L2/12-107

UCA spec bugs

Author: Markus Scherer
Date: 2012-mar-15

3.7 Well-Formed Collation Element Tables

Point 2 says
All Level N weights in Level N-1 ignorables must be strictly less than all weights in Level
N-2 ignorables.

For example, secondaries in non-ignorables must be strictly less than those in primary
ignorables: Given collation elements [C, D, E] and [0, A, B], where C # 0 and A # 0,
Dmust be less than A.

This is a contradiction. For N=2, the condition statement says "secondary weights in primary
ignorables must be strictly less than all weights in non-ignorables" which is wrong and
contradicts the example.

The correct statement is "All Level N weights in Level N-2 ignorables must be strictly less than
all weights in Level N-1 ignorables."

Note from Ken Whistler: This contradiction has been an error all the way back to its introduction
in Version 9 of UCA (= UCD 3.1.0 with Corrigendum 3) nearly 10 years ago.



6.10.1 Collation Element Format & 6.10.2 Sample Code

a)

The CE layout has
e expansionsOffset

o 12 bits = FFF

o 20 bits = offset (allows for 1,048,576 items)
e contractionsOffset

o 12 bits = FFE

o 20 bits = offset (allows for 1,048,576 items)

but the sample code has
void processCE (int ce) {
if (ce < OxFFF00000) {
output [outputPos++] = ce;
} else if (ce >= O0xFFE00000) {
copyExpansions (ce & OxX7FFFFF);
} else {
searchContractions (ce & OxX7FFFFF);
}
}
which neither matches, nor works at all.
For the code to match the CE bits, it would have to be
void processCE (int ce) {
if (ce < OxFFEO00000) {
output [outputPos++] = ce;
} else if (ce >= OxFFF00000) {
copyExpansions (ce & OxFFFFFF);
} else {
searchContractions (ce & OxFFFFFF) ;
1



b)

vold searchContractions (int offset)

Does not handle discontiguous contractions. That should at least be noted.

Skips or reads the backwardsOffset from input rather than from contractionMatches.

Reads the length entry again as a cc character rather than skipping it.

Has some code to do backwards matching but it only ever reads input[inputPos++].

Given that none of the rest of the sample code is prepared to work backwards, | suggest

removing all mentioning of the "forwards" flag and the getCollationElementStart()

function. (That one also does not take into account combining marks that might be

skipped.)

e Compares input chars and contraction chars as (short) which is a signed type. The
test "cc > goal" will fail if input is 2 U+8000.

An improved version of searchContractions() might look like this:
void searchContractions (int offset) {
offset++; // skip backwardsOffset
int goal = input[inputPos++];
int length = contractionMatches[offset];
int limit = offset + 1 + length;
for (int 1 offset + 1; i < limit; ++1) {
int cc = contractionMatches[i];
if (cc > goal) { // definitely failed
processCE (contractionCEs[offset]);

break;

} else if (cc == goal) { // found match
processCE (contractionCEs[i]);
break;

c)

The sample code does not work for supplementary code points, but | guess that is meant as an
exercise for the reader. It should be noted as such.



