
  Technical Reports

 

Proposed Update Unicode Technical Standard #46

Version 8.0.0 (draft 2)
Editors Mark Davis (markdavis@google.com),

Michel Suignard (michel@suignard.com)
Date 2015-02-17
This Version http://www.unicode.org/reports/tr46/tr46-14.html
Previous
Version

http://www.unicode.org/reports/tr46/tr46-13.html

Latest Version http://www.unicode.org/reports/tr46/
Latest
Proposed
Update

http://www.unicode.org/reports/tr46/proposed.html

Revision 14

Summary

Client software, such as browsers and emailers, faces a difficult transition from the version
of international domain names approved in 2003 (IDNA2003), to the revision approved in
2010 (IDNA2008). The specification in this document provides a mechanism that
minimizes the impact of this transition for client software, allowing client software to access
domains that are valid under either system.

The specification provides two main features: One is a comprehensive mapping to support
current user expectations for casing and other variants of domain names. Such a mapping
is allowed by IDNA2008. The second is a compatibility mechanism that supports the
existing domain names that were allowed under IDNA2003. This second feature is
intended to improve client behavior during the transitional period.
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1 Introduction

One of the great strengths of domain names is universality. The URL http://Apple.com
goes to Apple's website from anywhere in the world, using any browser. The email
address markdavis@google.com can be used to send email to an editor of this
specification from anywhere in the world, using any emailer.

Initially, domain names were restricted to ASCII characters. This was a significant burden
on people using other characters. Suppose, for example, that the domain name system
had been invented by Greeks, and one could only use Greek characters in URLs. Rather
than apple.com, one would have to write something like αππλε.κομ. An English speaker
would not only have to be acquainted with Greek characters, but would also have to pick
those Greek letters that would correspond to the desired English letters. One would have
to guess at the spelling of particular words, because there are not exact matches between
scripts.

Most of the world’s population faced this situation until recently, because their languages
use non-ASCII characters. A system was introduced in 2003 for internationalized domain
names (IDN). This system is called Internationalizing Domain Names for Applications, or
IDNA2003 for short. This mechanism supports IDNs by means of a client software
transformation into a format known as Punycode. A revision of IDNA was approved in
2010 (IDNA2008). This revision has a number of incompatibilities with IDNA2003.

The incompatibilities force implementers of client software, such as browsers and
emailers, to face difficult choices during the transition period as registries shift from
IDNA2003 to IDNA2008. This document specifies a mechanism that minimizes the impact
of this transition for client software, allowing client software to access domains that are
valid under either system.

The specification provides two main features. The first is a comprehensive mapping to
support current user expectations for casing and other variants of domain names. Such a
mapping is allowed by IDNA2008. The second feature is a compatibility mechanism that
supports the existing domain names that were allowed under IDNA2003. This second
feature is intended to improve client behavior during the transitional period. This
specification contains both normative and informative material. Only the conformance
clauses and the text that they directly or indirectly reference are considered normative.

1.1 IDNA2003

The series of RFCs collectively known as IDNA2003 [IDNA2003] allows domain names to
contain non-ASCII Unicode characters, which includes not only the characters needed for
Latin-script languages other than English (such as Å, Ħ, or Þ), but also different scripts,
such as Greek, Cyrillic, Tamil, or Korean. An internationalized domain name such as
Bücher.de can then be used in an "internationalized" URL, called an IRI, such as
http://Bücher.de#titel.

The IDNA mechanism for allowing non-ASCII Unicode characters in domain names
involves applying the following steps to each label in the domain name that contains
Unicode characters:

Transforming (mapping) a Unicode string to remove case and other variant
differences.

1. 



Checking the resulting string for validity, according to certain rules.2. 

Transforming the Unicode characters into a DNS-compatible ASCII string using a
specialized encoding called Punycode [RFC3492] .

3. 

For example, typing the IRI http://Bücher.de into the address bar of any modern browser
goes to a corresponding site, even though the "ü" is not an ASCII character. This works
because the IDN in that IRI resolves to the Punycode string which is actually stored by the
DNS for that site. Similarly, when a browser interprets a web page containing a link such
as <a href="http://Bücher.de">, the appropriate site is reached. (In this document, phrases
such as "a browser interprets" refer to domain names parsed out of IRIs entered in an
address bar as well as to those contained in links internal to HTML text.)

In the case of IDN Bücher.de, the Punycode value actually used for the domain names on
the wire is xn--bcher-kva.de. The Punycode version is also typically transformed back into
Unicode form for display. The resulting display string will be a string which has already
been mapped according to the IDNA2003 rules. This example results in a display string for
the IRI that has been casefolded to lowercase:

http://Bücher.de → http://xn--bcher-kva.de → http://bücher.de

A major limitation of IDNA2003 is its restriction to the repertoire of characters in Unicode
3.2, which means that some modern languages are excluded or not fully supported.
Furthermore, within the constraints of IDNA2003, there is no simple way to extend the
repertoire. IDNA2003 also does not make it clear to users of registries exactly which string
they are registering for a domain name (between Bücher.de and bücher.de, for example).

1.2 IDNA2008

In early 2010, a new version of IDNA was approved. Like IDNA2003, this version consists
of a collection of RFCs and is called IDNA2008 [IDNA2008]. IDNA2008 is intended to
solve the major problems in IDNA2003. It extends the valid repertoire of characters in
domain names, and establishes an automatic process for updating to future versions of
the Unicode Standard. Furthermore, it defines the concept of a valid domain name clearly,
so that registrants understand exactly what domain name string is being registered.

Processing in IDNA2008 is identical to IDNA2003 for many common domain names. Both
IDNA2003 and IDNA2008 transform a Unicode domain name in an IRI (like http://öbb.at) to
the Punycode version (like http://xn--bb-eka.at). However, IDNA2008 does not maintain
strict backward compatibility with IDNA2003. The main differences are:

Additions. Some IDNs are invalid in IDNA2003, but valid in IDNA2008.

Subtractions. Some IDNs are valid in IDNA2003, but invalid in IDNA2008.

Deviations. Some IDNs are valid in both, but resolve to different destinations.

For more details, see Section 7, IDNA Comparison.

1.3 Transition Considerations

The differences between IDNA2008 and IDNA2003 may cause interoperability and
security problems. They affect extremely common characters, such as all uppercase
characters, all halfwidth or fullwidth characters (commonly used in Japan, China, and



Korea), and certain other characters like the German eszett (U+00DF ß LATIN SMALL
LETTER SHARP S) and Greek final sigma (U+03C2 ς GREEK SMALL LETTER FINAL
SIGMA).

1.3.1 Mapping

IDNA2003 requires a mapping phase, which maps ÖBB.at to öbb.at, for example. Mapping
typically involves mapping uppercase characters to their lowercase pairs, but it also
involves other types of mappings between equivalent characters, such as mapping
halfwidth katakana characters to normal katakana characters in Japanese. The mapping
phase in IDNA2003 was included to match the insensitivity of ASCII domain names. Users
are accustomed to having both CNN.com and cnn.com work identically. They expect
domain names with accents to have the same casing behavior, so that ÖBB.at is the same
as öbb.at. There are variations similar to case differences in other scripts. The IDNA2003
mapping is based on data specified in the Unicode Standard, Version 3.2; this mapping
was later formalized as the Unicode property [NFKC_Casefold].

Note that case-folding generates a stable form of a string that erases functional
case-differences. It is not the same as lowercasing. In particular, the lowercase Cherokee
characters added in Unicode Version 8.0 are case-folded to their uppercase counterparts.

IDNA2008 does not require a mapping phase, but does permit one (called "Local
Mapping" or "Custom Mapping"). For more information on the permitted mappings, see the
Protocol document of [IDNA2008], Section 4.2, Permitted Character and Label Validation
and Section 5.2, Conversion to Unicode.

The UTS #46 specification defines a mapping consistent with the normative requirements
of the IDNA2008 protocol, and which is as compatible as possible with IDNA2003. For
client software, this provides behavior that is the most consistent with user expectations
about the handling of domain names with existing data—namely, that domain names will
map consistently both on clients supporting IDNA2003 and on clients supporting
IDNA2008 with the UTS #46 mapping.

1.3.2 Deviations

There are a few situations where the use of IDNA2008 without compatibility mapping will
result in the resolution of IDNs to different IP addresses from in IDNA2003, unless the
registry or registrant takes special action. This affects a very small number of characters,
but because these characters are very common in particular languages, a significant
number of domain names in those languages are affected. This set of characters is
referred to as "Deviations" and is shown in Table 1, Deviation Characters, illustrated in the
context of IRIs.

Table 1. Deviation Characters

Char Example IDNA2003 Result IDNA2008 Result

ß
00DF

href="http://faß.de" http://fass.de
= http://fass.de

http://faß.de
= http://xn--fa-hia.de



ς
03C2

href="http://βόλος.com" http://βόλοσ.com
= http://xn--
nxasmq6b.com

http://βόλος.com
= http://xn--

nxasmm1c.com

ZWJ
200D

href="http://ශී.com" http://ශ්රී.com
= http://xn--
10cl1a0b.com

http://ශී.com
= http://xn--

10cl1a0b660p.com

ZWNJ
200C

href="http://نامهای.com" http://نامهای.com
= http://xn--

mgba3gch31f.com

http://نامهای.com
= http://xn--

mgba3gch31f060k.com

For more information on the rationale for the occurrence of these Deviations in IDNA2008,
see the [IDN FAQ].

The differences in interpretation of Deviation characters result in potential for security
exploits. Consider a scenario involving http://www.sparkasse-gießen.de, a German IRI
containing an IDN for "Gießen Savings and Loan".

Alice's browser supports IDNA2003. Under those rules, http://www.sparkasse-
gießen.de is mapped to http://www.sparkasse-giessen.de, which leads to a site with
the IP address 01.23.45.67.

1. 

She visits her friend Bob, and checks her bank statement on his browser. His
browser supports IDNA2008. Under those rules, http://www.sparkasse-gießen.de is
also valid, but converts to a different Punycode domain name in http://www.xn--
sparkasse-gieen-2ib.de. This can lead to a different site with the IP address
101.123.145.167, a spoof site.

2. 

Alice ends up at the phishing site, supplies her bank password, and her money is
stolen. While the .DE registar (DENIC) might have a policy about bundling all of the
variants of ß together (so that they all have the same owner) it is not required of
registries. It is unlikely that all registries will have and enforce such a bundling policy
in all such cases.

There are two Deviations of particular concern. IDNA2008 allows the joiner characters
(ZWJ and ZWNJ) in labels. By contrast, these are removed by the mapping in IDNA2003.
When used in the intended contexts in particular scripts, the joiner characters produce a
noticeable change in displayed text. However, when used between any other characters in
those scripts, or in any other scripts, they are invisible. For example, when used between
the Latin characters "a" and "b" there is no visible different: the sequence "a<ZWJ>b"
looks just like "ab".

Because of the visual confusability introduced by the joiner characters, IDNA2008
provides a special category for them called CONTEXTJ, and only permits CONTEXTJ
characters in limited contexts: certain sequences of Arabic or Indic characters. However,
applications that perform IDNA2008 lookup are not required to check for these contexts,
so overall security is dependent on registries having correct implementations. Moreover,
the IDNA2008 context restrictions do not catch most cases where distinct domain names
have visually confusable appearances because of ZWJ and ZWNJ.



2 Unicode IDNA Compatibility Processing

To satisfy user expectations for mapping, and provide maximal compatibility with
IDNA2003, this document specifies a mapping for use with IDNA2008. In addition, to
transition more smoothly to IDNA2008, this document provides a Unicode algorithm for a
standardized processing that allows conformant implementations to minimize the security
and interoperability problems caused by the differences between IDNA2003 and
IDNA2008. This Unicode IDNA Compatibility Processing is structured according to
IDNA2003 principles, but extends those principles to Unicode 5.2 and later. It also
incorporates the repertoire extensions provided by IDNA2008.

Where the transition processing is not needed, UTS #46 can be used purely as a
preprocessing (local mapping) for IDNA2008 by claiming conformance specifically to
Conformance Clause C3.

By using this Compatibility Processing, a domain name such as ÖBB.at will be mapped to
the valid domain name öbb.at, thus matching user expectation for case behavior in domain
names. For transitional use, the Compatibility Processing also allows domain names
containing symbols and punctuation that were valid in IDNA2003, such as √.com (which
has an associated web page). Such domain names containing symbols will gradually
disappear as registries shift to IDNA2008.

Implementations may also restrict or flag (in a UI) domain names that include symbols and
punctuation. For more information, see Unicode Technical Report # 36, Unicode Security
Considerations [UTR36].

Using the Unicode IDNA Compatibility Processing to transform an IDN into a form suitable
for DNS lookup is similar to the tactic of "try IDNA2008 then try IDNA2003". However, this
approach avoids a potentially problematic dual lookup. It allows browsers and other
clients, such as search engines, to have a single processing step, without the burden of
maintaining two different implementations and multiple tables. It accounts for a number of
edge cases that would cause problems, and provides a stable definition with predictable
results.

The Unicode IDNA Compatibility Processing also provides alternate mappings for the
Deviation characters. This facilitates the transition from IDNA2003 to IDNA2008. It is up to
the registeries to decide how to handle the transition, for example, by either bundling or
blocking the Deviation characters that they support. The course of the transition will also
depend on how soon the IDNA2003 client software is retired.

The term "registries" includes far more than top-level registries, such as for .de or .com.
For example, .blogspot.com has more domain names registered than most top-level
registries. There may be different policies in place for a registry and any of its
subregistries. Thus millions of registries need to be considered in a transition strategy, not
just hundreds.

The retirement of IDNA2003 client software may also take considerable time. IE6 was
superseded in October 2006, yet as of April 2010, it still has a usage share of over
20%—higher than all other browsers except IE8! In lookup software, transitions may be
fine-grained: for example, it may be possible to transition to IDNA2008 rules regarding
Deviations for .blogspot.com at a given point but not for .com, or vice versa. If .de
bundles or blocks the Deviation characters, then clients could transition Deviations for .de,



but not for (say) .blogspot.de. Moreover, client software with a UI, such as the address
bar in a browser, could provide more options for the transition. A full discussion of such
transition strategies is outside of the scope of this document.

During the interim, authors of documents, such as HTML documents, can unambiguously
refer to the IDNA2008 interpretation of characters by explicitly using the Punycode form of
the domain name label.

There are two slightly different compatibility mechanisms for domain names during a
transition and afterward. UTS #46 therefore specifies two specific types of processing:
Transitional Processing (Conformance Clause C1 ) and Nontransitional Processing
(Conformance Clause C2). The only difference between them is the handling of the four
Deviation characters.

Summarized briefly, UTS #46 builds upon IDNA2008 in three areas:

Mapping. The UTS #46 mapping is used to maintain maximal compatibility and meet
user expectations. It is conformant to IDNA2008, which allows for mapping input.

Symbols and Punctuation. UTS #46 supports processing of symbols and
punctuation during the transitional period. The transition will be smooth: as registries
move to IDNA2008 the DNS lookups of IDNs with symbols will simply be refused. At
that point, in practice, there is full compatibility with IDNA2008.

Deviations. UTS #46 provides two ways of handling these to support a transition.
Transitional Processing should only be used immediately before a DNS lookup in the
circumstances where the registry does not guarantee a strategy of bundling or
blocking. Nontransitional Processing, which is fully compatible with IDNA2008,
should be used in all other cases.

For a demonstration of differences between IDNA2003, IDNA2008, and the Unicode IDNA
Compatibility Processing, see the [IDN_Demo]. For more detail on the differences, see
Section 7, IDNA Comparison. UTS #46 does not change any of the terms defined in
IDNA2008, such as A-Label or U-Label.

Neither the Unicode IDNA Compatibility Processing nor IDNA2008 address security
problems associated with confusables (the so-called "paypal.com" problem). IDNA2008
disallows certain symbols and punctuation characters that can be used for spoofing, such
as spoofs of the slash character ("/"). However, these are an extremely small fraction of
the confusable characters used for spoofing. Moreover, confusable characters themselves
account for a small proportion of phishing problems: most are cases like "secure-
wellsfargo.com". For more information, see [Bortzmeyer] and the [IDN FAQ]. It is strongly
recommended that Unicode Technical Report #36, Unicode Security Considerations
[UTR36] and Unicode Technical Standard #39, Unicode Security Mechanisms [UTS39] be
consulted for information on dealing with confusables, both for client software and
registries. In particular, [UTS39] provides information that can be used to drastically
reduce the number of confusables when dealing with international domain names, much
beyond what IDNA2008 does. See also the [DemoConf].

2.1 Display of Internationalized Domain Names

IDNA2003 applications customarily display the processed string to the user. This improves
security by reducing the opportunity for visual confusability. Thus, for example, the URL



http://googIe.com (with a capital I in place of the L) is revealed as http://googie.com.
However, for Deviations the distinction between the original and processed form is
especially important for users. Thus the Nontransitional Processing should be used for
displaying domain names. This is the same as Transitional Processing, except that it
excludes the Deviations: ß and ς and the joiners. It is thus fully compatible with IDNA2008
for these Deviation characters.

Except for direct DNS lookup during the transitional period, the Nontransitional Processing
should always be used, preserving the Deviation characters in the original string as per
IDNA2008. Once the transition for Deviation characters is over, Nontransitional Processing
can be used exclusively.

2.2 Registries

This specification is primarily targeted at applications doing lookup of IDNs. There is,
however, one strong recommendation for registries: do not allow the registration of labels
that are invalid according to Nontransitional Processing, and for a transitional period,
bundle or block labels containing Deviation characters.

These tactics can be described as follows:

Bundling: If the transitional and non-transitional forms differ, and are both
registered, the registrant for each must be the same.

Blocking: If transitional and nontransitional forms differ, allow the registration of only
one, and block the others. Registries that do not allow any Deviation characters at all
count as blocking.

The label that is actually registered and inserted into a registry has always been
processed. For example, xn--bcher-kva corresponds to bücher. However, it may be useful
for a registry to also ask for "unprocessed" labels, such as Bücher, as part of the
registration process, so that they are aware of the registrant's intent. However, such
unprocessed labels must be handled carefully:

Storing the unprocessed label as the sequence of characters that the registrant
really wanted to apply for.

Processing the unprocessed label, and displaying the processed label to the
registrant for confirmation.

Proceeding with the regular registration process using only the processed label.

2.3 Notation

Sets of code points are defined using properties and the syntax of Unicode Technical
Standard #18, Unicode Regular Expressions [UTS18]. For example, the set of combining
marks is represented by the syntax \p{gc=M} . Additionally, the "+" indicates the addition of
elements to a set, for clarity.

In this document, a label is a substring of a domain name. That substring is bounded on
both sides by either the start or the end of the string, or any of the following characters,
called label-separators:

U+002E ( . ) FULL STOP1. 



U+FF0E ( ． ) FULLWIDTH FULL STOP2. 

U+3002 ( 。 ) IDEOGRAPHIC FULL STOP3. 

U+FF61 ( ｡ ) HALFWIDTH IDEOGRAPHIC FULL STOP4. 

Many people use the terms "domain names" and "host names" interchangeably. This
document follows [RFC3490] in use of the term "domain name".

3 Conformance

The requirements for conformance on implementations of the Unicode IDNA
Compatibility Processing algorithm are stated in the following clauses. An
implementation can claim conformance to any or all of these clauses independently.

C1 Given a version of Unicode and a Unicode String, a conformant
implementation of Transitional Processing shall replicate the results given
by applying the Transitional Processing algorithm specified by Section 4,
Processing .

C2 Given a version of Unicode and a Unicode String, a conformant
implementation of Nontransitional Processing shall replicate the results
given by applying the Nontransitional Processing algorithm specified by
Section 4, Processing .

C3 Given a version of Unicode and a Unicode String, a conformant
implementation of Preprocessing for IDNA2008 shall replicate the results
specified by Section 4.4, Preprocessing for IDNA2008 .

These specifications are logical ones, designed to be straightforward to describe. An
actual implementation is free to use different methods as long the result is the same as
that specified by the logical algorithm.

Any conformant implementation may also have tighter validity criteria than those imposed
by Section 4.1, Validity Criteria. For example, an application could disallow or warn of
domain name labels with certain characteristics, such as:

labels with certain combinations of scripts (Safari)

labels with characters outside of the user's specified languages (IE)

labels with certain confusable characters (Firefox)

labels that are detected by the Google Safe Browsing API [SafeBrowsing]

labels that do not meet the validity requirements of IDNA2008

labels produced by toUnicode that would not meet the label validity requirements if
toASCII were performed.

labels containing characters which are not contained in the General Security Profile
for Identifiers from Unicode Technical Standard #39, Unicode Security Mechanisms
[UTS39]



labels that do not satisfy Restriction Level 4, Moderately Restrictive from Unicode
Technical Standard #39, Unicode Security Mechanisms [UTS39]

For more information, see Unicode Technical Report #36, Unicode Security
Considerations [UTR36] and Unicode Technical Standard #39, Unicode Security
Mechanisms [UTS39].

3.1 STD3 Rules

IDNA2003 provides for a flag, UseSTD3ASCIIRules, that allows for implementations to
choose whether or not to abide by the rules in [STD3]. These rules exclude ASCII
characters outside the set consisting of A-Z, a-z, 0-9, and U+002D ( - ) HYPHEN-MINUS.
For example, some browsers also allow characters such as U+005F ( _ ) LOW LINE
(underbar) in domain names, and thus use UseSTD3ASCIIRules=false, plus their own
validity checks for the other ASCII characters.

While UseSTD3ASCIIRules=true is strongly recommended, Section 5, IDNA Mapping
Table provides data to allow implementations to support UseSTD3ASCIIRules=false for
compatibility with IDNA2003 implementations where necessary. The mapping table does
this: providing the status values and mapping values for both UseSTD3ASCIIRules=true
and UseSTD3ASCIIRules=false. Implementations that use UseSTD3ASCIIRules=false
will need to apply their own validation to the mapped values as indicated in Section 4.1,
Validity Criteria.

4 Processing

The input to Unicode IDNA Compatibility Processing is a prospective domain_name string
expressed in Unicode, and a choice of Transitional or Nontransitional Processing. The
domain name consists of a sequence of labels with dot separators, such as "Bücher.de".
For more information about the composition of a URL, see Section 3.5 of [STD13] .

Main Processing Steps

The following steps, performed in order, successively alter the input domain_name string
and then output it as a converted Unicode string, plus a flag to indicate whether there was
an error. Even if an error occurs, the conversion of the string is performed as much as is
possible.

Input

A prospective domain_name expressed as a sequence of Unicode code points

A boolean flag: UseSTD3ASCIIRules

A processing_option with one of two values:

Transitional_Processing for transitional handling of Deviation characters, or

Nontransitional_Processing otherwise

Processing

Map For each code point in the domain_name string, look up the status value in
Section 5, IDNA Mapping Table, and take the following actions:

disallowed: Leave the code point unchanged in the string, and record that

1. 



there was an error.

ignored: Remove the code point from the string. This is equivalent to mapping
the code point to an empty string.

mapped: Replace the code point in the string by the value for the mapping in
Section 5, IDNA Mapping Table.

deviation:

For Transitional_Processing, replace the code point in the string by the
value for the mapping in Section 5, IDNA Mapping Table .

For Nontransitional_Processing, leave the code point unchanged in the
string.

valid: Leave the code point unchanged in the string.

Normalize. Normalize the domain_name string to Unicode Normalization Form C.2. 

Break. Break the string into labels at U+002E ( . ) FULL STOP.3. 

Convert/Validate. For each label in the domain_name string:

If the label starts with “xn--”:

Attempt to convert the rest of the label to Unicode according to Punycode
[RFC3492] . If that conversion fails, record that there was an error, and
continue with the next label. Otherwise replace the original label in the
string by the results of the conversion.

1. 

Verify that the label meets the validity criteria in Section 4.1, Validity
Criteria for Nontransitional Processing. If any of the validity criteria are not
satisfied, record that there was an error.

2. 

If the label does not start with “xn--”:

Verify that the label meets the validity criteria in Section 4.1, Validity
Criteria for the input Processing choice (Transitional or Nontransitional). If
any of the validity criteria are not satisfied, record that there was an error.

4. 

Any input domain_name string that does not record an error has been successfully
processed according to this specification. Conversely, if an input domain_name string
causes an error, then the processing of the input domain_name string fails. Determining
what to do with error input is up to the caller, and not in the scope of this document. The
processing is idempotent—reapplying the processing to the output will make no further
changes. For examples, see Table 2, Examples of Transitional Processing.

Implementations may make further modifications to the resulting Unicode string when
showing it to the user. For example, it is recommended that disallowed characters be
replaced by a U+FFFD to make them visible to the user. Similarly, labels that fail
processing during steps 4 or 5 may be marked by the insertion of a U+FFFD or other
visual device.

With either Transitional or Nontransitional Processing, sources already in Punycode are
validated without mapping. In particular, Punycode containing Deviation characters, such
as href="xn--fu-hia.de" (for fuß.de) is not remapped. This provides a mechanism allowing
explicit use of Deviation characters even during a transition period.

4.1 Validity Criteria

Each of the following criteria must be satisfied for a label:



The label must be in Unicode Normalization Form NFC.1. 

The label must not contain a U+002D HYPHEN-MINUS character in both the third
position and fourth positions.

2. 

The label must neither begin nor end with a U+002D HYPHEN-MINUS character.3. 

The label must not contain a U+002E ( . ) FULL STOP.4. 

The label must not begin with a combining mark, that is: General_Category=Mark.5. 

Each code point in the label must only have certain status values according to
Section 5, IDNA Mapping Table:

For Transitional Processing, each value must be valid.1. 

For Nontransitional Processing, each value must be either valid or deviation.2. 

6. 

Any particular application may have tighter validity criteria, as discussed in Section 3,
Conformance.

4.1.1 UseSTD3ASCIIRules

If UseSTD3ASCIIRules=false, then the validity tests for ASCII characters are not
provided by the table status values, but are implementation-dependent. For example, if an
implementation allows the characters [\u002Da-zA-Z0-9] and also the underbar (_), then it
needs to use the table values for UseSTD3ASCIIRules=false, and test for any other
ASCII characters as part of its validity criteria. These ASCII characters may have resulted
from a mapping: for example, a U+005F ( _ ) LOW LINE (underbar) may have originally
been a U+FF3F ( ＿ ) FULLWIDTH LOW LINE.

There are a very small number of non-ASCII characters with the data file status
disallowed_STD3_valid:

U+2260 ( ≠ ) NOT EQUAL TO

U+226E ( ≮ ) NOT LESS-THAN

U+226F ( ≯ ) NOT GREATER-THAN

Those characters are disallowed with UseSTD3ASCIIRules=true because the set of
characters in their canonical decompositions are not entirely in the valid set (Step 7 of the
Table Derivation). However, they are allowed with UseSTD3ASCIIRules=false, because
the base characters of their canonical decompositions, U+003D ( = ) EQUALS SIGN,
U+003C ( < ) LESS-THAN SIGN, and U+003E ( > ) GREATER-THAN SIGN, are each
valid under that option. If an implementation uses UseSTD3ASCIIRules=false but
disallows any of these three ASCII characters, then it must also disallow the
corresponding precomposed character for its negation.

4.1.2 Right-to-Left Scripts

In addition, the label should meet the requirements for right-to-left characters specified in
the Right-to-Left Scripts document of [IDNA2008], and for the CONTEXTJ requirements in
the Protocol document of [IDNA2008]. It is strongly recommended that Unicode Technical
Report #36, Unicode Security Considerations [UTR36] and Unicode Technical Standard
#39, Unicode Security Mechanisms [UTS39] be consulted for information on dealing with
confusables, and for characters that should be excluded from identifiers. Note that the
recommended exclusions are a superset of those in [IDNA2008].



4.2 ToASCII

The operation corresponding to ToASCII of [RFC3490] is defined by the following steps:

Input

A prospective domain_name expressed as a sequence of Unicode code points

A boolean flag: UseSTD3ASCIIRules

A processing_option with one of two values:

Transitional_Processing for transitional handling of Deviation characters, or

Nontransitional_Processing otherwise

A boolean flag: VerifyDnsLength

Processing

To the input domain_name, apply the Processing Steps in Section 4 Processing,
using the input processing_option and the UseSTD3ASCIIRules flag. This may
record an error.

1. 

Break the result into labels at U+002E FULL STOP.2. 

Convert each label with non-ASCII characters into Punycode [RFC3492]. This may
record an error.

3. 

If VerifyDnsLength flag is true, then verify DNS length restrictions. This may record
an error. For more information, see [STD13] and [STD3].

The length of the domain name, excluding the root label and its dot, is from 1 to
253.

1. 

The length of each label is from 1 to 63.2. 

4. 

If an error was recorded in steps 1-4, then the operation has failed and a failure
value is returned. No DNS lookup should be done.

5. 

Otherwise join the labels using U+002E FULL STOP as a separator, and return the
result.

6. 

Implementations are advised to apply additional tests to these labels, such as those
described in Unicode Technical Report #36, Unicode Security Considerations [UTR36] and
Unicode Technical Standard #39, Unicode Security Mechanisms [UTS39], and take
appropriate actions. For example, a label with mixed scripts or confusables may be called
out in the UI. Note that the use of Punycode to signal problems may be counter-
productive, as described in [UTR36].

4.3 ToUnicode

The operation corresponding to ToUnicode of [RFC3490] is defined by the following steps:

Input

A prospective domain_name expressed as a sequence of Unicode code points

A boolean flag: UseSTD3ASCIIRules

Processing

To the input domain_name, apply the Processing Steps in Section 4 Processing,1. 



using Nontransitional_Processing and the UseSTD3ASCIIRules flag. This may
record an error.

Like [RFC3490], this will always produce a converted Unicode string. Unlike ToASCII
of [RFC3490], this always signals whether or not there was an error.

2. 

Implementations are advised to apply additional tests to these labels, such as those
described in Unicode Technical Report #36, Unicode Security Considerations [UTR36] and
Unicode Technical Standard #39, Unicode Security Mechanisms [UTS39], and take
appropriate actions. For example, a label with mixed scripts or confusables may be called
out in the UI. Note that the use of Punycode to signal problems may be counter-
productive, as described in [UTR36].

4.4 Preprocessing for IDNA2008

The table specified in Section 5, IDNA Mapping Table may also be used for a pure
preprocessing step for IDNA2008, mapping a Unicode string for input directly to the
algorithm specified in IDNA2008.

Preprocessing for IDNA2008 is specified as follows:

Apply the Section 4.3, ToUnicode processing to the Unicode string.

Note that this preprocessing allows some characters that are invalid according to
IDNA2008. However, the IDNA2008 processing will catch those characters. For example,
a Unicode string containing a character listed as DISALLOWED in IDNA2008, such as
U+2665 (♥) BLACK HEART SUIT, will pass the preprocessing step without an error, but
subsequent application of the IDNA2008 processing will fail with an error, indicating that
the string is not a valid IDN according to IDNA2008.

4.5 Implementation Notes

A number of optimizations can be applied to the Unicode IDNA Compatibility Processing.
These optimizations can improve performance, reduce table size, make use of existing
NFKC transform mechanisms, and so on. For example:

There is an NFC check in Section 4.1, Validity Criteria. However, it only needs to be
applied to labels that were converted from Punycode into Unicode in Step 3.

A simple way to do much of the validity checking in Section 4.1, Validity Criteria is to
reapply Steps 1 and 2, and verify that the result does not change.

Because the four label separators are all mapped to U+002E ( . ) FULL STOP by
Step 1, the parsing of labels in Steps 3 and 4 only need to detect U+002E ( . ) FULL
STOP, and not the other label separators defined in IDNA [RFC3490].

Note that the input domain_name string for the Unicode IDNA Compatibility Processing
must have had all escaped Unicode code points converted to Unicode code points. For
example, U+5341 ( 十 ) CJK UNIFIED IDEOGRAPH-5341 could have been escaped as any
of the following:

&#x5341; an HTML numeric character reference (NCR)

\u5341 a Javascript escapes

%E5%8D%81 a URI/IRI %-escape



Examples are shown in Table 2, Examples of Processing:

Table 2. Examples of Processing

Input Map Normalize Convert Validate Comment

Bloß.de bloss.de = n/a ok Transitional: maps
uppercase and eszett

bloß.de = n/a ok Nontransitional: maps
uppercase

xn--blo-
7ka.de

= = bloß.com ok Punycode is not mapped,
so ß never changes
(whether transitional or
not).

u¨.com = ü.com n/a ok Normalize changes u +
umlaut to ü

xn--tda.com = = ü.com ok Punycode xn--tda
changes to ü

xn--u-
ccb.com

= = u¨.com error Punycode is not mapped,
but is validated. Because
u + umlaut is not NFC, it
fails.

a⒈com error error error error The character "⒈" is
disallowed, because it
would produce a dot
when mapped.

xn--a-
ecp.ru

xn--a-
ecp.ru

= a⒈.ru error Punycode xn--a-ecp =
a⒈, which fails validation.

xn--0.pt xn--0.pt = error error Punycode xn--0 is
invalid.

日本語。ＪＰ 日本語.jp = n/a ok Fullwidth characters are
remapped, including 。

☕.us = = n/a ok Post-Unicode 3.2
characters are allowed.

5 IDNA Mapping Table

For each code point in Unicode, the IDNA Mapping Table provides one of the following



status values:

valid: the code point is valid, and not modified.

ignored: the code point is removed: this is equivalent to mapping the code point to
an empty string.

mapped: the code point is replaced in the string by the value for the mapping.

deviation: the code point is either mapped or valid, depending on whether the
processing is transitional or not.

disallowed: the code point is not allowed.

disallowed_STD3_valid: the status is disallowed if
UseSTD3ASCIIRules=true (the normal case); implementations that allow
UseSTD3ASCIIRules=false would treat the code point as valid.

disallowed_STD3_mapped: the status is disallowed if
UseSTD3ASCIIRules=true (the normal case); implementations that allow
UseSTD3ASCIIRules=false would treat the code point as mapped.

If this status value is mapped, disallowed_STD3_mapped or deviation, the table also
supplies a mapping value for that code point.

A table is provided for each version of Unicode starting with Unicode 5.1, in versioned
directories under [IDNA-Table]. Each table for a version of the Unicode Standard will
always be backward compatible with previous versions of the table: only characters with
the status value disallowed may change in status or mapping value. Unlike the IDNA2008
table, this table is designed to be applied to the entire domain name, not just to individual
labels. That design provides for the IDNA2003 handling of label separators. In particular,
the table is constructed to forbid problematic characters such as U+2488 ( ⒈ ) DIGIT ONE
FULL STOP, whose decompositions contain a "dot".

The Unicode IDNA Compatibility Processing is based on the Unicode character mapping
property [NFKC_Casefold]. Section 6, Mapping Table Derivation describes the derivation
of these tables. Like derived properties in the Unicode Character Database, the
description of the derivation is informative. Only the data in IDNA Mapping Table is
normative for the application of this specification.

The files use a semicolon-delimited format similar to those in the Unicode Character
Database [UAX44]. The field values are listed in Table 2b, Data File Fields:

Table 2b. Data File Fields

Field Descriptions
0 Code point(s): hex value or range of values.
1 Status value: valid, ignored, mapped, deviation, disallowed,

disallowed_STD3_valid, or disallowed_STD3_mapped
2 Mapping value: Hex value(s). Only present if the status is ignored, mapped,

deviation, or disallowed_STD3_mapped.
3 IDNA2008 status: There are two values: NV8 and XV8. NV8 is only present if

the status is valid but the character is excluded by IDNA2008 from all



domain names for all versions of Unicode. XV8 is present when the
character is excluded by IDNA2008 for the current version of Unicode.
These are not normative fields.

Example:

0000..002C    ; disallowed                    #  NULL..COMMA
002D          ; valid                         #  HYPHEN-MINUS
...
0041          ; mapped       ; 0061           #  LATIN CAPITAL LETTER A
...
00A1..00A7    ; valid        ;      ; NV8     #  INVERTED EXCLAMATION MARK..SECTION SIGN
00AD          ; ignored                       #  SOFT HYPHEN
...
00DF          ; deviation    ; 0073 0073      #  LATIN SMALL LETTER SHARP S
...
19DA          ; valid        ;      ; XV8     # 5.2  NEW TAI LUE THAM DIGIT ONE
...

6 Mapping Table Derivation

The following describes the derivation of the mapping table. This description has nothing
to do with the actual mapping of labels in Section 4, Processing . Instead, this section
describes the derivation of the table in Section 5, IDNA Mapping Table. That table is then
normatively used for mapping in Section 4, Processing .

The derivation is described as a series of steps. Step 1 defines a base mapping; Steps 2,
3, and 4 define three sets of characters. Step 5 will modify the base mapping or the sets of
characters as needed to maintain backward compatiblity. The mapping and sets are all
used in Step 6 to produce the mapping and status values for the table. Step 7 removes
characters whose NFD form would be invalid. Each numbered step may have substeps:
for example, Step 1 consists of Steps 1.1 through 1.2.

The computation is done twice, once with UseSTD3ASCIIRules=true, and once with
UseSTD3ASCIIRules=false. Code points that are disallowed with
UseSTD3ASCIIRules=true, but valid or mapped with UseSTD3ASCIIRules=false, are
given the special values disallowed_STD3_valid and disallowed_STD3_mapped.

If a Unicode property changes in a future version in a way that would affect backward
compatibility, a grandfathering clause will be added to Step 5 to maintain compatibility. For
more information on compatibility, see Section 5, IDNA Mapping Table .

Step 1: Define a base mapping

This step specifies a base mapping, which is a mapping from each Unicode code point to
sequences of zero or more code points. The value resulting from mapping a particular
code point C is called the base mapping value of C. The base mapping value for C may be
identical to C.

Map the following exceptional characters:

Map label separator characters to U+002E ( . ) FULL STOP:

U+FF0E ( ． ) FULLWIDTH FULL STOP

U+3002 ( 。 ) IDEOGRAPHIC FULL STOP

a. 

1. 



U+FF61 ( ｡ ) HALFWIDTH IDEOGRAPHIC FULL STOP

Map all Bidi_Control characters to themselvesb. 

Map each other character to its NFKC_Casefold value [NFKC_Casefold].2. 

Unicode 6.3 adds Bidi_Control characters that were not present in Unicode 3.2. To
preserve the intent of IDNA2003 in disallowing Bidi_Control characters rather than just
ignoring them, Step 1.1.b was added. This step causes Step 6.3 to disallow all
Bidi_Control characters.

Step 1.1.b only affects 5 new characters added in Unicode 6.3. It would also impact any
new Bidi_Control characters in future versions of the standard.

Step 2: Specify the base valid set

The base valid set is defined by the sequential list of additions and subtractions in Table 3,
Base Valid Set. This definition is based on the principles of IDNA2003. When applied to
the repertoire of Unicode 3.2 characters, this produces a set which is closely aligned with
IDNA2003.

Table 3. Base Valid Set

Formal Sets Descriptions
  \P{Changes_When_NFKC_Casefolded} Start with characters that are equal

to their [NFKC_Casefold] value. This
criterion excludes uppercase
letters, for example, as well as
characters that are unstable under
NFKC normalization, and default
ignorable code points.

Note that according to Perl/Java
syntax, \P means the inverse of \p,
so these are the characters that do
not change when individually
mapped according to
[NFKC_Casefold].

- \p{c} - \p{z} Remove Unassigned, Controls,
Private Use, Format, Surrogate, and
Whitespace

-
\p{Block=Ideographic_Description_Characters}

Remove ideographic description
characters

- \p{ascii} +
[\u002Da-zA-Z0-9]

if UseSTD3ASCIIRules =
true

Remove disallowed ASCII; '-' is valid



+ \p{ascii} -
[\u002E]

if UseSTD3ASCIIRules =
false

Add all ASCII except for "."

Step 3: Specify the base exclusion set

Form the base exclusion set in the following way:

Start with the empty set.1. 

Add each code point C such that:

According to IDNA2003, C is neither prohibited nor unassigned nor a label
separator (that is, it is either valid or mapped), and

a. 

According to IDNA2003, C has a different mapping than C's base mapping
value specified in Step 1.

b. 

2. 

Add each code point C such that:

According to IDNA2003, C is prohibited, anda. 

either C is in the base valid set, or every code point in C's base mapping value
is in the base valid set.

b. 

3. 

For example, for Unicode 5.2 and 6.0, the base exclusion set consists of list that follows.
The subheads (like "Case Changes") are informational, and do not represent the principle
for excluding the characters listed under them.

Characters that have a different mapping in IDNA2003 (Step 3.2 above)

Case Changes

U+04C0 ( Ӏ ) CYRILLIC LETTER PALOCHKA

U+10A0 ( Ⴀ ) GEORGIAN CAPITAL LETTER AN…U+10C5 ( Ⴥ ) GEORGIAN
CAPITAL LETTER HOE

U+2132 ( Ⅎ ) TURNED CAPITAL F

U+2183 ( Ↄ ) ROMAN NUMERAL REVERSED ONE HUNDRED

Normalization Changes (CJK Compatibility Characters)

U+2F868, U+2F874, U+2F91F, U+2F95F, U+2F9BF

Default Ignorable Changes

U+3164 HANGUL FILLER

U+FFA0 HALFWIDTH HANGUL FILLER

U+115F HANGUL CHOSEONG FILLER

U+1160 HANGUL JUNGSEONG FILLER

U+17B4 KHMER VOWEL INHERENT AQ

U+17B5 KHMER VOWEL INHERENT AA

U+1806 ( ᠆ ) MONGOLIAN TODO SOFT HYPHEN

Characters that are disallowed in IDNA2003 (Step 3.3 above)

Bidi_Control characters

U+200E LEFT-TO-RIGHT MARK..U+200F RIGHT-TO-LEFT MARK

U+202A LEFT-TO-RIGHT EMBEDDING..U+202E RIGHT-TO-LEFT



OVERRIDE

Invisible operators

U+2061 FUNCTION APPLICATION..U+2063 INVISIBLE SEPARATOR

Replacement characters

U+FFFC OBJECT REPLACEMENT CHARACTER

U+FFFD ( � ) REPLACEMENT CHARACTER

Musical symbols

U+1D173 MUSICAL SYMBOL BEGIN BEAM..U+1D17A MUSICAL SYMBOL
END PHRASE

Format characters (deprecated)

U+206A INHIBIT SYMMETRIC SWAPPING..U+206F NOMINAL DIGIT
SHAPES

Tags (deprecated)

U+E0001 LANGUAGE TAG

U+E0020 TAG SPACE..U+E007F CANCEL TAG

Step 4: Specify the deviation set

This is the set of characters that deviate between IDNA2003 and IDNA2008.

U+200C ZERO WIDTH NON-JOINER

U+200D ZERO WIDTH JOINER

U+00DF ( ß ) LATIN SMALL LETTER SHARP S

U+03C2 ( ς ) GREEK SMALL LETTER FINAL SIGMA

Step 5: Specify grandfathered changes

This set is currently empty. Adjustments to the above sets or base mapping will be made in
this section if the steps would cause an already existing character to change status or
mapping under a future version of Unicode, so that backward compatibility is maintained.

Step 6: Produce the initial status and mapping values

For each code point:

If the code point is in the deviation set

the status is deviation and the mapping value is the base mapping value for
that code point.

1. 

Otherwise, if the code point is in the base exclusion set or is unassigned

the status is disallowed and there is no mapping value in the table.

2. 

Otherwise, if the code point is not a label separator and some code point in its base
mapping value is not in the base valid set

the status is disallowed and there is no mapping value in the table.

3. 

Otherwise, if the base mapping value is an empty string

the status is ignored and there is no mapping value in the table.

4. 

Otherwise, if the base mapping value is the same as the code point

the status is valid and there is no mapping value in the table.

5. 



Otherwise,

the status is mapped and the mapping value is the base mapping value for
that code point.

6. 

Step 7: Produce the final status and mapping values

After processing all code points in previous steps:

Iterate through the set of characters with a status of valid. Any whose canonical
decompositions (NFD) are not wholly in the valid set, make disallowed.

1. 

Iterate through the set of characters with a status of mapped. Any with mapping
values whose canonical decompositions (NFD) are not wholly in the valid set, make
disallowed.

2. 

Recursively apply these actions until there are no more status changes.3. 

For example, for Unicode 5.2 and 6.0, the set of characters set to disallowed in Step 7
consists of the following:

U+2260 ( ≠ ) NOT EQUAL TO

U+226E ( ≮ ) NOT LESS-THAN

U+226F ( ≯ ) NOT GREATER-THAN

U+FE12 (  ) PRESENTATION FORM FOR VERTICAL IDEOGRAPHIC FULL
STOP

Note that characters such as U+2488 ( ⒈ ) DIGIT ONE FULL STOP are disallowed by
Step 6.3.

7 IDNA Comparison

Table 4, IDNA Comparisons illustrates the differences between the three specifications in
terms of valid character repertoire. It omits the ASCII-repertoire code points, all code
points unassigned in the latest version of Unicode, as well as control characters,
private-use characters, and surrogate code points. It also includes labels separators that
are valid or mapped. The table separates the Unicode 3.2 characters from those encoded
later, because they have a special status in IDNA2003. It also separates buckets where
UTS #46 and IDNA2008 behave the same from those where they behave differently.

Each row in the table defines a bucket of code points that share a pattern of behavior
across the three specifications. The columns provide the following information:

The column titled Count shows the number of characters in each bucket.

The columns titled IDNA2003, UTS46, and IDNA2008 show the status of the
characters in each bucket for the respective specifications.

Deviations are modified in Transitional Processing, but not modified in
Nontransitional Processing; see Section 4, Processing .

IDNA2003 allows unassigned code points in lookup but not registration. These
are in the section of the table under "Unicode 4.0 to Latest", and marked as
LookupValid.

IDNA2008 uses several subcategories that are grouped together here for



comparison. Characters marked as Valid are those that are CONTEXTJ,
CONTEXTO, and PVALID in IDNA2008*. Other characters are marked as
Disallowed.

* This list of Valid characters for Unicode 4.0 and beyond is calculated as
the union of characters with values CONTEXTJ, CONTEXTO, and
PVALID under any version of Unicode from Version 5.2 or later. The
union of valid characters over versions of Unicode is used for comparison
because IDNA2008 does not guarantee backward compatibility over
different versions of Unicode.

The column titled Comments and Samples describes the correlation between the
specifications and provides illustrative characters.

The green subheadings indicate characters that are handled the same in UTS #46
and IDNA2008.

Table 4. IDNA Comparisons

 Count IDNA2003 UTS46 IDNA2008 Comments and Samples
Unicode 3.2 (IDNA2003 = UTS46 = IDNA2008)
(a)86,676 Valid Valid Valid Valid in all three systems

U+00E0 ( à ) LATIN SMALL
LETTER A WITH GRAVE

(b) 431 Disallowed Disallowed DisallowedDisallowed in all three
systems
U+FF01 ( ！ ) FULLWIDTH
EXCLAMATION MARK

Unicode 3.2 (IDNA2003 ≠ UTS46 = IDNA2008)
(c) 48 Valid Disallowed DisallowedMappings changed after

Unicode 3.2
U+2132 ( Ⅎ ) TURNED
CAPITAL F

(d) 8 Mapped Disallowed DisallowedMappings changed after
Unicode 3.2
U+2F868 ( 㛼 ) CJK COMP.

Unicode 3.2 (IDNA2003 = UTS46 ≠ IDNA2008)
(e) 4,640 Mapped /

Ignored
Mapped /
Ignored

DisallowedCase and compatibility
variants, default ignorables
U+00C0 ( À ) LATIN CAPITAL
LETTER A WITH GRAVE

(f) 3,254 Valid Valid DisallowedPunctuation, Symbols, etc.
U+2665 ( ♥ ) BLACK HEART



SUIT
(g) 4 Mapped /

Ignored
Display: Valid;

Lookup: Mapped
/ Ignored

Valid Deviations
U+200C ZERO WIDTH
NON-JOINER
U+200D ZERO WIDTH
JOINER
U+00DF ( ß ) LATIN SMALL
LETTER SHARP S
U+03C2 ( ς ) GREEK SMALL
LETTER FINAL SIGMA

Unicode 4.0 to Latest (UTS46 = IDNA2008)
(h)20,131 LookupValid Valid Valid U+0221 ( ȡ ) LATIN SMALL

LETTER D WITH CURL
(i) 60 LookupValid Disallowed DisallowedU+0602 ( ؂ ) ARABIC

FOOTNOTE MARKER
Unicode 4.0 to Latest (UTS46 ≠ IDNA2008)
(j) 4,217 LookupValid Valid DisallowedU+2615 ( ☕ ) HOT BEVERAGE
(k) 1,109 LookupValid Mapped /

Ignored
DisallowedU+023A ( Ⱥ ) LATIN CAPITAL

LETTER A WITH STROKE

A more detailed online listing of differences is found at [DemoIDNChars] and [DemoIDN].
The implications for confusability can be seen at [DemoConf].

7.1 Implications for Implementers

Table 4, IDNA Comparisons can also be used to categorize implications for implementers.

With the exception of Row (g), if any characters are Mapped/Ignored in any
specification—Rows (d), (e), (k)—then in the other specifications they are either
Mapped/Ignored in precisely the same way, or they are Disallowed. This prevents domain
names from being mapped differently on different browsers: either the characters map to
the same result, or they do not work. Row (k) is unproblematic in this regard, assuming
that registries follow one of the specifications, because characters like U+023A ( Ⱥ ) will
not be valid in registered labels.

The only exceptions are the four problematic Deviations in Row (g), which require more
complex handling because of their treatment in IDNA2008, as discussed earlier.
Transitions for Deviation characters will depend upon how registries handle IDNA2008
going forward, and how soon IDNA2003 clients are retired. Outside of the transition from
IDNA2003 to IDNA2008, the UTS #46 Nontransitional Processing should be used, thus
preserving Deviation characters.

This presumes that IDNA2008 implementations do not use custom, incompatible
mappings: that is, that they do not take advantage of the fact that arbitrary mappings are
allowed in IDNA2008, and choose a mapping that is incompatible with IDNA2003 or UTS



#46. This pertains to any of Rows (e), (f), (j), (k). If custom mappings were used by any
signficant client base, it would result in serious problems for security and interoperability.
For more information, see the [IDN_FAQ].

With the exception of the above issues, implementation is straightforward:

Rows (a) and (b) are unproblematic. All three specifications behave identically.

Rows (c) and (d) are unproblematic. They contain characters that are allowed under
IDNA2003, but are disallowed in UTS #46 because their mappings would be different
after Unicode 3.2, based on the Unicode Standard mappings. This treatment also
matches IDNA2008. Those mappings were stabilized some time ago, so mappings
will not change in the future; see [Stability]. Fortunately, in-depth analysis of Web
content indicates these characters are quite rare: their presence in domain names in
web pages cannot be distinguished from noise (unlike the Deviation characters in
Row (g)).

Rows (e) and (k) are unproblematic. Ideally, implementations will map these
characters in IDNA2008, producing precisely the same results as in UTS #46, and
the same results for Unicode 3.2 characters as IDNA2003.

Rows (f) and (j) are symbols and punctuation that are disallowed in IDNA2008, but
allowed transitionally in UTS #46. Row (j) contains post-Unicode 3.2 characters that
are handled in UTS #46 according to IDNA2003 principles. These symbols and
punctuation will transition smoothly as registries discontinue support for them.

Rows (h) and (i) are unproblematic. The characters have the same status in
IDNA2008 and UTS #46.

8 Conformance Testing

A conformance testing file (IdnaTest.txt) is provided for each version of Unicode starting
with Unicode 6.0, in versioned directories under [IDNA-Table]. It only provides test cases
for UseSTD3ASCIIRules=true.

To test for conformance to UTS46, on each line, perform the toASCII and to Unicode
operations on the source string, with the indicated type. The results must match what is
given in the toUnicode and toASCII columns, except for errors. In the case of errors, an
implementation only needs to record that there is an error; it need not reproduce the
results in [...], which are only informative.

8.1 Format

The file is UTF8, with certain characters escaped using the \x{XXXX} convention for
readability. Columns (c1, c2,...) are separated by semicolons. Leading and trailing spaces
and tabs in each column are ignored. Comments are indicated with hash marks. The
columns contain the following information:

Column 1: type - T for transitional, N for nontransitional, B for both
Column 2: source - the source string to be tested
Column 3: toUnicode - the result of applying toUnicode to the source, using the
specified type from Column 1; or an error list
Column 4: toASCII - the result of applying toASCII to the source, using
nontransitional; or an error list
Column 5: NV8/XV8 - an informative field: NV8 is present if some character in the



toUnicode value, after mapping, could not be in a valid domain name under any
version of IDNA2008. XV8 is present when the character could not be in a valid
domain name under the current version of Unicode. These are not normative fields.

For readability, if the value of toUnicode or toASCII is the same as source, the column will
be blank.

An error in toUnicode or toASCII is indicated by an error list of the form [...]. In such a
case, the contents of that list are error codes based on the step numbers in UTS46 and
IDNA2008:

Pn for Section 4 Processing, step n
Vn for Section 4.1 Validity Criteria, step n
An for Section 4.2 ToASCII, step n
Bn for Bidi Rule #n from Section 2. The Bidi Rule, in Right-to-Left Scripts for
Internationalized Domain Names for Applications (IDNA) [IDNA2008]
Cn for ContextJ tests in, Appendix A.n in The Unicode Code Points and
Internationalized Domain Names for Applications (IDNA) [IDNA2008]. Thus C1 =
Appendix A.1. ZERO WIDTH NON-JOINER, and C2 = Appendix A.2. ZERO WIDTH
JOINER. The CONTEXTO tests are optional for client software, and not tested here.

However, these particular error codes are only informative; the important feature is
whether or not there is an error.
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\x{XXX} instead of \uXXXX, to avoid using surrogate code points.

Draft 1

General

Proposed update to synchronize with Unicode 8.0.

Fixed typo reported by Diego Perini.

Section 1.3.1 Mapping

Added note to point out that in Unicode Version 8, the new lowercase
Cherokee characters are case-folded to their uppercase variants.

Section 7 IDNA Comparison

Updated values h,i,j,k in Table 4, IDNA Comparisons for Unicode 8.0

Revision 13
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General

Fixed some outdated references to [UTR36] and [UTS39]

Misc. editing

Section 3 Conformance
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Section 4 Processing

Clarified the Input and Results for:

The main processing step

ToASCII

ToUnicode

Section 5 IDNA Mapping Table

Fixed typo in Table 2b, Data File Fields

Added a new value for field 3, XV8, with example.

Section 7 IDNA Comparison

Updated numbers for 7.0.0 in Table 4, IDNA Comparisons

Section 8.1 Format

Made the definition of NV8 consistent with Section 5 IDNA Mapping Table

Revision 12 being a proposed update, only changes between revisions 13 and 11 are
noted here.

Revision 11
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Section 6 Mapping Table Derivation

Added text to make Bidi_Control characters prohibited

Section 7 IDNA Comparison

Updated Table 4, IDNA Comparisons for the 5 new characters (all become (i)
Disallowed/Disallowed).

Added more internal links, and fixed the table of contents.



Removed references to old versions of Unicode.
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Revision 9
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Revision 5
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Revision 3
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Changed the names of Lookup/Display processing for clarity.

Made it clear that Subtraction and Deviation support is transitional.

Made other rewording after the approval of IDNA2008.



Added explanation of correspondances to ToASCII and ToUnicode.

Modified the error handling to make it more flexible, and always produce a
(determinant) converted string.

Changed title.

Major restructuring as result of UTC discussion.

Added notation section, draft data file.

Made it clear that applications can choose to have tighter validity criteria.

Renumbered sections and fixed references.

Added comparison table of IDNA2003, UTS #46, and IDNA2008 in Section 7.

Revision 1

Proposed Draft UTS posted for public review.

Fixed a number of typos and problems pointed out by Marcos (mostly not noted in
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Added draft security and FAQ sections.
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