
Living Specification — Last Updated 4 May 2012

This Version:

http://dvcs.w3.org/hg/encoding/raw-file/tip/Overview.html

Participate:

Send feedback to whatwg@whatwg.org (archives) or file a bug (open bugs)
IRC: #whatwg on Freenode

Version History:

http://dvcs.w3.org/hg/encoding/shortlog

Editor:

Anne van Kesteren (Opera Software ASA) <annevk@annevk.nl>

Copyright © 2012 the Contributors to the Encoding Specification, publ ished by the WHATCG under the W3C Community Contributor License Agreement (CLA). A human-readable summary is
avai lable.

rick@unicode.org
Text Box
L2/12-176



Disclaimer

This specification was published by the WHATCG. It is not a W3C Standard nor is it on the W3C Standards Track. Please note that
under the W3C Community Contributor License Agreement (CLA) there is a limited opt-out and other conditions apply. Learn more
about W3C Community and Business Groups.



Table of Contents

1 Preface

2 Conformance

3 Terminology

4 Encodings

5 Indexes

6 Decode and encode

7 The encoding
7.1 utf-8

8 Legacy single-byte encodings

9 Legacy multi-byte Chinese (simplified) encodings
9.1 gbk
9.2 gb18030
9.3 hz-gb-2312

10 Legacy multi-byte Chinese (traditional) encodings
10.1 big5

11 Legacy multi-byte Japanese encodings
11.1 euc-jp
11.2 iso-2022-jp
11.3 shift_jis

12 Legacy multi-byte Korean encodings
12.1 euc-kr
12.2 iso-2022-kr

13 Legacy utf-16 encodings
13.1 utf-16
13.2 utf-16be

References

Acknowledgments



1 Preface

While encodings for the web platform have been defined to some extent, implementations have not always implemented them in
the same way, have not always used the same labels, and often differ in dealing with undefined and former proprietary areas of
encodings. This specification attempts to fill those gaps so that new implementations do not have to reverse engineer encoding
implementations of the market leaders and existing implementations can become more interoperable.

Note: This specification is primarily intended for dealing with legacy content, it requires new content and
formats to use the utf-8 encoding exclusively.



2 Conformance

All diagrams, examples, and notes in this specification are non-normative, as are all sections explicitly marked non-normative.
Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL"
in the normative parts of this document are to be interpreted as described in RFC2119. For readability, these words do not appear
in all uppercase letters in this specification. [RFC2119]

Conformance requirements phrased as algorithms or specific steps may be implemented in any manner, so long as the end result
is equivalent. (In particular, the algorithms defined in this specification are intended to be easy to follow, and not intended to be
performant.)

User agents may impose implementation-specific limits on otherwise unconstrained inputs, e.g. to prevent denial of service attacks,
to guard against running out of memory, or to work around platform-specific limitations.



3 Terminology

Hexadecimal numbers are prefixed with "0x".

In equations, all numbers are integers, addition is represented by "+", subtraction by "−", multiplication by "×", division by "/",

calculating the remainder of a division (also known as modulo) by "%", exponentiation by "bn", arithmetic left shifts by "<<",
arithmetic right shifts by ">>", bitwise AND by "&", and bitwise OR by "|".

A byte is referenced as a double-digit hexadecimal number in the range 0x00 to 0xFF.

Note: Web platform bytes consist of exactly eight bits.

A code point is a Unicode code point and is referenced as a four-to-six digit hexadecimal number, typically prefixed with "U+". In
equations and indexes it is prefixed with "0x". [UNICODE]

The space characters, for the purposes of this specification, are U+0020 SPACE, U+0009 CHARACTER TABULATION (tab),
U+000A LINE FEED (LF), U+000C FORM FEED (FF), and U+000D CARRIAGE RETURN (CR).

Comparing two strings in an ASCII case-insensitive manner means comparing them exactly, code point for code point, except
that the characters in the range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z) and the
corresponding characters in the range U+0061 to U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL LETTER Z) are
considered to also match.



4 Encodings

An encoding defines a mapping from a code point to one or more bytes (and vice versa). Each encoding has a name, and one or
more labels.

Each encoding also has a decoder and encoder algorithm.

A decoder algorithm takes a stream of bytes and emits a stream of code points. The byte pointer is initially zero, pointing to the
first byte in the stream. It cannot be negative. It can be increased and decreased to point to other bytes in the stream. The EOF
byte is a conceptual byte representing the end of the stream. The byte pointer cannot point beyond the EOF byte. The EOF code
point is a conceptual code point that is emitted once the stream of bytes is handled in its entirety. A decoder error indicates an
error in the stream of bytes. Unless stated otherwise emitting a decoder error must emit code point U+FFFD. A decoder can end by
emitting a code point or decoder error, or the word continue. Unless the EOF code point is emitted, the decoder algorithm must be
invoked again.

Note: An XML processor would halt upon the first decoder error emitted.

An encoder algorithm takes a stream of code points and emits a stream of bytes. It will fail when a code point is passed for which it
does not have a corresponding byte or byte sequence. Analogously to a decoder, it has a code point pointer and encoder error.
Unless stated otherwise emitting an encoder error terminates the encoder. Again analogously, as long as the EOF byte is not
emitted, the encoder algorithm must be invoked for each byte or sequence of bytes emitted.

Note: HTML forms and URLs require non-terminating encoders and have therefore special handling
whenever an encoder error is reached. Instead of terminating the encoder a sequence of one or more code
points in the range U+0000 to U+007F (representing the code point that caused the encoder error to be
emitted) are inserted into the stream of code points at code point pointer after encoder error is emitted.

The table below lists all encodings and their labels user agents must support. User agents must not support any other encodings or
labels.

To get an encoding from a string label, run these steps:

Remove any leading and trailing space characters from label.1.

If label is an ASCII case-insensitive match for any of the labels listed in the table below, return the corresponding
encoding, or return failure otherwise.

2.

Note: This algorithm is different from the one defined in section 1.4 of Unicode Technical Standard #22 as
that algorithm is incompatible with legacy content.

Name Labels

The Encoding

utf-8 "unicode-1-1-utf-8"

"utf-8"

"utf8"

Legacy single-byte encodings

ibm864 "cp864"

"csibm864"

"ibm-864"

"ibm864"

ibm866 "866"

"cp866"

"csibm866"

"ibm866"

iso-8859-2 "csisolatin2"

"iso-8859-2"

"iso-ir-101"

"iso8859-2"

"iso88592"

"iso_8859-2"



Name Labels

"iso_8859-2:1987"

"l2"

"latin2"

iso-8859-3 "csisolatin3"

"iso-8859-3"

"iso-ir-109"

"iso8859-3"

"iso88593"

"iso_8859-3"

"iso_8859-3:1988"

"l3"

"latin3"

iso-8859-4 "csisolatin4"

"iso-8859-4"

"iso-ir-110"

"iso8859-4"

"iso88594"

"iso_8859-4"

"iso_8859-4:1988"

"l4"

"latin4"

iso-8859-5 "csisolatincyrillic"

"cyrillic"

"iso-8859-5"

"iso-ir-144"

"iso8859-5"

"iso88595"

"iso_8859-5"

"iso_8859-5:1988"

iso-8859-6 "arabic"

"asmo-708"

"csiso88596e"

"csiso88596i"

"csisolatinarabic"

"ecma-114"

"iso-8859-6"

"iso-8859-6-e"

"iso-8859-6-i"

"iso-ir-127"

"iso8859-6"

"iso88596"

"iso_8859-6"

"iso_8859-6:1987"

iso-8859-7 "csisolatingreek"

"ecma-118"

"elot_928"

"greek"

"greek8"

"iso-8859-7"

"iso-ir-126"

"iso8859-7"



Name Labels

"iso88597"

"iso_8859-7"

"iso_8859-7:1987"

"sun_eu_greek"

iso-8859-8 "csiso88598e"

"csiso88598i"

"csisolatinhebrew"

"hebrew"

"iso-8859-8"

"iso-8859-8-e"

"iso-8859-8-i"

"iso-ir-138"

"iso8859-8"

"iso88598"

"iso_8859-8"

"iso_8859-8:1988"

"logical"

"visual"

iso-8859-10 "csisolatin6"

"iso-8859-10"

"iso-ir-157"

"iso8859-10"

"iso885910"

"l6"

"latin6"

iso-8859-13 "iso-8859-13"

"iso8859-13"

"iso885913"

iso-8859-14 "iso-8859-14"

"iso8859-14"

"iso885914"

iso-8859-15 "csisolatin9"

"iso-8859-15"

"iso8859-15"

"iso885915"

"iso_8859-15"

"l9"

iso-8859-16 "iso-8859-16"

koi8-r "cskoi8r"

"koi"

"koi8"

"koi8-r"

"koi8_r"

koi8-u "koi8-u"

macintosh "csmacintosh"

"mac"

"macintosh"

"x-mac-roman"

windows-874 "dos-874"

"iso-8859-11"

"iso8859-11"



Name Labels

"iso885911"

"tis-620"

"windows-874"

windows-1250 "cp1250"

"windows-1250"

"x-cp1250"

windows-1251 "cp1251"

"windows-1251"

"x-cp1251"

windows-1252 "ansi_x3.4-1968"

"ascii"

"cp1252"

"cp819"

"csisolatin1"

"ibm819"

"iso-8859-1"

"iso-ir-100"

"iso8859-1"

"iso88591"

"iso_8859-1"

"iso_8859-1:1987"

"l1"

"latin1"

"us-ascii"

"windows-1252"

"x-cp1252"

windows-1253 "cp1253"

"windows-1253"

"x-cp1253"

windows-1254 "cp1254"

"csisolatin5"

"iso-8859-9"

"iso-ir-148"

"iso8859-9"

"iso88599"

"iso_8859-9"

"iso_8859-9:1989"

"l5"

"latin5"

"windows-1254"

"x-cp1254"

windows-1255 "cp1255"

"windows-1255"

"x-cp1255"

windows-1256 "cp1256"

"windows-1256"

"x-cp1256"

windows-1257 "cp1257"

"windows-1257"

"x-cp1257"

windows-1258 "cp1258"



Name Labels

"windows-1258"

"x-cp1258"

x-mac-cyrillic "x-mac-cyrillic"

"x-mac-ukrainian"

Legacy multi-byte Chinese (simplified) encodings

gbk "chinese"

"csgb2312"

"csiso58gb231280"

"gb2312"

"gb_2312"

"gb_2312-80"

"gbk"

"iso-ir-58"

"x-gbk"

gb18030 "gb18030"

hz-gb-2312 "hz-gb-2312"

Legacy multi-byte Chinese (traditional) encodings

big5 "big5"

"big5-hkscs"

"cn-big5"

"csbig5"

"x-x-big5"

Legacy multi-byte Japanese encodings

euc-jp "cseucpkdfmtjapanese"

"euc-jp"

"x-euc-jp"

iso-2022-jp "csiso2022jp"

"iso-2022-jp"

shift_jis "csshiftjis"

"ms_kanji"

"shift-jis"

"shift_jis"

"sjis"

"windows-31j"

"x-sjis"

Legacy multi-byte Korean encodings

euc-kr "cseuckr"

"csksc56011987"

"euc-kr"

"iso-ir-149"

"korean"

"ks_c_5601-1987"

"ks_c_5601-1989"

"ksc5601"

"ksc_5601"

"windows-949"

iso-2022-kr "csiso2022kr"

"iso-2022-kr"

Legacy utf-16 encodings

utf-16 "utf-16"

"utf-16le"



Name Labels

utf-16be "utf-16be"

Note: All encodings and their labels are also available as non-normative encodings.json resource.



5 Indexes

Most legacy encodings make use of an index. An index is an ordered list of pointers and corresponding code points. Within an
index pointers are unique and code points can be duplicated.

To find the pointers and their corresponding code points in an index, let lines be the result of splitting the resource's contents on
U+000A. Then remove each item in lines that is the empty string or starts with U+0023. Then the pointers and their corresponding
code points are found by splitting each item in lines on U+0009. The first subitem is the pointer (as a decimal number) and the
second is the corresponding code point (as a hexadecimal number). Other subitems are not relevant.

The index code point for pointer in index is the code point corresponding to pointer in index, or null if pointer is not in index.

The index pointer for code point in index is the first pointer corresponding to code point in index, or null if code point is not in
index.

These are the indexes defined by this specification, excluding index single-byte:

Index Notes

index
big5

index-big5.txt This matches the Big5 standard in combination with the Hong Kong Supplementary Character Set and other common
extensions.

index
euc-kr

index-
euc-kr.txt

This matches the KS X 1001 standard and the Unified Hangul Code, more commonly known together as Windows
Codepage 949.

index gbk index-gbk.txt This matches the GB18030 standard for code points encoded as two bytes.

index
gb18030

index-
gb18030.txt

This index works different from all others. Listing all code points would result in over a million items whereas they can
be represented neatly in 207 ranges combined with trivial limit checks. It therefore only superficially matches the
GB18030 standard for code points encoded as four bytes. See also index gb18030 code point and index gb18030
pointer below.

index
jis0208

index-
jis0208.txt

This is the JIS X 0208 standard including formerly proprietary extensions from IBM and NEC.

index
jis0212

index-
jis0212.txt

This is the JIS X 0212 standard.

The index gb18030 code point for pointer is the return value of these steps:

If pointer is greater than 39419 and less than 189000, or pointer is greater than 1237575, return null.1.

Let offset be the last pointer in index gb18030 that is equal to or less than pointer and let code point offset be its
corresponding code point.

2.

Return a code point whose value is code point offset + pointer − offset.3.

The index gb18030 pointer for code point is the return value of these steps:

Let offset be the last code point in index gb18030 that is equal to or less than code point and let pointer offset be its
corresponding pointer.

1.

Return a pointer whose value is pointer offset + code point − offset.2.

Note: All indexes are also available as non-normative indexes.json resource. (index gb18030 has a slightly
different format here, to be able to represent ranges.)



6 Decode and encode

Note: The algorithms decode, utf-8 decode, and encode are intended for usage by other specifications. utf-8
decode is to be used by new formats. The get an encoding algorithm can be used first to turn a label into an
encoding.

To decode a byte stream stream using fallback encoding encoding, run these steps:

Let offset be 0.1.

For each of the rows in the following table, starting with the first one and going down, if the first bytes of stream match all
the bytes given in the first column (ergo stream contains at least two or three bytes), then set encoding to the encoding
given in the cell in the second column of that row, and set offset to the offset given in the cell in the third column of that
row.

Byte order mark Encoding Offset

0xFF 0xFE utf-16 2

0xFE 0xFF utf-16be 2

0xEF 0xBB 0xBF utf-8 3

Note: For compatibility with deployed content, the byte order mark (also known as BOM) is
considered more authoritative than anything else.

2.

Return the result of running encoding's decoder with byte pointer set to offset, on stream.3.

To utf-8 decode a byte stream stream, run these steps:

Let offset be 0.1.

If stream contains at least three bytes and its first three bytes match 0xEF 0xBB 0xBF, set offset to 3.2.

Return the result of running the utf-8 decoder with byte pointer set to offset, on stream.3.

To encode a code point stream stream using encoding encoding, return the result of running encoding's encoder on stream.



7 The encoding

New content and formats must exclusively use the utf-8 encoding.

7.1 utf-8

The utf-8 code point, utf-8 bytes seen, utf-8 bytes needed, and utf-8 lower boundary concepts are all initially 0.

The utf-8 decoder (decoder for utf-8) is:

Let byte be byte pointer.1.

If byte is the EOF byte and utf-8 bytes needed is not 0, set utf-8 bytes needed to 0 and emit a decoder error.2.

If byte is the EOF byte, emit the EOF code point.3.

Increase the byte pointer.4.

If utf-8 bytes needed is 0, based on byte:

↪ 0x00 to 0x7F

Emit a code point whose value is byte.

↪ 0xC2 to 0xDF

Set utf-8 bytes needed to 1, utf-8 lower boundary to 0x80, and utf-8 code point to byte − 0xC0.

↪ 0xE0 to 0xEF

Set utf-8 bytes needed to 2, utf-8 lower boundary to 0x800, and utf-8 code point to byte − 0xE0.

↪ 0xF0 to 0xF4

Set utf-8 bytes needed to 3, utf-8 lower boundary to 0x10000, and utf-8 code point to byte − 0xF0.

↪ Otherwise

Emit a decoder error.

Then (byte is in the range 0xC2 to 0xF4) set utf-8 code point to utf-8 code point × 64utf-8 bytes needed and continue.

5.

If byte is not in the range 0x80 to 0xBF, run these substeps:

Set utf-8 code point, utf-8 bytes needed, utf-8 bytes seen, and utf-8 lower boundary to 0.1.

Decrease the byte pointer by one.2.

Emit a decoder error.3.

6.

Increase utf-8 bytes seen by one and set utf-8 code point to utf-8 code point + (byte − 0x80) × 64utf-8 bytes needed − utf-8

bytes seen
7.

If utf-8 bytes seen is not equal to utf-8 bytes needed, continue.8.

Let code point be utf-8 code point and lower boundary be utf-8 lower boundary.9.

Set utf-8 code point, utf-8 bytes needed, utf-8 bytes seen, and utf-8 lower boundary to 0.10.

If code point is in the range lower boundary to 0x10FFFF and is not in the range 0xD800 to 0xDFFF, emit a code point
whose value is code point.

11.

Emit a decoder error.12.

The utf-8 encoder (encoder for utf-8) is:

Let code point be code point pointer.1.

If code point is in the range 0xD800 to 0xDFFF, emit an encoder error.2.

If code point is the EOF code point, emit the EOF byte.3.

Increase the code point pointer by one.4.

If code point is in the range U+0000 to U+007F, emit a byte whose value is code point.5.



Set count and offset based on the range code point is in:

↪ U+0080 to U+07FF

1 and 0xC0

↪ U+0800 to U+FFFF

2 and 0xE0

↪ U+10000 to U+10FFFF

3 and 0xF0

6.

Let bytes be a list of bytes whose first byte is code point / 64count + offset.7.

Run these substeps while count is greater than 0:

Set temp to code point / 64count − 1.1.

Append to bytes 0x80 + (temp % 64).2.

Decrease count by one.3.

8.

Emit bytes bytes, in list order.9.



8 Legacy single-byte encodings

An encoding where each byte is either a single code point or nothing, is a single-byte encoding. All single-byte encodings use the
same decoder and encoder, but use a different index. Index single-byte, as referenced by the single-byte decoder and single-byte
encoder, is defined by the following table, and depends on the single-byte encoding in use.

Name Index

ibm864 index-ibm864.txt

ibm866 index-ibm866.txt

iso-8859-2 index-iso-8859-2.txt

iso-8859-3 index-iso-8859-3.txt

iso-8859-4 index-iso-8859-4.txt

iso-8859-5 index-iso-8859-5.txt

iso-8859-6 index-iso-8859-6.txt

iso-8859-7 index-iso-8859-7.txt

iso-8859-8 index-iso-8859-8.txt

iso-8859-10 index-iso-8859-10.txt

iso-8859-13 index-iso-8859-13.txt

iso-8859-14 index-iso-8859-14.txt

iso-8859-15 index-iso-8859-15.txt

iso-8859-16 index-iso-8859-16.txt

koi8-r index-koi8-r.txt

koi8-u index-koi8-u.txt

macintosh index-macintosh.txt

windows-874 index-windows-874.txt

windows-1250 index-windows-1250.txt

windows-1251 index-windows-1251.txt

windows-1252 index-windows-1252.txt

windows-1253 index-windows-1253.txt

windows-1254 index-windows-1254.txt

windows-1255 index-windows-1255.txt

windows-1256 index-windows-1256.txt

windows-1257 index-windows-1257.txt

windows-1258 index-windows-1258.txt

x-mac-cyrillic index-x-mac-cyrillic.txt

The single-byte decoder (decoder for single-byte encodings) is:

Let byte be byte pointer.1.

If byte is the EOF byte, emit the EOF code point.2.

Increase the byte pointer by one.3.

If byte is in the range 0x00 to 0x7F, emit a code point whose value is byte.4.

Let code point be the index code point for byte − 0x80 in index single-byte.5.

If code point is null, emit a decoder error.6.

Emit a code point whose value is code point.7.

The single-byte encoder (encoder for single-byte encodings) is:

Let code point be code point pointer.1.

If code point is the EOF code point, emit the EOF byte.2.

Increase the code point pointer by one.3.

If code point is in the range U+0000 to U+007F, emit a byte whose value is code point.4.

Let pointer be the index pointer for code point in index single-byte.5.



If pointer is null, emit an encoder error.6.

Emit a byte whose value is pointer + 0x80.7.



9 Legacy multi-byte Chinese (simplified) encodings

9.1 gbk

The gb18030 flag flag is initially unset. It can only be set by the gb18030 decoder and gb18030 encoder.

The gbk first, gbk second, and gbk third, are all initially 0x00.

The gbk decoder (decoder for gbk) is:

Let byte be byte pointer.1.

If byte is the EOF byte and gbk first, gbk second, and gbk third are 0x00, emit the EOF code point.2.

If byte is the EOF byte, and gbk first, gbk second, or gbk third is not 0x00, set gbk first, gbk second, and gbk third to 0x00,
and emit a decoder error.

3.

Increase the byte pointer.4.

If gbk third is not 0x00, run these substeps:

Let code point be null.1.

If byte is in the range 0x30 to 0x39, set code point to the index gb18030 code point for (((gbk first − 0x81) × 10 +
gbk second − 0x30) × 126 + gbk third − 0x81) × 10 + byte − 0x30.

2.

Set gbk first, gbk second, and gbk third to 0x00.3.

If code point is null, decrease the byte pointer by three and emit a decoder error.4.

Emit a code point whose value is code point.5.

5.

If gbk second is not 0x00, run these substeps:

If byte is in the range 0x81 to 0xFE, set gbk third to byte and continue.1.

Decrease the byte pointer by two, set gbk first and gbk second to 0x00, and emit a decoder error.2.

6.

If gbk first is not 0x00, run these substeps:

If byte is in the range 0x30 to 0x39 and the gb18030 flag is set, set gbk second to byte and continue.1.

Let lead be gbk first, let pointer be null, and set gbk first to 0x00.2.

Let offset be 0x40 if byte is less than 0x7F, or 0x41 otherwise.3.

If byte is in the range 0x40 to 0x7E or 0x80 to 0xFE, set pointer to (lead − 0x81) × 190 + (byte − offset).4.

Let code point be null if pointer is null, or the index code point for pointer in index gbk otherwise.5.

If pointer is null, decrease the byte pointer by one.6.

If code point is null, emit a decoder error.7.

Emit a code point whose value is code point.8.

7.

If byte is in the range 0x00 to 0x7F, emit a code point whose value is byte.8.

If byte is 0x80, emit code point U+20AC.9.

If byte is in the range 0x81 to 0xFE, set gbk first to byte and continue.10.

Emit a decoder error.11.

The gbk encoder (encoder for gbk) is:

Let code point be code point pointer.1.

If code point is the EOF code point, emit the EOF byte.2.

Increase the code point pointer by one.3.

If code point is in the range U+0000 to U+007F, emit a byte whose value is code point.4.

Let pointer be the index pointer for code point in index gbk.5.



If pointer is not null, run these substeps:

Let lead be pointer / 190 + 0x81.1.

Let trail be pointer % 190.2.

Let offset be 0x40 if trail is less than 0x3F, or 0x41 otherwise.3.

Emit two bytes whose values are lead and trail + offset.4.

6.

If pointer is null and the gb18030 flag is unset, emit an encoder error.7.

Set pointer to the index gb18030 pointer for code point.8.

Let byte1 be pointer / 10 / 126 / 10.9.

Set pointer to pointer − byte1 × 10 × 126 × 10.10.

Let byte2 be pointer / 10 / 126.11.

Set pointer to pointer − byte2 × 10 × 126.12.

Let byte3 be pointer / 10.13.

Let byte4 be pointer − byte3 × 10.14.

Emit four bytes whose values are byte1 + 0x81, byte2 + 0x30, byte3 + 0x81, byte4 + 0x30.15.

9.2 gb18030

The gb18030 decoder (decoder for gb18030) is the gbk decoder with the gb18030 flag set.

The gb18030 encoder (encoder for gb18030) is the gbk encoder with the gb18030 flag set.

9.3 hz-gb-2312

The hz-gb-2312 flag is initially unset. The hz-gb-2312 lead is initially 0x00.

The hz-gb-2312 decoder (decoder for hz-gb-2312) is:

Let byte be byte pointer.1.

If byte is the EOF byte and hz-gb-2312 lead is 0x00, emit the EOF code point.2.

If byte is the EOF byte and hz-gb-2312 lead is not 0x00, set hz-gb-2312 lead to 0x00 and emit a decoder error.3.

Increase the byte pointer.4.

If hz-gb-2312 lead is 0x7E, set hz-gb-2312 lead to 0x00, and based on byte:

↪ 0x7B

Set the hz-gb-2312 flag and continue.

↪ 0x7D

Unset the hz-gb-2312 flag and continue.

↪ 0x7E

Emit code point U+007E.

↪ 0x0A

Continue.

↪ Otherwise

Decrease the byte pointer by one and emit a decoder error.

5.

If hz-gb-2312 lead is not 0x00, let lead be hz-gb-2312 lead, set hz-gb-2312 lead to 0x00, and then run these substeps:

If byte is in the range 0x21 to 0x7E, let code point be the index code point for (lead − 1) × 190 + (byte + 0x3F) in
index gbk.

1.

6.



If byte is 0x0A, unset the hz-gb-2312 flag.2.

If code point is null, emit a decoder error.3.

Emit a code point whose value is code point.4.

If byte is 0x7E, set hz-gb-2312 lead to 0x7E and continue.7.

If the hz-gb-2312 flag is set:

If byte is in the range 0x20 to 0x7F, set hz-gb-2312 lead to byte and continue.1.

If byte is 0x0A, unset the hz-gb-2312 flag.2.

Emit a decoder error.3.

8.

If byte is in the range 0x00 to 0x7F, emit a code point whose value is byte.9.

Emit a decoder error.10.

The hz-gb-2312 encoder (encoder for hz-gb-2312) is:

Let code point be code point pointer.1.

If code point is the EOF code point, emit the EOF byte.2.

Increase the code point pointer by one.3.

If code point is in the range U+0000 to U+007F and the hz-gb-2312 flag is set, decrease the code point pointer by one,
unset the hz-gb-2312 flag, and emit two bytes 0x7E 0x7D.

4.

If code point is 0x007E, emit two bytes 0x7E 0x7E.5.

If code point is in the range U+0000 to U+007F, emit a byte whose value is code point.6.

If the hz-gb-2312 flag is unset, decrease the code point pointer by one, set the hz-gb-2312 flag, and emit two bytes 0x7E
0x7B.

7.

Let pointer be the index pointer for code point in index gbk.8.

If pointer is null, emit an encoder error.9.

Let lead be pointer / 190 + 1.10.

Let trail be pointer % 190 − 0x3F.11.

If either lead or trail is not in the range 0x21 to 0x7E, emit an encoder error.12.

Emit two bytes whose values are lead and trail.13.



10 Legacy multi-byte Chinese (traditional) encodings

10.1 big5

The big5 lead is initially 0x00.

The big5 decoder (decoder for big5) is:

Let byte be byte pointer.1.

If byte is the EOF byte and big5 lead is 0x00, emit the EOF code point.2.

If byte is the EOF byte and big5 lead is not 0x00, set big5 lead to 0x00 and emit a decoder error.3.

Increase the byte pointer by one.4.

If big5 lead is not 0x00, let lead be big5 lead, let pointer be null, set big5 lead to 0x00, and then run these substeps:

Let offset be 0x40 if byte is less than 0x7F, or 0x62 otherwise.1.

If byte is in the range 0x40 to 0x7E or 0xA1 to 0xFE, set pointer to (lead − 0x81) × 157 + (byte − offset).2.

If there is a row in the table below whose first column is pointer, emit the two code points listed in its second
column:

Pointer Code points

1133 U+00CA U+0304

1135 U+00CA U+030C

1164 U+00EA U+0304

1166 U+00EA U+030C

Note: Since indexes are limited to single code points this table is used for these pointers.

3.

Let code point be null if pointer is null, or the index code point for pointer in index big5 otherwise.4.

If pointer is null, decrease the byte pointer by one.5.

If code point is null, emit a decoder error.6.

Emit a code point whose value is code point.7.

5.

If byte is in the range 0x00 to 0x7F, emit a code point whose value is byte.6.

If byte is in the range 0x81 to 0xFE, set big5 lead to byte and continue.7.

Emit a decoder error.8.

The big5 encoder (encoder for big5) is:

Let code point be code point pointer.1.

If code point is the EOF code point, emit the EOF byte.2.

Increase the code point pointer by one.3.

If code point is in the range U+0000 to U+007F, emit a byte whose value is code point.4.

Let pointer be the index pointer for code point in index big5.5.

If pointer is null, emit an encoder error.6.

Let lead be pointer / 157 + 0x81.7.

If lead is less than 0xA1, emit an encoder error.

Note: Avoid emitting Hong Kong Supplementary Character Set extensions literally.

8.

Let trail be pointer % 157.9.

Let offset be 0x40 if trail is less than 0x3F, or 0x62 otherwise.10.



Emit two bytes whose values are lead and trail + offset.11.



11 Legacy multi-byte Japanese encodings

11.1 euc-jp

The euc-jp first and euc-jp second are 0x00.

The euc-jp decoder (decoder for euc-jp) is:

Let byte be byte pointer.1.

If byte is the EOF byte and euc-jp first and euc-jp second are 0x00, emit the EOF code point.2.

If byte is the EOF byte and either euc-jp first or euc-jp second is not 0x00, set euc-jp first and euc-jp second to 0x00, and
emit a decoder error.

3.

Increase the byte pointer by one.4.

If euc-jp second is not 0x00, let lead be euc-jp second, set euc-jp second to 0x00 and run these substeps:

Let code point be null.1.

If lead and byte are both in the range 0xA1 to 0xFE, set code point to the index code point for (lead − 0xA1) × 94
+ byte − 0xA1 in index jis0212.

2.

If byte is not in the range 0xA1 to 0xFE, decrease byte pointer by one.3.

If code point is null, emit a decoder error.4.

Emit a code point whose value is code point.5.

5.

If euc-jp first is 0x8E and byte is in the range 0xA1 to 0xDF, set euc-jp first to 0x00 and emit a code point whose value is
0xFF61 + byte − 0xA1.

6.

If euc-jp first is 0x8F and byte is in the range 0xA1 to 0xFE, set euc-jp first to 0x00, euc-jp second to byte, and continue.7.

If euc-jp first is not 0x00, let lead be euc-jp first, set euc-jp first to 0x00, and run these substeps:

Let code point be null.1.

If lead and byte are both in the range 0xA1 to 0xFE, set code point to the index code point for (lead − 0xA1) × 94
+ byte − 0xA1 in index jis0208.

2.

If byte is not in the range 0xA1 to 0xFE, decrease byte pointer by one.3.

If code point is null, emit a decoder error.4.

Emit a code point whose value is code point.5.

8.

If byte is in the range 0x00 to 0x7F, emit a code point whose value is byte.9.

If byte is 0x8E, 0x8F, or in the range 0xA1 to 0xFE, set euc-jp first to byte and continue.10.

Emit a decoder error.11.

The euc-jp encoder (encoder for euc-jp) is:

Let code point be the code point pointer.1.

If code point is the EOF code point, emit the EOF byte.2.

Increase the code point pointer by one.3.

If code point is in the range U+0000 to U+007F, emit a byte whose value is code point.4.

If code point is U+00A5, emit byte 0x5C.5.

If code point is U+203E, emit byte 0x7E.6.

If code point is in the range U+FF61 to U+FF9F, emit two bytes whose values are 0x8E and code point − 0xFF61 + 0xA1.7.

Let pointer be the index pointer for code point in index jis0208.8.

If pointer is null, emit an encoder error.9.



Let lead be pointer / 94 + 0xA1.10.

Let trail be pointer % 94 + 0xA1.11.

Emit two bytes whose values are lead and trail.12.

Note: Contemporary implementations do not use index jis0212 for the euc-jp encoder.

11.2 iso-2022-jp

The iso-2022-jp state is initially ASCII state.

The iso-2022-jp jis0212 flag is initially unset.

The iso-2022-jp lead is initially 0x00.

The iso-2022-jp decoder (decoder for iso-2022-jp) is:

Let byte be byte pointer.1.

If byte is not the EOF byte, increase the byte pointer by one.2.

Based on iso-2022-jp state:

↪ ASCII state

Based on byte:

↪ 0x1B
Set iso-2022-jp state to escape start state and continue.

↪ 0x00 to 0x7F
Emit a code point whose value is byte.

↪ EOF byte
Emit the EOF code point.

↪ Otherwise
Emit a decoder error.

↪ Escape start state

If byte is either 0x24 or 0x28, set iso-2022-jp lead to byte, iso-2022-jp state to escape middle state,
and continue.

1.

If byte is not the EOF byte, decrease the byte pointer by one.2.

Set iso-2022-jp state to ASCII state and emit a decoder error.3.

↪ Escape middle state

Let lead be iso-2022-jp lead and set iso-2022-jp lead to 0x00.1.

If lead is 0x24 and byte is either 0x40 or 0x42, unset the iso-2022-jp jis0212 flag, set iso-2022-jp
state to lead state, and continue.

2.

If lead is 0x24 and byte is 0x28, set iso-2022-jp state to escape final state and continue.3.

If lead is 0x28 and byte is either 0x42 or 0x4A, set iso-2022-jp state to ASCII state and continue.4.

If lead is 0x28 and byte is 0x49, set iso-2022-jp state to Katakana state and continue.5.

If byte is the EOF byte, decrease byte pointer by one, or decrease it by two otherwise.6.

Set iso-2022-jp state to ASCII state and emit a decoder error.7.

↪ Escape final state

If byte is 0x44, set the iso-2022-jp jis0212 flag, set iso-2022-jp state to lead state, and continue.1.

If byte is the EOF byte, decrease byte pointer by two, or decrease it by three otherwise.2.

Set iso-2022-jp state to ASCII state and emit a decoder error.3.

3.



↪ Lead state

Based on byte:

↪ 0x0A
Set iso-2022-jp state to ASCII state and emit code point U+000A.

↪ 0x1B
Set iso-2022-jp state to escape start state and continue.

↪ EOF byte
Emit the EOF code point.

↪ Otherwise
Set iso-2022-jp lead to byte, iso-2022-jp state to trail state, and continue.

↪ Trail state

Set the iso-2022-jp state to lead state.1.

If byte is the EOF byte, emit a decoder error.2.

Let code point be null and let pointer be (iso-2022-jp lead − 0x21) × 94 + byte − 0x21.3.

If iso-2022-jp lead and byte are both in the range 0x21 to 0x7E, set code point to the index code
point for pointer in index jis0208 if the iso-2022-jp jis0212 flag is unset, or in index jis0212 otherwise.

4.

If code point is null, emit a decoder error.5.

Emit a code point whose value is code point.6.

↪ Katakana state

Based on byte:

↪ 0x1B
Set iso-2022-jp state to escape start state and continue.

↪ 0x21 to 0x5F
Emit a code point whose value is 0xFF61 + byte − 0x21.

↪ EOF byte
Emit the EOF code point.

↪ Otherwise
Emit a decoder error.

The iso-2022-jp encoder (encoder for iso-2022-jp) is:

Let code point be code point pointer.1.

If code point is the EOF code point, emit the EOF byte.2.

Increase the code point pointer by one.3.

If code point is in the range U+0000 to U+007F, or is U+00A5 or U+203E, and iso-2022-jp state is not ASCII state,
decrease the code point pointer by one, set iso-2022-jp state to ASCII state, and emit three bytes 0x1B 0x28 0x42.

4.

If code point is in the range U+0000 to U+007F, emit a byte whose value is code point.5.

If code point is U+00A5, emit byte 0x5C.6.

If code point is U+203E, emit byte 0x7E.7.

If code point is in the range U+FF61 to U+FF9F and iso-2022-jp state is not Katakana state, decrease the code point
pointer by one, set iso-2022-jp state to Katakana state, and emit three bytes 0x1B 0x28 0x49.

8.

If code point is in the range U+FF61 to U+FF9F, emit a byte whose value is code point − 0xFF61 + 0x21.9.

If iso-2022-jp state is not lead state, decrease the code point pointer by one, set iso-2022-jp state to lead state, and emit
three bytes 0x1B 0x24 0x42.

10.

Let pointer be the index pointer for code point in index jis0208.11.

If pointer is null, emit an encoder error.12.



Let lead be pointer / 94 + 0x21.13.

Let trail be pointer % 94 + 0x21.14.

Emit two bytes whose values are lead and trail.15.

11.3 shift_jis

The shift_jis lead is initially 0x00.

The shift_jis decoder (decoder for shift_jis) is:

Let byte be byte pointer.1.

If byte is the EOF byte and shift_jis lead is 0x00, emit the EOF code point.2.

If byte is the EOF byte, shift_jis lead is not 0x00, set shift_jis lead to 0x00 and emit a decoder error.3.

Increase the byte pointer by one.4.

If shift_jis lead is not 0x00, let lead be shift_jis lead, let pointer be null, set shift_jis lead to 0x00, and then run these
substeps:

Let offset be 0x40 if byte is less than 0x7F, or 0x41 otherwise.1.

Let lead offset be 0x81 if lead is less than 0xA0, or 0xC1 otherwise.2.

If byte is in the range 0x40 to 0x7E or 0x80 to 0xFC, set pointer to (lead − lead offset) × 188 + byte − offset.3.

Let code point be null if pointer is null, or the index code point for pointer in index jis0208 otherwise.4.

If pointer is null, decrease the byte pointer by one.5.

If code point is null, emit a decoder error.6.

Emit a code point whose value is code point.7.

5.

If byte is in the range 0x00 to 0x80, emit a code point whose value is byte.6.

If byte is in the range 0xA1 to 0xDF, emit a code point whose value is 0xFF61 + byte − 0xA1.7.

If byte is in the range 0x81 to 0x9F or 0xE0 to 0xFC, set shift_jis lead to byte and continue.8.

Emit a decoder error.9.

The shift_jis encoder (encoder for shift_jis) is:

Let code point be the code point pointer.1.

If code point is the EOF code point, emit the EOF byte.2.

Increase the code point pointer by one.3.

If code point is in the range U+0000 to U+0080, emit a byte whose value is code point.4.

If code point is U+00A5, emit byte 0x5C.5.

If code point is U+203E, emit byte 0x7E.6.

If code point is in the range U+FF61 to U+FF9F, emit a byte whose value is code point − 0xFF61 + 0xA1.7.

Let pointer be the index pointer for code point in index jis0208.8.

If pointer is null, emit an encoder error.9.

Let lead be pointer / 188.10.

Let lead offset be 0x81 if lead is less than 0x1F, or 0xC1 otherwise.11.

Let trail be pointer % 188.12.

Let offset be 0x40 if trail is less than 0x3F, or 0x41 otherwise.13.

Emit two bytes whose values are lead + lead offset and trail + offset.14.





12 Legacy multi-byte Korean encodings

12.1 euc-kr

The euc-kr lead is initially 0x00.

The euc-kr decoder (decoder for euc-kr) is:

Let byte be byte pointer.1.

If byte is the EOF byte and euc-kr lead is 0x00, emit the EOF code point.2.

If byte is the EOF byte and euc-kr lead is not 0x00, set euc-kr lead to 0x00 and emit a decoder error.3.

Increase the byte pointer by one.4.

If euc-kr lead is not 0x00, let lead be euc-kr lead, let pointer be null, set euc-kr lead to 0x00, and then run these substeps:

If lead is in the range 0x81 to 0xC6, let temp be (26 + 26 + 126) × (lead − 0x81), and then set pointer to the result
of the equation below, depending on byte:

↪ 0x41 to 0x5A

temp + byte − 0x41

↪ 0x61 to 0x7A

temp + 26 + byte − 0x61

↪ 0x81 to 0xFE

temp + 26 + 26 + byte − 0x81

1.

If lead is in the range 0xC7 to 0xFE and byte is in the range 0xA1 to 0xFE, set pointer to (26 + 26 + 126) × (0xC7
− 0x81) + (lead − 0xC7) × 94 + (byte − 0xA1).

2.

Let code point be null if pointer is null, or the index code point for pointer in index euc-kr otherwise.3.

If pointer is null, decrease the byte pointer by one.4.

If code point is null, emit a decoder error.5.

Emit a code point whose value is code point.6.

5.

If byte is in the range 0x00 to 0x7F, emit a code point whose value is byte.6.

If byte is in the range 0x81 to 0xFE, set euc-kr lead to byte and continue.7.

Emit a decoder error.8.

The euc-kr encoder (encoder for euc-kr) is:

Let code point be the code point pointer.1.

If code point is the EOF code point, emit the EOF byte.2.

Increase the code point pointer by one.3.

If code point is in the range U+0000 to U+007F, emit a byte whose value is code point.4.

Let pointer be the index pointer for code point in index euc-kr.5.

If pointer is null, emit an encoder error.6.

If pointer is less than (26 + 26 + 126) × (0xC7 − 0x81), run these substeps:

Let lead be pointer / (26 + 26 + 126) + 0x81.1.

Let trail be pointer % (26 + 26 + 126).2.

Let offset be 0x41 if trail is less than 26, 0x47 if trail is less than 26 + 26, or 0x4D otherwise.3.

Emit two bytes whose values are lead and trail + offset.4.

7.

Set pointer to pointer − (26 + 26 + 126) × (0xC7 − 0x81).8.

Let lead be pointer / 94 + 0xC7.9.



Let trail be pointer % 94 + 0xA1.10.

Emit two bytes whose values are lead and trail.11.

12.2 iso-2022-kr

The iso-2022-kr state is initially ASCII state.

The iso-2022-kr lead is initially 0x00.

The iso-2022-kr decoder (decoder for iso-2022-kr) is:

Let byte be byte pointer.1.

If byte is not the EOF byte, increase the byte pointer by one.2.

Based on iso-2022-kr state:

↪ ASCII state

Based on byte:

↪ 0x0E
Set iso-2022-kr state to lead state and continue.

↪ 0x0F
Continue.

↪ 0x1B
Set iso-2022-kr state to escape start state and continue.

↪ 0x00 to 0x7F
Emit a code point whose value is byte.

↪ EOF byte
Emit the EOF code point.

↪ Otherwise
Emit a decoder error.

↪ Escape start state

If byte is 0x24, set iso-2022-kr state to escape middle state and continue.1.

If byte is not the EOF byte, decrease the byte pointer by one.2.

Set iso-2022-kr state to ASCII state and emit a decoder error.3.

↪ Escape middle state

If byte is 0x29, set iso-2022-kr state to escape end state and continue.1.

If byte is the EOF byte, decrease the byte pointer by one, or decrease it by two otherwise.2.

Set iso-2022-kr state to ASCII state and emit a decoder error.3.

↪ Escape end state

If byte is 0x43, set iso-2022-kr state to ASCII state and continue.1.

If byte is the EOF byte, decrease the byte pointer by two, or decrease it by three otherwise.2.

Set iso-2022-kr state to ASCII state and emit a decoder error.3.

↪ Lead state

Based on byte:

↪ 0x0A
Set iso-2022-kr state to ASCII state and emit code point U+000A.

↪ 0x0E
Continue.

3.



↪ 0x0F
Set iso-2022-kr state to ASCII state and continue.

↪ EOF byte
Emit the EOF code point.

↪ Otherwise
Set iso-2022-kr lead to byte, set iso-2022-kr state to trail state, and continue.

↪ Trail state

Set the iso-2022-kr state to lead state.1.

If byte is the EOF byte, emit a decoder error.2.

Let code point be null.3.

If iso-2022-kr lead is in the range 0x21 to 0x46 and byte is in the range 0x21 to 0x7E, set code point
to the index code point for (26 + 26 + 126) × (iso-2022-kr lead − 1) + 26 + 26 + byte − 1 in index
euc-kr.

4.

If iso-2022-kr lead is in the range 0x47 to 0x7E and byte is in the range 0x21 to 0x7E, set code point
to the index code point for (26 + 26 + 126) × (0xC7 − 0x81) + (iso-2022-kr lead − 0x47) × 94 + (byte
− 0x21) in index euc-kr.

5.

If code point is not null, emit code point.6.

Emit a decoder error.7.

The iso-2022-kr initialization flag is initially unset.

The iso-2022-kr encoder (encoder for iso-2022-kr) is:

Let code point be code point pointer.1.

If code point is the EOF code point and iso-2022-kr state is not ASCII state, set iso-2022-kr state to ASCII state and emit
byte 0x0F.

2.

If code point is the EOF code point, emit the EOF byte.3.

If the iso-2022-kr initialization flag is unset, set the iso-2022-kr initialization flag and emit four bytes 0x1B 0x24 0x29 0x43.4.

Increase the code point pointer by one.5.

If code point is in the range U+0000 to U+007F and iso-2022-kr state is not ASCII state, decrease the code point pointer
by one, set iso-2022-kr state to ASCII state, and emit byte 0x0F.

6.

If code point is in the range U+0000 to U+007F, emit a byte whose value is code point.7.

If iso-2022-kr state is not lead state, decrease the code point pointer by one, set iso-2022-kr state to lead state, and emit
byte 0x0E.

8.

Let pointer be the index pointer for code point in index euc-kr.9.

If pointer is null, emit an encoder error.10.

If pointer is less than (26 + 26 + 126) × (0xC7 − 0x81), run these substeps:

Let lead be pointer / (26 + 26 + 126) + 1.1.

Let trail be pointer % (26 + 26 + 126) − 26 − 26 + 1.2.

If lead is not in the range 0x21 to 0x46 or trail is not in the range 0x21 to 0x7E, emit an encoder error.3.

Emit two bytes whose values are lead and trail.4.

11.

Set pointer to pointer − (26 + 26 + 126) × (0xC7 − 0x81).12.

Let lead be pointer / 94 + 0x47.13.

Let trail be pointer % 94 + 0x21.14.

If lead is not in the range 0x47 to 0x7E or trail is not in the range 0x21 to 0x7E, emit an encoder error.15.



Emit two bytes whose values are lead and trail.16.



13 Legacy utf-16 encodings

Note: Contrary to the Unicode standard, checking for a byte order mark happens before an encoding to
decode a byte stream is chosen.

13.1 utf-16

The utf-16 lead byte and utf-16 lead surrogate are initially null and the utf-16be flag is initially unset.

The utf-16 decoder (decoder for utf-16) is:

Let byte be byte pointer.1.

If byte is the EOF byte and utf-16 lead byte and utf-16 lead surrogate are null, emit the EOF code point.2.

If byte is the EOF byte and either utf-16 lead byte or utf-16 lead surrogate is not null, set utf-16 lead byte and utf-16 lead
surrogate to null, and emit a decoder error.

3.

Increase the byte pointer by one.4.

If utf-16 lead byte is null, set utf-16 lead byte to byte and continue.5.

Let code point be the result of:

↪ utf-16be flag is set

(utf-16 lead byte << 8) + byte.

↪ utf-16be flag is unset

(byte << 8) + utf-16 lead byte.

Then set utf-16 lead byte to null.

6.

If utf-16 lead surrogate is not null, let lead surrogate be utf-16 lead surrogate, set utf-16 lead surrogate to null, and then
run these substeps:

If code point is in the range U+DC00 to U+DFFF, emit a code point whose value is 0x10000 + (lead surrogate −
0xD800) × 0x400 + (code point − 0xDC00).

1.

Decrease the byte pointer by two and emit a decoder error.2.

7.

If code point is in the range U+D800 to U+DBFF, set utf-16 lead surrogate to code point and continue.8.

If code point is in the range U+DC00 to U+DFFF, emit a decoder error.9.

Emit code point code point.10.

To convert a code unit to bytes run these steps:

Let byte1 be code unit >> 8.1.

Let byte2 be code unit & 0x00FF.2.

Then return the bytes in order:

↪ utf-16be flag is set

byte1, then byte2.

↪ utf-16be flag is unset

byte2, then byte1.

3.

The utf-16 encoder (encoder for utf-16) is:

Let code point be code point pointer.1.

If code point is in the range 0xD800 to 0xDFFF, emit an encoder error.2.

If code point is the EOF code point, emit the EOF byte.3.

Increase the code point pointer by one.4.



If code point is in the range 0x00 to 0xFFFF, emit the sequence resulting of converting code point to bytes.5.

Let lead be (code point − 0x10000) / 0x400 + 0xD800, converted to bytes.6.

Let trail be (code point − 0x10000) % 0x400 + 0xDC00, converted to bytes.7.

Emit a sequence of bytes that consists of lead followed by trail.8.

13.2 utf-16be

The utf-16be decoder (decoder for utf-16be) is the utf-16 decoder with the utf-16be flag set.

The utf-16be encoder (encoder for utf-16be) is the utf-16 encoder with the utf-16be flag set.



References

[RFC2119]

Key words for use in RFCs to Indicate Requirement Levels, Scott Bradner. IETF.

[UNICODE]

Unicode Standard. Unicode Consortium.



Acknowledgments

There have been a lot of people that have helped make encodings more interoperable over the years and thereby furthered the
goals of this specification. Likewise people have helped making this specification what it is today.

Ideally they are all listed here so please contact the editor with any omissions.

With that, many thanks to Charles McCathieNeville, David Carlisle, Doug Ewell, Erik van der Poel, 譚永鋒 (Frank Yung-Fong Tang),
Ian Hickson, Joshua Bell, 신정식 (Jungshik Shin), Ken Lunde, Leif Halvard Silli, Makoto Kato, Mark Callow, Mark Davis, Martin
Dürst, Masatoshi Kimura, Ms2ger, Norbert Lindenberg, Øistein E. Andersen, Peter Krefting, Philip Jägenstedt, Philip Taylor, Shawn
Steele, Simon Montagu, Simon Pieters, and 成瀬ゆい (Yui Naruse) for being awesome.




