on extended
grapheme cluster boundaries. Each atomic literal of the pattern matches complete
extended grapheme clusters, and thus behaves as if followed by \b{g}. Atomic
literals include: a dot, a character class (like [a-m]), a sequence of characters
(perhaps with some being escaped) that matches as a unit, or syntax that is
equivalent to these. Note that in /abc?/, the "abc" is not matching as a unit; the ?
modifier is only affecting the last character, and thus the ab and the c are
separate atomic literals. To summarize:

Syntax Description

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

21 of 45 5/6/2011 8:29 AM

. Behaves like \X; that is, matches a full extended grapheme cluster going
forward.

[abc{gh}] Behaves like [abc{gh}]\b{g}; that is, matches only if the end point of the
match is at a grapheme cluster boundary

abcd Behaves like abcd\b{g}; that is, matches only if the end point of the
match is at a grapheme cluster boundary

Note that subdivisions can modify the behavior in this mode. Normally /(xy)/ is
equivalent to /(x)(y)/ in terms of matching (where x and y are arbitrary literal
character strings); that is, only the grouping is different. That is not true in
grapheme cluster mode, where each atomic literal acts like it is followed by \b{g}.
For example, /(x\u0308)/ is not the same as /(x)(\u0308)/ in matching. The
former behaves like /(x\u0308\b{g})/ while the latter behaves like /(x\b{g})
(\u0308\b{g})/. The latter will never match in grapheme cluster mode, since it
would only match if there were a grapheme cluster boundary after the x and if x
is followed by \u0308, but that can never happen simultaneously.

2.3 Default Word Boundaries

RL2.3 Default Word Boundaries
To meet this requirement, an implementation shall provide a mechanism
for matching Unicode default word boundaries.

The simple Level 1 support using simple <word_character> classes is only a very
rough approximation of user word boundaries. A much better method takes into
account more context than just a single pair of letters. A general algorithm can
take care of character and word boundaries for most of the world's languages.
For more information, see UAX #29: Unicode Text Segmentation [UAX29].

Note: Word boundaries and "soft" line-break boundaries (where one could
break in line wrapping) are not generally the same; line breaking has a much
more complex set of requirements to meet the typographic requirements of
different languages. See UAX #14: Line Breaking Properties [UAX14] for
more information. However, soft line breaks are not generally relevant to
general regular expression engines.

A fine-grained approach to languages such as Chinese or Thai — languages that
do not use spaces — requires information that is beyond the bounds of what a
Level 2 algorithm can provide.

2.4 Default Case Conversion

RL2.4 Default Case Conversion
To meet this requirement:

if an implementation provides for case-insensitive matching, then it
shall provide at least the full, default Unicode case-insensitive
matching.
if an implementation provides for case conversions, then it shall
provide at least the full, default Unicode case conversion.

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

22 of 45 5/6/2011 8:29 AM

[Review Note: the above restriction is from PRI #179 Changes to Unicode Regular
Expression Guidelines.]

At Level 1, caseless matches do not need to handle cases where one character
matches against two. Level 2 includes caseless matches where one character may
match against two (or more) characters. For example, 00DF "ß" will match against
the two characters "SS".

To correctly implement a caseless match and case conversions, see UAX #21:
Case Mappings [Case]. For ease of implementation, a complete case folding file is
supplied at CaseFolding.txt [CaseData]. Full case mappings use the data files If
the implementation containing the regular expression engine also offers case
conversions, then these should also be done in accordance with UAX #21, with
the full mappings. The relevant data files are SpecialCasing.txt [SpecialCasing]
and UnicodeData.txt [UData].

2.5 Name Properties

RL2.5 Name Properties
To meet this requirement, an implementation shall support individually
named characters.

When using names in regular expressions, the main data is supplied in the Name
property in the UCD, as described in UAX #44, Unicode Character Database
[UAX44], or computed as in the case of CJK Ideographs or Hangul Syllables.
Certain code points are not assigned names in the standard. These should be
given names based on the General_Category:

Control: The Unicode 1.0 name field (ISO control names).
Private Use: <no name>
Unassigned:

The ISO names for the control characters may be unfamiliar, especially because
many people are not familiar with changes in the formal ISO names to make them
more language neutral, so it is recommended that they be supplemented with
other aliases. For example, for U+0009 the implementation could accept the
official name CHARACTER TABULATION, and also the aliases HORIZONTAL
TABULATION, HT, and TAB.

Individually Named Characters

The following provides syntax for specifying a code point by supplying the
precise name. This syntax specifies a single code point, which can thus be used
in ranges.
<codepoint> := "\N{" <character_name> "}"

This is equivalent to using the property name, as in \p{name=WHITE SMILING FACE}.
The only distinction between them is that \N should cause a syntax error if it
fails to match a character. This may be extended to match named character
sequences, such as \N{KHMER CONSONANT SIGN COENG KA}. Note that because
this is a sequence it behaves as a single element, so \N{KHMER CONSONANT
SIGN COENG KA}* should be treated as if it were the expression (\x{17D2|

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

23 of 45 5/6/2011 8:29 AM

\x{1780})*.

As with other property values, names should use a loose match, disregarding
case, spaces and hyphen (the underbar character "_" cannot occur in Unicode
character names). An implementation may also choose to allow namespaces,
where some prefix like "LATIN LETTER" is set globally and used if there is no
match otherwise.

There are, however, three instances that require special-casing with loose
matching, where an extra test shall be made for the presence or absence of a
hyphen.

U+0F68 TIBETAN LETTER A and
U+0F60 TIBETAN LETTER -A
U+0FB8 TIBETAN SUBJOINED LETTER A and
U+0FB0 TIBETAN SUBJOINED LETTER -A
U+116C HANGUL JUNGSEONG OE and
U+1180 HANGUL JUNGSEONG O-E

 Examples:

\N{WHITE SMILING FACE} or \N{whitesmilingface} is equivalent to \u263A
\N{GREEK SMALL LETTER ALPHA} is equivalent to \u03B1
\N{FORM FEED} is equivalent to \u000C
\N{SHAVIAN LETTER PEEP} is equivalent to \U00010450
[\N{GREEK SMALL LETTER ALPHA}-\N{GREEK SMALL LETTER BETA}] is equivalent to
[\u03B1-\u03B2]

2.6 Wildcards in Property Values

RL2.6 Wildcards in Property Values
To meet this requirement, an implementation shall support wildcards in
Unicode property values.

Instead of a single property value, this feature allows the use of a regular
expression to pick out a set of characters based on whether the property values
match the regular expression. The regular expression must support at least
wildcards; other regular expressions features are recommended but optional.

PROP_VALUE := <value>
 | "/" <regex expression> "/"

Note: Where regular expressions are using in matching, case, spaces,
hyphen, and underbar are significant; it is presumed that users will make
use of regular-expression features to ignore these if desired.

Examples:

Expression Description/Contents

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

24 of 45 5/6/2011 8:29 AM

\p{toNfd=/b/} Characters whose NFD form contains a "b"
(U+0062) in the value.

 U+0062 (b) LATIN SMALL LETTER B
U+1E03 (ḃ) LATIN SMALL LETTER B WITH DOT
ABOVE
U+1E05 (ḅ) LATIN SMALL LETTER B WITH DOT
BELOW
U+1E07 (ḇ) LATIN SMALL LETTER B WITH LINE
BELOW

\p{name=/^LATIN LETTER.*P$/} Characters with names starting with "LATIN
LETTER" and ending with "P"

 U+01AA (ƪ) LATIN LETTER REVERSED ESH LOOP
U+0294 (ʔ) LATIN LETTER GLOTTAL STOP
U+0296 (ʖ) LATIN LETTER INVERTED GLOTTAL
STOP
U+1D18 (ᴘ) LATIN LETTER SMALL CAPITAL P

\p{name=/VARIA(TION|NT)/} Characters with names containing
"VARIATION" or "VARIANT"

 U+180B () MONGOLIAN FREE VARIATION
SELECTOR ONE
…U+180D () MONGOLIAN FREE VARIATION
SELECTOR THREE
U+299C (⦜) RIGHT ANGLE VARIANT WITH
SQUARE
U+303E (〾) IDEOGRAPHIC VARIATION
INDICATOR
U+FE00 () VARIATION SELECTOR-1
…U+FE0F () VARIATION SELECTOR-16
U+121AE (𒀀) CUNEIFORM SIGN KU4 VARIANT
FORM
U+12425 (𒐀) CUNEIFORM NUMERIC SIGN THREE
SHAR2 VARIANT FORM
U+1242F (𒐀) CUNEIFORM NUMERIC SIGN THREE
SHARU VARIANT FORM
U+12437 (𒐀) CUNEIFORM NUMERIC SIGN THREE
BURU VARIANT FORM
U+1243A (𒐀) CUNEIFORM NUMERIC SIGN THREE
VARIANT FORM ESH16
…U+12449 (𒐀) CUNEIFORM NUMERIC SIGN NINE
VARIANT FORM ILIMMU A
U+12453 (𒐀) CUNEIFORM NUMERIC SIGN FOUR
BAN2 VARIANT FORM
U+12455 (𒐀) CUNEIFORM NUMERIC SIGN FIVE
BAN2 VARIANT FORM
U+1245D (𒐀) CUNEIFORM NUMERIC SIGN ONE
THIRD VARIANT FORM A
U+1245E (𒐀) CUNEIFORM NUMERIC SIGN TWO
THIRDS VARIANT FORM A
U+E0100 () VARIATION SELECTOR-17
…U+E01EF () VARIATION SELECTOR-256

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

25 of 45 5/6/2011 8:29 AM

The above are all on the basis of Unicode 5.0; different versions of Unicode may
produce different results.

Here are some additional samples, illustrating various sets. If you click on them,
they will use the online Unicode utilities on the Unicode website to show the
contents of the sets. Note that these online utilities curently use single-letter
operations:

Expression Description
[[:name=/CJK/:]-[:ideographic:]] The set of all characters with names that

contain CJK that are not Ideographic
[:name=/\bDOT$/:] The set of all characters with names that end

with the word DOT
[:block=/(?i)arab/:] The set of all characters in blocks that contain

the sequence of letters "arab" (case-insensitive)
[:toNFKC=/\./:] the set of all characters with toNFKC values that

contain a literal period

2.7 Full Properties

RL2.7 Full Properties
To meet this requirement, an implementation shall support all of the
properties listed below that are in the supported version of Unicode, with
values that match the Unicode definitions for that version.

As in RL1.2 Properties, in order to meet requirement RL2.7, the implementation
has to satisfy the Unicode definition of the properties for the supported version
of Unicode, not other possible definitions. However, the names used for the
properties might need to be different for compatibility. For example, if a regex
engine already has "Alphabetic", for compatibility it may need a different name,
such as "Unicode_Alphabetic" for the Unicode property.

The list excludes contributed properties, obsolete and deprecated properties, and
the Unicode 1 Name and Unicode Radical Stroke properties. The properties in
gray are covered by RL1.2 Properties. For more information on properties, see
UAX #44, Unicode Character Database [UAX44].

General Case Shaping and
Rendering

Name Uppercase Join_Control
Name_Alias Lowercase Joining_Group
Block Lowercase_Mapping Joining_Type
Age Titlecase_Mapping Line_Break
General_Category Uppercase_Mapping Grapheme_Cluster_Break
Script Case_Folding Sentence_Break
White_Space Simple_Lowercase_Mapping Word_Break
Alphabetic Simple_Titlecase_Mapping East_Asian_Width
Hangul_Syllable_Type Simple_Uppercase_Mapping
Noncharacter_Code_Point Simple_Case_Folding Bidirectional

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

26 of 45 5/6/2011 8:29 AM

Default_Ignorable_Code_Point Soft_Dotted Bidi_Class
Deprecated Cased Bidi_Control
Logical_Order_Exception Case_Ignorable Bidi_Mirrored
Variation_Selector Changes_When_Lowercased Bidi_Mirroring_Glyph

Changes_When_Uppercased
Numeric Changes_When_Titlecased CJK
Numeric_Value Changes_When_Casefolded Ideographic
Numeric_Type Changes_When_Casemapped Unified_Ideograph
Hex_Digit Radical
ASCII_Hex_Digit Normalization IDS_Binary_Operator

Canonical_Combining_Class IDS_Trinary_Operator
Identifiers Decomposition_Mapping
ID_Continue Composition_Exclusion Miscellaneous
ID_Start Full_Composition_Exclusion Math
XID_Continue Decomposition_Type Quotation_Mark
XID_Start NFC_Quick_Check Dash
Pattern_Syntax NFKC_Quick_Check STerm
Pattern_White_Space NFD_Quick_Check Terminal_Punctuation

NFKD_Quick_Check Diacritic
NFKC_Casefold Extender
Changes_When_NFKC_Casefolded Grapheme_Base

Grapheme_Extend

There are situations where characters are regularly used with multiple script
values, including common characters like U+30FC (ー) KATAKANA-HIRAGANA
PROLONGED SOUND MARK. To account for such cases, support of the Script
Extensions data as a regular expression property Script Extensions (abbreviated
as scx) is recommended. Note, however, that the values for such a property is
likely be extended over time as new information is gathered on the use of
characters with different scripts. For more information, see Multiple Script Values
in UAX #24: Unicode Script Property [UAX24].

3 Tailored Support: Level 3
All of the above deals with a default specification for a regular expression.
However, a regular expression engine also may want to support tailored
specifications, typically tailored for a particular language or locale. This may be
important when the regular expression engine is being used by end-users
instead of programmers, such as in a word-processor allowing some level of
regular expressions in searching.

For example, the order of Unicode characters may differ substantially from the
order expected by users of a particular language. The regular expression engine
has to decide, for example, whether the list [a-ä] means:

the Unicode characters in binary order between 006116 and 00E516 (including
'z', 'Z', '[', and '¼'), or
the letters in that order in the users' locale (which does not include 'z' in

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

27 of 45 5/6/2011 8:29 AM

English, but does include it in Swedish).

If both tailored and default regular expressions are supported, then a number of
different mechanism are affected. There are two main alternatives for control of
tailored support:

coarse-grained support: the whole regular expression (or the whole script in
which the regular expression occurs) can be marked as being tailored.
fine-grained support: any part of the regular expression can be marked in
some way as being tailored.

For example, fine-grained support could use some syntax such as the following
to indicate tailoring to a locale within a certain range. Locale (or language) IDs
should use the syntax from locale identifier definition in [UTS35], Section 3.
Identifiers.

\T{<locale_id>}..\E

There must be some sort of syntax that will allow Level 3 support to be turned on
and off, for two reasons. Level 3 support may be considerably slower than Level
2, and most regular expressions may require Level 1 or Level 2 matches to work
properly. The syntax should also specify the particular locale or other tailoring
customization that the pattern was designed for, because tailored regular
expression patterns are usually quite specific to the locale, and will generally not
work across different locales.

Sections 3.6 and following describe some additional capabilities of regular
expression engines that are very useful in a Unicode environment, especially in
dealing with the complexities of the large number of writing systems and
languages expressible in Unicode.

3.1 Tailored Punctuation

The Unicode character properties for punctuation may vary from language to
language or from country to country. In most cases, the effects of such changes
will be apparent in other operations, such as a determination of word breaks. But
there are other circumstances where the effects should be apparent in the general
APIs, such as when testing whether a curly quotation mark is opening or closing
punctuation.

RL3.1 Tailored Punctuation
To meet this requirement, an implementation shall allow for punctuation
properties to be tailored according to locale, using the locale identifier
definition in [UTS35], Section 3. Identifiers.

As just described, there must be the capability of turning this support on or off.

3.2 Tailored Grapheme Clusters

RL3.2 Tailored Grapheme Clusters
To meet this requirement, an implementation shall provide for collation
grapheme clusters matches based on a locale's collation order.

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

28 of 45 5/6/2011 8:29 AM

Tailored grapheme clusters may be somewhat different than the extended
grapheme clusters discussed in Level 2. They are coordinated with the collation
ordering for a given language in the following way. A collation ordering
determines a collation grapheme cluster, which is a sequence of characters that is
treated as a unit by the ordering. For example, ch is a collation grapheme cluster
for a traditional Spanish ordering. More specifically, a collation grapheme cluster
is the longest sequence of characters that maps to a sequence of one or more
collation elements where the first collation element has a primary weight and
subsequent elements do not, and no completely ignorable characters are
included.

The tailored grapheme clusters for a particular locale are the collation grapheme
clusters for the collation ordering for that locale. The determination of tailored
grapheme clusters requires the regular expression engine to either draw upon the
platform's collation data, or incorporate its own tailored data for each supported
locale.

See UTS #10: Unicode Collation Algorithm [UTS10] for more information about
collation, and Annex B. Sample Collation Grapheme Cluster Code for sample
code.

3.3 Tailored Word Boundaries

RL3.3 Tailored Word Boundaries
To meet this requirement, an implementation shall allow for the ability to
have word boundaries to be tailored according to locale.

Semantic analysis may be required for correct word boundary detection in
languages that do not require spaces, such as Thai, Japanese, Chinese or Korean.
This can require fairly sophisticated support if Level 3 word boundary detection is
required, and usually requires drawing on platform OS services.

3.4 Tailored Loose Matches

RL3.4 Tailored Loose Matches
To meet this requirement, an implementation shall provide for loose
matches based on a locale's collation order, with at least 3 levels.

In Level 1 and 2, caseless matches are described, but there are other interesting
linguistic features that users may want to match. For example, V and W are
considered equivalent in Swedish collations, and so [V] should match W in
Swedish. In line with the UTS #10: Unicode Collation Algorithm [UTS10], the
following four levels of equivalences are recommended:

exact match: bit-for-bit identity
tertiary match: disregard 4th level differences (language tailorings)
secondary match: disregard 3rd level differences such as upper/lowercase
and compatibility variation (that is, matching both half-width and full-width
katakana).
primary match: disregard accents, case and compatibility variation; also
disregard differences between katakana and hiragana.

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

29 of 45 5/6/2011 8:29 AM

If users are to have control over these equivalence classes, here is an example of
how the sample syntax could be modified to account for this. The syntax for
switching the strength or type of matching varies widely. Note that these tags
switch behavior on and off in the middle of a regular expression; they do not
match a character.

ITEM := \v{PRIMARY} // match primary only
ITEM := \v{SECONDARY} // match primary and secondary only
ITEM := \v{TERTIARY} // match primary, secondary, and tertiary
ITEM := \v{EXACT} // match all levels, normal state

Examples:
[\v{SECONDARY}a-m]Match a-m, plus case variants A-M, plus compatibility variants

Basic information for these equivalence classes can be derived from the data
tables referenced by UTS #10: Unicode Collation Algorithm [UTS10].

Another example of tailored loose matching is matching between Traditional and
Simplified Chinese characters.

3.5 Tailored Ranges

RL3.5 Tailored Ranges
To meet this requirement, an implementation shall provide for ranges
based on a locale's collation order.

Tailored character ranges will include tailored grapheme clusters, as discussed
above. This broadens the set of grapheme clusters — in traditional Spanish, for
example, [b-d] would match against "c" and against "ch". That is because in that
collation, "ch" sorts as a single letter between "c" and "d".

Note: This is another reason why a property for all characters \p{Any} is
needed—it is possible for a locale's collation to not have [\u0000-\U0010FFFF]
encompass all characters.

Tailored ranges can be quite difficult to implement properly, and can have very
unexpected results in practice. For example, languages may also vary whether
they consider lowercase below uppercase or the reverse. This can have some
surprising results: [a-Z] may not match anything if Z < a in that locale. Thus
implementers should be cautious about implementing this feature.

3.6 Context Matching

RL3.6 Context Matching
To meet this requirement, an implementation shall provide for a restrictive
match against input text, allowing for context before and after the match.

For parallel, filtered transformations, such as those involved in script
transliteration, it is important to restrict the matching of a regular expression to
a substring of a given string, and yet allow for context before and after the
affected area. Here is a sample API that implements such functionality, where m is

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

30 of 45 5/6/2011 8:29 AM

an extension of a Regex Matcher.
 if (m.matches(text, contextStart, targetStart, targetLimit, contextLimit)) {
 int end = p.getMatchEnd();
 }

The range of characters between contextStart and targetStart define a
precontext; the characters between targetStart and targetLimit define a target,
and the offsets between targetLimit and contextLimit define a postcontext. Thus
contextStart ≤ targetStart ≤ targetLimit ≤ contextLimit. The meaning of this
function is that:

a match is attempted beginning at targetStart.
the match will only succeed with an endpoint at or less than targetLimit.
any zero-width look-arounds (look-aheads or look-behinds) can match
characters inside or outside of the target, but cannot match characters
outside of the context.

Examples:

In these examples, the text in the pre- and postcontext is italicized and the
target is underlined. In the output column, the text in bold is the matched
portion. The pattern syntax "(←x)" means a backwards match for x (without
moving the cursor) This would be (?<=x) in Perl. The pattern "(→x)" means a
forwards match for x (without moving the cursor). This would be (?=x) in Perl.

Pattern Input Output Comment
/(←a) (bc)* (→d)/ 1abcbcd2 1abcbcd2 matching with context
/(←a) (bc)* (→bcd)/ 1abcbcd2 1abcbcd2 stops early, because otherwise 'd'

would not match.
/(bc)*d/ 1abcbcd2 no match 'd' ca not be matched in the

target, only in the postcontext
/(←a) (bc)* (→d)/ 1abcbcd2 no match 'a' ca not be matched, because it

is before the precontext (which is
zero-length, in this case)

While it would be possible to simulate this API call with other regular expression
calls, it would require subdividing the string and making multiple regular
expression engine calls, significantly affecting performance.

There should also be pattern syntax for matches (like ^ and $) for the
contextStart and contextLimit positions.

Internally, this can be implemented by modifying the regular expression
engine so that all matches are limited to characters between contextStart
and contextLimit, and so that all matches that are not zero-width
look-arounds are limited to the characters between targetStart and
targetLimit.

3.7 Incremental Matches

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

31 of 45 5/6/2011 8:29 AM

RL3.7 Incremental Matches
To meet this requirement, an implementation shall provide for incremental
matching.

For buffered matching, one needs to be able to return whether there is a partial
match; that is, whether there would be a match if additional characters were
added after the targetLimit. This can be done with a separate method having an
enumerated return value: match, no_match, or partial_match.
 if (m.incrementalmatches(text, cs, ts, tl, cl) == Matcher.MATCH) {
 ...
 }

Thus performing an incremental match of /bcbce(→d)/ against "1abcbcd2" would
return a partial_match because the addition of an e to the end of the target would
allow it to match. Note that /(bc)*(→d)/ would also return a partial match,
because if bc were added at the end of the target, it would match.

Here is the above table, when an incremental match method is called:

Pattern Input Output Comment
/(←a) (bc)* (→d)/ 1abcbcd2 partial

match
'bc' could be inserted.

/(←a) (bc)* (→bcd)/ 1abcbcd2 partial
match

'bc' could be inserted.

/(bc)*d/ 1abcbcd2 partial
match

'd' could be inserted.

/(←a) (bc)* (→d)/ 1abcbcd2 no
match

as with the matches function; the
backwards search for 'a' fails.

The typical usage of incremental matching is to make a series of incremental
match calls, marching through a buffer with each successful match. At the end, if
there is a partial match, one loads another buffer (or waits for other input). When
the process terminates (no more buffers or input are available), then a regular
match call is made.

Internally, incremental matching can be implemented in the regular expression
engine by detecting whether the matching process ever fails when the current
position is at or after targetLimit, and setting a flag if so. If the overall match
fails, and this flag is set, then the return value is set to partial_match. Otherwise,
either match or no_match is returned, as appropriate.

The return value partial_match indicates that there was a partial match: if further
characters were added there could be a match to the resulting string. It may be
useful to divide this return value into two, instead:

extendable_match: in addition to there being a partial match, there was also
a match somewhere in the string. For example, when matching /(ab)*/
against "aba", there is a match, and if other characters were added ("a",
"aba",...) there could also be another match.
only_partial_match: there was no other match in the string. For example,

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

32 of 45 5/6/2011 8:29 AM

when matching /abcd/ against "abc", there is only a partial match; there
would be no match unless additional characters were added.

3.8 Unicode Set Sharing

For script transliteration and similar applications, there may be a hundreds of
regular expressions, sharing a number of Unicode sets in common. These
Unicode sets, such as [\p{Alphabetic} -- \p{Latin}], could take a fair amount of
memory, because they would typically be expanded into an internal memory
representation that allows for fast lookup. If these sets are separately stored, this
means an excessive memory burden.

To reduce the storage requirements, an API may allow regular expressions to
share storage of these and other constructs, by having a 'pool' of data associated
with a set of compiled regular expressions.
rules.registerSet("$lglow", "[\p{lowercase}&&[\p{latin}\p{greek}]] ");
rules.registerSet("$mark", "[\p{Mark}]");
...
rules.add("θ", "th");
rules.add("Θ(→$mark*$lglow)", "Th");
rules.add("Θ", "TH");
...
rules.add("φ", "th");
rules.add("Ψ(→$mark*$lglow)", "Ps");
rules.add("Ψ", "PS");
...

3.9 Possible Match Sets

RL3.9 Possible Match Sets
To meet this requirement, an implementation shall provide for the
generation of possible match sets from any regular expression pattern.

There are a number of circumstances where additional functions on regular
expression patterns can be useful for performance or analysis of those patterns.
These are functions that return information about the sets of characters that a
regular expression can match.

When applying a list of regular expressions (with replacements) against a given
piece of text, one can do that either serially or in parallel. With a serial
application, each regular expression is applied the text, repeatedly from start to
end. With parallel application, each position in the text is checked against the
entire list, with the first match winning. After the replacement, the next position
in the text is checked, and so on.

For such a parallel process to be efficient, one needs to be able to winnow out
the regular expressions that simply could not match text starting with a given
code point. For that, it is very useful to have a function on a regular expression
pattern that returns a set of all the code points that the pattern would partially or
fully match.
 myFirstMatchingSet = pattern.getFirstMatchSet(Regex.POSSIBLE_FIRST_CODEPOINT);

For example, the pattern /[[\u0000-\u00FF] && [:Latin:]] * [0-9]/ would return
the set {0..9, A..Z, a..z}. Logically, this is the set of all code points that would be

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

33 of 45 5/6/2011 8:29 AM

at least partial matches (if considered in isolation).

Note: An additional useful function would be one that returned the set of all
code points that could be matched at any point. Thus a code point outside
of this set cannot be in any part of a matching range.

The second useful case is the set of all code points that could be matched in any
particular group, that is, that could be set in the standard $0, $1, $2, ...
variables.
 myAllMatchingSet = pattern.getAllMatchSet(Regex.POSSIBLE_IN$0);

Internally, this can be implemented by analysing the regular expression (or parts
of it) recursively to determine which characters match. For example, the first
match set of an alternation (a | b) is the union of the first match sets of the terms
a and b.

The set that is returned is only guaranteed to include all possible first characters;
if an expression gets too complicated it could be a proper superset of all the
possible characters.

3.10 Folded Matching

RL3.10 Folded Matching
To meet this requirement, an implementation shall provide for
registration of folding functions for providing insensitive matching for
linguistic features other than case.

Regular expressions typically provide for case-sensitive or case-insensitive
matching. This accounts for the fact that in English and many other languages,
users quite often want to disregard the differences between characters that are
solely due to case. It would be quite awkward to do this manually: for example,
to do a caseless match against the last name in /Mark\sDavis/, one would have to
use the pattern /Mark\s[Dd][Aa][Vv][Ii][Ss]/, instead of some syntax that can
indicate that the target text is to be matched after folding case, such as /Mark\s
\CDavis\E/.

For many languages and writing systems, there are other differences besides case
where users want to allow a loose match. Once such way to do this was discussed
earlier, in the discussion of matching according to collation strength. There are
others: for example, for Ethiopic one may need to match characters independent
of their inherent vowel, or match certain types of vowels. It is difficult to tell
exactly which ways users might want to match text for different languages, so
the most flexible way to provide such support is by giving a general mechanism
for overriding the way that regular expressions match literals.

One way to do this is to use folding functions. These are functions that map
strings to strings, and are idempotent (applying a function more than once
produces the same result: f(f(x)) = f(x). There are two parts to this: (a) allow
folding functions to be registered, and (b) extend patterns so that registered
folding functions can be activated. During the span of text in which a folding
function is activated, both the pattern literals and the input text will be processed
according to the folding before comparing. For example:

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

34 of 45 5/6/2011 8:29 AM

// Folds katakana and hiragana together
class KanaFolder implements RegExFolder {
// from RegExFolder, must be overridden in subclasses
String fold(String source) {...}

// from RegExFolder, may be overridden for efficiency
RegExFolder clone(String parameter, Locale locale) {...}
 int fold(int source) {...}
 UnicodeSet fold(UnicodeSet source) {...}
}
 ...

 RegExFolder.registerFolding("k_h", new KanaFolder());

 ...

 p = Pattern.compile("(\F{k_h=argument}マルク (\s)* ダ (ヸ | ビ) ス \E : \s+)*");

In the above example, the Kana folding is in force until terminated with \E. Within
the scope of the folding, all text in the target would be folded before matching
(the literal text in the pattern would also be folded). This only affects literals;
regular expression syntax such as '(' or '*' are unaffected.

While it is sufficient to provide a folding function for strings, for efficiency one
can also provide functions for folding single code points and Unicode sets (such
as [a-z...]). For more information, see [UTR30].

3.11 Submatchers

RL3.11 Submatchers
To meet this requirement, an implementation shall provide for general
registration of matching functions for providing matching for general
linguistic features.

There are over 70 properties in the Unicode character database, yet there are
many other sequences of characters that users may want to match, many of them
specific to given languages. For example, characters that are used as vowels may
vary by language. This goes beyond single-character properties, because certain
sequences of characters may need to be matched; such sequences may not be
easy themselves to express using regular expressions. Extending the regular
expression syntax to provide for registration of arbitrary properties of characters
allows these requirements to be handled.

The following provides an example of this. The actual function is just for
illustration.
class MultipleMatcher implements RegExSubmatcher {
// from RegExFolder, must be overridden in subclasses
 /**
 * Returns -1 if there is no match; otherwise returns the endpoint;
 * an offset indicating how far the match got.
 * The endpoint is always between targetStart and targetLimit, inclusive.
 * Note that there may be zero-width matches.
 */
int match(String text, int contextStart, int targetStart, int targetLimit, int context
// code for matching numbers according to numeric value.
}

// from RegExFolder, may be overridden for efficiency

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

35 of 45 5/6/2011 8:29 AM

 /**
 * The parameter is a number. The match will match any numeric value that is a multi
 * Example: for "2.3", it will match "0002.3000", "4.6", "11.5", and any non-Western
 * script variants, like Indic numbers.
 */
RegExSubmatcher clone(String parameter, Locale locale) {...}
}
 ...

 RegExSubmatcher.registerMatcher("multiple", new MultipleMatcher());

 ...

 p = Pattern.compile("xxx\M{multiple=2.3}xxx");

In this example, the match function can be written to parse numbers according to
the conventions of different locales, based on OS functions available for such
parsing. If there are mechanisms for setting a locale for a portion of a regular
expression, then that locale would be used; otherwise the default locale would be
used.

Note: It might be advantageous to make the Submatcher API identical to the
Matcher API; that is, only have one base class "Matcher", and have user
extensions derive from the base class. The base class itself can allow for
nested matchers.

Annex A. Character Blocks
The Block property from the Unicode Character Database can be a useful property
for quickly describing a set of Unicode characters. It assigns a name to segments
of the Unicode codepoint space; for example, [\u0370-\u03FF] is the Greek block.

However, block names need to be used with discretion; they are very easy to
misuse because they only supply a very coarse view of the Unicode character
allocation. For example:

Blocks are not at all exclusive. There are many mathematical operators
that are not in the Mathematical Operators block; there are many currency
symbols not in Currency Symbols, and so on.
Blocks may include characters not assigned in the current version of
Unicode. This can be both an advantage and disadvantage. Like the General
Property, this allows an implementation to handle characters correctly that
are not defined at the time the implementation is released. However, it also
means that depending on the current properties of assigned characters in a
block may fail. For example, all characters in a block may currently be
letters, but this may not be true in the future.
Writing systems may use characters from multiple blocks: English uses
characters from Basic Latin and General Punctuation, Syriac uses characters
from both the Syriac and Arabic blocks, various languages use Cyrillic plus a
few letters from Latin, and so on.
Characters from a single writing system may be split across multiple
blocks. See the following table on Writing Systems versus Blocks. Moreover,
presentation forms for a number of different scripts may be collected in
blocks like Alphabetic Presentation Forms or Halfwidth and Fullwidth Forms.

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

36 of 45 5/6/2011 8:29 AM

The following table illustrates the mismatch between writing systems and blocks.
These are only examples; this table is not a complete analysis. It also does not
include common punctuation used with all of these writing systems.

Writing Systems versus Blocks
Writing
Systems

Blocks

Latin Basic Latin, Latin-1 Supplement, Latin Extended-A, Latin Extended-B,
Latin Extended Additional, Diacritics

Greek Greek, Greek Extended, Diacritics
Arabic Arabic, Arabic Presentation Forms-A, Arabic Presentation Forms-B
Korean Hangul Jamo, Hangul Compatibility Jamo, Hangul Syllables, CJK

Unified Ideographs, CJK Unified Ideographs Extension A, CJK
Compatibility Ideographs, CJK Compatibility Forms, Enclosed CJK
Letters and Months, Small Form Variants

Yi Yi Syllables, Yi Radicals
Chinese CJK Unified Ideographs, CJK Unified Ideographs Extension A, CJK

Compatibility Ideographs, CJK Compatibility Forms, Enclosed CJK
Letters and Months, Small Form Variants, Bopomofo, Bopomofo
Extended

For the above reasons, Script values are generally preferred to Block values. Even
there, they should be used in accordance with the guidelines in UAX #24:
Unicode Script Property [UAX24].

Annex B: Sample Collation Grapheme Cluster Code
The following provides sample code for doing Level 3 collation grapheme cluster
detection. This code is meant to be illustrative, and has not been optimized.
Although written in Java, it could be easily expressed in any programming
language that allows access to the Unicode Collation Algorithm mappings.
/**
 * Return the end of a collation grapheme cluster.
 * @param s the source string
 * @param start the position in the string to search
 * forward from
 * @param collator the collator used to produce collation elements.
 * This can either be a custom-built one, or produced from
 * the factory method Collator.getInstance(someLocale).
 * @return the end position of the collation grapheme cluster
 */

static int getLocaleCharacterEnd(String s,
 int start, RuleBasedCollator collator) {
 int lastPosition = start;
 CollationElementIterator it
 = collator.getCollationElementIterator(
 s.substring(start, s.length()));
 it.next(); // discard first collation element
int primary;

// accumulate characters until we get to a non-zero primary

do {
 lastPosition = it.getOffset();

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

37 of 45 5/6/2011 8:29 AM

 int ce = it.next();
 if (ce == CollationElementIterator.NULLORDER) break;
 primary = CollationElementIterator.primaryOrder(ce);
 } while (primary == 0);
 return lastPosition;
}

Annex C: Compatibility Properties
The following are recommended assignments for compatibility property names,
for use in Regular Expressions. There are two alternatives: the Standard
Recommendation and the POSIX Compatible versions. Applications should use the
former wherever possible. The latter is modified to meet the formal requirements
of [POSIX], and also to maintain (as much as possible) compatibility with the
POSIX usage in practice. That involves some compromises, because POSIX does
not have as fine-grained a set of character properties as in the Unicode Standard,
and also has some additional constraints. So, for example, POSIX does not allow
more than 20 characters to be categorized as digits, whereas there are many
more than 20 digit characters in Unicode.

Property Standard Recommendation POSIX
Compatible
(where different)

Comments

alpha \p{Alphabetic} Alphabetic includes more
than gc = Letter. Note that
marks (Me, Mn, Mc) are
required for words of many
languages. While they could
be applied to
non-alphabetics, their
principal use is on
alphabetics. See
DerivedCoreProperties in
[UAX44] for Alphabetic, also
DerivedGeneralCategory in
[UAX44].
Alphabetic should not be
used as an approximation
for word boundaries: see
word below.

lower \p{Lowercase} Lowercase includes more
than gc = Lowercase_Letter
(Ll). See
DerivedCoreProperties in
[UAX44].

upper \p{Uppercase} Uppercase includes more
than gc = Uppercase_Letter
(Lu).

punct \p{gc=Punctuation} \p{gc=Punctuation}
\p{gc=Symbol}
-- \p{alpha}

POSIX adds symbols. Not
recommended generally, due
to the confusion of having
punct include

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

38 of 45 5/6/2011 8:29 AM

non-punctuation marks.
digit
(\d)

\p{gc=Decimal_Number} [0..9] Non-decimal numbers (like
Roman numerals) are
normally excluded. In
U4.0+, the recommended
column is the same as gc =
Decimal_Number (Nd). See
DerivedNumericType in
[UAX44].

xdigit \p{gc=Decimal_Number}
\p{Hex_Digit}

[0-9 A-F a-f] Hex_Digit contains 0-9 A-F,
fullwidth and halfwidth,
upper and lowercase.

alnum \p{alpha}
\p{digit}

Simple combination of other
properties

space
\s

\p{Whitespace} See PropList in [UAX44] for
the definition of Whitespace.

blank \p{gc=Space_Separator}
\N{CHARACTER TABULATION}

"horizontal" whitespace:
space separators plus
U+0009 tab. Engines with
old versions of Unicode may
need to use the longer
formulation:
\p{Whitespace} --
[\N{LF} \N{VT} \N{FF} \N{CR}
\N{NEL}
\p{gc=Line_Separator}
\p{gc=Paragraph_Separator}]

cntrl \p{gc=Control} The characters in
\p{gc=Format} share some,
but not all aspects of control
characters. Many format
characters are required in
the representation of plain
text.

graph [^
\p{space}
\p{gc=Control}
\p{gc=Surrogate}
\p{gc=Unassigned}]

Warning: the set to the left
is defined by excluding
space, controls, and so on
with ^.

print \p{graph}
\p{blank}
-- \p{cntrl}

Includes graph and
space-like characters.

word
(\w)

\p{alpha}
\p{gc=Mark}
\p{digit}
\p{gc=Connector_Punctuation}

n/a This is only an
approximation to Word
Boundaries (see b below).
The Connector Punctuation
is added in for programming
language identifiers, thus
adding "_" and similar
characters.

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

39 of 45 5/6/2011 8:29 AM

\X Extended Grapheme
Clusters

n/a See [UAX29], also
GraphemeClusterBreakTest.
Other functions are used for
programming language
identifier boundaries.

\b Default Word Boundaries n/a If there is a requirement that
\b align with \w, then it
would use the
approximation above
instead. See [UAX29], also
WordBreakTest.

Note that different functions
are used for programming
language identifier
boundaries. See also
[UAX31].

References

[Case]
Section 3.13, Default Case Algorithms [Unicode]
http://www.unicode.org/versions/Unicode6.0.0
/ch03.pdf#G33992

[CaseData] http://www.unicode.org/Public/UNIDATA/CaseFolding.txt
[FAQ] Unicode Frequently Asked Questions

http://www.unicode.org/faq/
For answers to common questions on technical issues.

[Feedback] Reporting Form
http://www.unicode.org/reporting.html
For reporting errors and requesting information online.

[Friedl] Jeffrey Friedl, "Mastering Regular Expressions", 2nd Edition
2002, O'Reilly and Associates, ISBN 0-596-00289-0

[Glossary] Unicode Glossary
http://www.unicode.org/glossary/
For explanations of terminology used in this and other
documents.

[Online] http://www.unicode.org/onlinedat/online.html
[Perl] http://perldoc.perl.org/

See especially:
http://perldoc.perl.org/charnames.html
http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perluniintro.html
http://perldoc.perl.org/perlunicode.html

[POSIX] The Open Group Base Specifications Issue 6, IEEE Std 1003.1,
2004 Edition, "Locale" chapter
http://www.opengroup.org/onlinepubs/009695399/basedefs

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

40 of 45 5/6/2011 8:29 AM

/xbd_chap07.html
[Prop] http://www.unicode.org/Public/UNIDATA/PropertyAliases.txt
[PropValue] http://www.unicode.org/Public/UNIDATA

/PropertyValueAliases.txt
[Reports] Unicode Technical Reports

http://www.unicode.org/reports/
For information on the status and development process for
technical reports, and for a list of technical reports.

[ScriptData] http://www.unicode.org/Public/UNIDATA/Scripts.txt
[SpecialCasing] http://www.unicode.org/Public/UNIDATA/SpecialCasing.txt
[UAX14] UAX #14: Unicode Line Breaking Algorithm

http://www.unicode.org/reports/tr14/
[UAX15]

UAX #15: Unicode Normalization Forms
http://www.unicode.org/reports/tr15/

[UAX24] UAX #24: Unicode Script Property
http://www.unicode.org/reports/tr24/

[UAX29] UAX #29: Unicode Text Segmentation
http://www.unicode.org/reports/tr29/

[UAX31] UAX #31: Unicode Identifier and Pattern Syntax
http://www.unicode.org/reports/tr31/

[UAX44] UAX #44: Unicode Character Database
http://www.unicode.org/reports/tr44/

[UCD] Unicode Character Database
http://www.unicode.org/ucd/
For an overview of the Unicode Character Database and a list of
its associated files, see:
http://unicode.org/reports/tr44/

[UCDDoc] Unicode Character Database Documentation
http://unicode.org/reports/tr44/

[UData] http://www.unicode.org/Public/UNIDATA/UnicodeData.txt
[Unicode] The Unicode Standard

For the latest version, see:
http://www.unicode.org/versions/latest/
For the 6.0.0 version, see:
http://www.unicode.org/versions/Unicode6.0.0/

[UTR30] UTR # 30: Character Foldings
http://www.unicode.org/reports/tr30/

[UTS10] UTS #10: Unicode Collation Algorithm (UCA)
http://www.unicode.org/reports/tr10/

[UTS35] UTS #35: Unicode Locale Data Markup Language (LDML)
http://www.unicode.org/reports/tr35/

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

41 of 45 5/6/2011 8:29 AM

[Versions] Versions of the Unicode Standard
http://www.unicode.org/versions/
For information on version numbering, and citing and
referencing the Unicode Standard, the Unicode Character
Database, and Unicode Technical Reports.

Acknowledgments

Mark Davis created the initial version of this annex and maintains the text, with
significant contributions from Andy Heninger.

Thanks to Tom Christiansen, Jeffrey Friedl, Peter Linsley, Alan Liu, Kent Karlsson,
Jarkko Hietaniemi, Gurusamy Sarathy, Xueming Shen, Henry Spencer, Tom
Watson, Karl Williamson, and Kento Tamura for their feedback on the document.

Modifications
The following summarizes modifications from the previous revision of this
document.

Revision 14

Proposed Update for Revision 14.
Made changes from PRI #179 Changes to Unicode Regular Expression
Guidelines to the following. The text will not be completed until the PRI is
closed and feedback reviewed.

RL2.4 Default Case Conversion
RL2.1 Canonical Equivalents
RL1.5 Simple Loose Matches

Added new conformance clause at Level 2: RL2.7 Full Properties.
Clarified syntax requirements in RL1.1 Hex Notation.
Added note clarifying matching of isolated surrogates in RL1.7
Supplementary Code Points.
Made it clear that the Unicode property definitions must be used to statisfy
RL1.2 Properties and RL1.2a Compatibility Properties.
Replaced use of [UCD] and [UCDDoc] by [UAX44].
Added note about the use of Script Extensions [scx] under RL1.2 Properties
and RL2.7 Full Properties.
Simplified the definition of \p{blank} in Annex C Compatibility Properties.
Added note on use of Age property.
Changed "collation character" to "collation grapheme cluster" to match
UTS10 usage. Instances are not highlighted.
Updated citations and references.
Misc wording changes.

Revision 13

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

42 of 45 5/6/2011 8:29 AM

Revision 12 being a Proposed Update, only changes between Revision 11 and 13
are listed here.

Revised Section 2.2 handling of Extended Grapheme Clusters
Added Section 2.2.1, Grapheme Cluster Mode
Tailored Loose Matches, add example of matching Traditional and Simplified
Chinese characters
Clearer discussion of the importance of levels, and features within level 2.
Updated syntax
Fixed precedence to be neutral, just noting the two main alternatives.
Discussion of the use of hex notation to prevent unwanted normalization in
literals
Examples of normalization and casing properties
Improved end-of-line treatment
Revised treatment of (extended) grapheme clusters (U5.1), and the
connection to normalization support. (Instances of changes from "default" to
"extended" are not flagged.)
Clearer description of the use of wildcards in property values
Clarified conformance requirements for "." and CRLF.
Pointed to LDML for the locale ID syntax
Made the importance of the levels (and sublevels) clearer.
Added ≠ in property expressions, ~~ for symmetric difference
Changed operators to use doubled characters: --, &&, ||, ~~
Added multiple property values. \p{gc=L|M|Nd} is equivalent to [\p{gc=L}
\p{gc=M}\p{gc=Nd}]
Fixed case where 'arbitrary character pattern' matches a newline sequence
Added order of priority for level 2 items
Described implementation of canonical equivalence through extended
grapheme clusters
Moved extended grapheme clusters (2.2) to level 3.
Added named sequences, such as \N{KHMER CONSONANT SIGN COENG KA}
Added some example links to Unicode utilities.

Revision 11

Annex C:
Clarified first paragraph and removed review notes.
Changed upper definition in Annex C, because the UTC has changed
the properties so that it will always be the case (from 4.1.0 onward)
that Alphabetic ⊇ Uppercase and Alphabetic ⊇ Lowercase
Added \p{gc=Format} to graph, for better compatibility with POSIX
usage.

Added a caution about use of Tailored Ranges, and a note about the option
of pre-normalization with newlines.
Removed conformance clause for Unicode Set Sharing
Misc Edits, including:

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

43 of 45 5/6/2011 8:29 AM

Added note on limit of 1-9 for \n
Fixed ^.*$ to ^$
Added parentheses to ([a-z ä] | (a \u0308))

Revision 10

R1.4, item 2 changed for ZW(N)J
Added conformance clause to allow a claim of conformance to the
Compatibility properties.
Split the Compatibility properties into two, to allow for regular vs. strict
POSIX properties.
Added other notation for use here and in other Unicode Standards
Added vertical tab to newline sequences. Reorganized text slightly to only
list codepoints once.
Minor Editing

Revision 9

Split 2.5 into two sections, expanding latter.
Misc. editing and clarifications.

Revision 8

Renumbered sections to match levels
Introduced "RL" numbering on clauses
Misc. editing and clarifications.

Revision 7

Now proposed as a UTS, adding Conformance and specific wording in each
relevant section.
Move hex notation for surrogates from 1.7 Surrogates into 1.1 Hex
notation.
Added 3.6 Context Matching and following.
Updated to Unicode 4.0
Minor editing
Note: paragraphs with major changes are highlighted in this document; less
substantive wording changes may not be.

Revision 6

Fixed 16-bit reference, moved Supplementary characters support
(surrogates) to level 1.
Generally changed "locale-dependent" to "default", "locale-independent" to
"tailored" and "grapheme" to "grapheme cluster"
Changed syntax slightly to be more like Perl
Added explicit table of General Category values
Added clarifications about scripts and blocks
Added descriptions of other properties, and a pointer to the default names

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

44 of 45 5/6/2011 8:29 AM

Referred to TR 29 for grapheme cluster and word boundaries
Removed old annex B (word boundary code)
Removed spaces from anchors
Added references, modification sections
Rearranged property section
Minor editing

Copyright © 2000-2011 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or
implied warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for
incidental and consequential damages in connection with or arising out of the use of the information or
programs contained or accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

UTS #18: Unicode Regular Expressions http://www.unicode.org/reports/tr18/tr18-14.html

45 of 45 5/6/2011 8:29 AM

