
L2/…
Subject: Proposed changes for UAX31 for Hashtags
From: Mark Davis
Date: 2015-01-29

Re: 138-A42 For 8.0, look at the broader question of incorporating more natural language words into
looser identifiers in contexts like hashtags. See consensus 138-C16 and UAX #31.

Proposal: make the following changes to http://unicode.org/reports/tr31/ to add
support for hashtags.

1.4 Conformance
add:

UAX31-C3. An implementation claiming conformance to this specification for parsing
Hashtags shall do so in accordance with Section 6.1 Parsing Hashtags

UAX31-C4. An implementation claiming conformance to this specification for determining
when two Hashtags are identical shall do so in accordance with Section 6.2
HashTag Identity

2.4 Specific Character Adjustments

add definition:

An InclusionCharacter is defined to be any character included in Table 3. Candidate Characters for
Inclusion in Identifiers.

add to Table 3:

The following characters, to prevent surprises when words are pasted after hashtags:

U+00AD () SOFT HYPHEN
U+2011 (‑) NON-BREAKING HYPHEN
U+200B () ZERO WIDTH SPACE
U+2060 () WORD JOINER
U+180E () MONGOLIAN VOWEL SEPARATOR

Issues:
1. Alternatively, we could have a separate table 3a with the new characters, and modify the

definition.
2. Should we add compatibility variants of items in the table? Such as U+FF0D (－)

FULLWIDTH HYPHEN-MINUS. There is text in that section that says they can be added,
but if we want them, we should have a definitive list to reference.

(new) Section 6 Hashtags

http://www.unicode.org/L2/L2014/14026.htm#138-A42
http://www.unicode.org/L2/L2014/14026.htm#138-C16
http://unicode.org/reports/tr31/
http://unicode.org/reports/tr31/#Table_Candidate_Characters_for_Inclusion_in_Identifiers
http://unicode.org/reports/tr31/#Table_Candidate_Characters_for_Inclusion_in_Identifiers
http://unicode.org/cldr/utility/character.jsp?a=00AD
http://unicode.org/cldr/utility/character.jsp?a=2011
http://unicode.org/cldr/utility/character.jsp?a=200B
http://unicode.org/cldr/utility/character.jsp?a=2060
http://unicode.org/cldr/utility/character.jsp?a=180E
rick@unicode.org
Text Box
L2/15-052

add:
Hashtags have grown to be quite popular in social media, but there is little consistency across
platforms. As noted in Section 2.4, compared to other identifiers, hashtags are expected to more fully
encompass words or phrases used in natural languages. The following are recommended for parsing
hashtags.

6.1 Parsing Hashtags

A hashtag consists of a hash trigger (such as #), followed by a Unicode XID_Start character, then
followed by zero or more of XID_Continue characters. The latter can have interspersed single
InclusionCharacter (see Section 2.4).

HashTrigger = [#﹟＃] XID_Start (InclusionCharacter? XID_Continue+)*

6.2 HashTag Identity

Hashtags should be compared loosely, that is, insensitive to case, compatibility variants, and format
characters. Thus two hashtags should compare as equivalent if they are the same under Compatibility
Normalization and Case Folding:

X ~ Y
iff

NFKC_CF(X) = NFKC_CF(Y)

The simplest way to deal with this is to perform NFKC_CF on the hashtag immediately after it is
parsed. However, the input form of the hashtag should be retained in any original messages, so that
the original display is not distorted by the lack of Join_Controls.

6.3 Security

Based on usage, it does not appear that confusability of Hashtag strings is a significant issue. If that
comes to present a problem, then the techniques described in UTR #36 and UTS #39 can be applied,
such as in restricting mixed scripts.

6.3 Stability

With each new version of Unicode, new characters become allowed in Hashtags. However, sometimes
the properties of Unicode characters may also change, thus disallowing characters that were allowed
previously.

The XID_Start and XID_Continue are kept backwards compatibility: see Section 2.5 Backward
Compatibility. However, there is no guarantee about the InclusionCharacters; while unlikely, it is
possible that characters might be removed from that set.

There are two main strategies for dealing with this.

1. If it is not important for the implementation to maintain absolute backwards compatibility for
hashtags, then this possibility can be ignored.

2. If it is important, then the implementation can maintain its own set of grandfathered
InclusionCharacters, and simply union-in new characters from successive versions of
Unicode.

http://unicode.org/reports/tr31/#Backward_Compatibility
http://unicode.org/reports/tr31/#Backward_Compatibility

