Ll:‘ Technical Reports L2/15-291

Proposed Update Unicode® Standard Annex #24
UNICODE SCRIPT PROPERTY

Version Unicode 900 (Draft 5)

Editors Mark Davis (markdavis@google.com), Ken Whistler
(ken@unicode.org)

Date 2015-08-31

This Version http://www.unicode.org/reports/tr24/tr24-25.html

Previous Version | http://www.unicode.org/reports/tr24/tr24-24.html

Latest Version http://www.unicode.org/reports/tr24/tr24

Latest Proposed | http://www.unicode.org/reports

Update /tr24/proposed.html
Revision 25
Summary

This annex describes two related Unicode code point properties. Both properties share
the use of Script property values. The Script property itself assigns single script values
to all Unicode code points, identifying a primary script association, where possible. The
Script_Extensions property assigns sets of Script property values, providing more detail
for cases where characters are commonly used with multiple scripts. This information is
useful in mechanisms such as regular expressions and other text processing tasks, as
explained in implementation notes for these properties.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as
other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode
Standard, but is published online as a separate document. The Unicode Standard
may require conformance to normative content in a Unicode Standard Annex, if so
specified in the Conformance chapter of that version of the Unicode Standard. The

rick@unicode.org
Text Box
L2/15-291

version number of a UAX document corresponds to the version of the Unicode
Standard of which it forms a part.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this annex is found in
Unicode Standard Annex #41, “Common References for Unicode Standard Annexes.”
For the latest version of the Unicode Standard, see [Unicode]. For a list of current
Unicode Technical Reports, see [Reports]. For more information about versions of the
Unicode Standard, see [Versions]. For any errata which may apply to this annex, see

[Errata].

Contents

1 Introduction
1.1 Examples of Script Classification
1.2 Script Identity and Unicode
1.3 Scripts and Blocks
1.4 Script Classification in Text Processing
1.5 Classification of Text by Script Property
1.6 Usage Not Reflected in the Script Property
2 The Script Property
2.1 Special-vsExplicit- Script Property Values
2.2 Relation to ISO 15924 Codes
2.3 Assignment of Script Property Values
2.4 Script Designators in Character and Block Names
2.5 Script Property Value Aliases
2.6 Script Names
2.7 Script Anomalies
3 The Script Extensions Property
3.1 Script Extensions Property Values
3.3 Assignment of Script Extensions Property Values

4 Data Files
4.1 Scripts.txt
4.2 ScriptsExtensions.txt
4.3 PropertyValueAliases.txt
5 Implementation Notes
5.1 Handling Characters with the Common Script Property
5.2 Handling Combining Marks
5.3 Multiple Script Values
5.4 Using Script Property Values in Regular Expressions
5.5 Use of the Script Property in Rendering Systems
5.6 Limitations
5.7 Spoofing
Acknowledgments
References
Modifications

1 Introduction

...

Note: For the proposed update of this document for Version 9.0, the text has been

ﬁsubstantially reorganized for clarity and flow. Text which is substantially new in Version
9.0 has been highlighted in yellow, but no effort has been made to visually track all text
changes in the document, because of the scope of textual reorgnization. During review,
please check all text carefully. 3

rrr

In particular, the entirety of this introduction has been reorganized and much of it
rewritten.

The concept of script is a key organizational principle for the Unicode Standard
[Unicode]. However, it may be surprising that there is no single and unambiguous
definition for the concept of script, and that the use of the term depends on the purpose
for which a classification into scripts is desired.

A script is a collection of letters and other written signs that generally has the following
attributes:

e It is made up of elements that share a common graphological style.

e Itis used (in full, or as a subset) to represent textual information in a writing
system.

¢ It normally shares no signs with other collections, except accidentally, via
historical derivation, or by explicit borrowing.

For example, the Russian language is written with a distinctive set of letters, as well as
other marks or symbols that together form a subset of the Cyrillic script. Other
languages using the Cyrillic script, such as Ukrainian, employ a different subset of
letters. The Cyrillic script, being historically related to Greek, shares a number of letter
forms with Greek. Also, some writing systems that use the Cyrillic script have borrowed
letter forms from the Latin script.

The Japanese language has a writing system that employs four scripts: primarily the
Han ideographs, as well as the Hiragana and Katakana syllabaries, but also a subset of
the Latin letters.

The Turkish language was historically written in the Arabic script and is now written
using the Latin script. For many other languages there are similar cases, where an
historical writing system used one script, while a modern writing system for the same
language may use a different script.

Some scripts, such as the Latin script or the Arabic script, have an historically
developed cosmopolitan status, and are used for the representation of the writing
systems of hundreds or even thousands of different languages. The script in such cases
consists of the complete set of letters and other signs needed to represent all of the
writing systems covered, which may include historical as well as modern text forms,
rather than simply being a single alphabet or other set of graphic symbols needed for
writing a single language.

1.1 Examples of Script Classification

Elndependent of its use by the Unicode Standard, there are distinct needs for

classification by script. For example, writing systems can be classified by the script or
scripts they use. In cases of continuous historical derivation of scripts from predecessor
scripts, an existing graphological classification may consider a writing system to be
using a variant of an ancestor script, whereas the Unicode Standard may give each
historic stage its own script identity for the purposes of character encoding.

In another example, bibliographers need to catalog documents by the primary script in
which they are written. In so doing, bibliographers often ignore small inclusions of other
scripts in the form of quoted material, for the purpose of catalog identification.
Conversely, significant differences in writing style for the same script may be reflected in
the bibliographical classification—for example, Fraktur or Gaelic styles for the Latin
script. Such stylistic distinctions are ignored in the Unicode Standard, which treats them
as presentation styles of the Latin script.

Bibliographers also assign a single classification code for Japanese or Korean
documents, even though the respective writing systems use a mix of scripts. Such
single codes have also proven useful as a shorthand notation for describing the
repertoires of characters needed when supporting identifiers, as for the
Internationalized Domain Names (IDN).

1.2 Script Identity and Unicode

The Unicode Standard fundamentally considers characters as elements of scripts in
making encoding decisions. For example, when a letter is borrowed from one script into
another, it often is encoded again as a distinct element of the borrowing script. This
occurs most often in the case for letters. For punctuation and other similar marks, the
decision may instead be made to explicitly designate a character for common use with
all scripts, or to document its use with a defined subset of all scripts.

For example, in addition to letters, the Unicode Standard includes many graphic
symbols which fall outside the scope of particular writing systems and are not
associated with particular scripts. For example, there are commonly used punctuation
marks such as commas and quotation marks that are widely shared across scripts. The
same consideration applies to the European digits "1", "2", "3", The Unicode
Standard also contains many combining marks intended to be used in multiple writing
systems, as well as symbols for notational systems like mathematics that have their
own rules and identity independent of writing systems for particular languages.

1.3 Scripts and Blocks

Unicode characters are divided into non-overlapping ranges called blocks [Blocks].
Many of these blocks have a name derived from a script name, because characters of
that script are primarily encoded in that block. However, blocks and scripts differ in the
following ways:

¢ Blocks are simply ranges, and often contain code points that are unassigned.
e Characters from the same script may be encoded in several different blocks.
e Characters from different scripts may be encoded in the same block.

As a result, using the block names as simplistic substitute for script identity generally

leads to poor results. For example, see Annex A, Character Blocks, in Unicode
Technical Standard #18, "Unicode Regular Expressions" [UTS18].

1.4 Script Classification in Text Processing

In text processing the classification of text by script is by necessity more fine-grained
than when cataloging documents. The classification by script is essential for a variety of
tasks that need to analyze a piece of text and determine what parts of it are in which
script. Examples include regular expressions or assigning different fonts to parts of a
plain text stream based on the prevailing script. For all of these tasks, the challenge is
to break a text into script runs, or stretches of text that are all treated as belonging to
the same script.

Script information is also taken into consideration in collation, so that strings are
grouped by script when sorted. To that end, the Default Unicode Collation Element
Table (DUCET) assigns letters of different scripts different ranges of primary sort
weights. However, numbers, symbols, and punctuation are not grouped with the letters.
For the purposes of ordering, therefore, explicit script identity is most significant for the
letters. For more information, see Unicode Technical Standard #10, “Unicode Collation
Algorithm” [UTS10].

These examples demonstrate that the use of script (and to a certain extent, its exact
specification) depends on the intended purposes of the classification. Table 1
summarizes some of the purposes for which text elements can be classified by script

Table 1. Classification of Text by Script

Granularity | Classification Purpose Special
Values
Document | Bibliographical Record in which script a text is Unknown

printed or published; subdivides
some scripts—for example, Latin
into normal, Fraktur, and Gaelic

styles

Character | Graphological/ Describe to which script a

typographical character belongs based on its
origin
Orthographical Describe with which script (or Common,
scripts) a character is used Inherited
For collation Group letters by script in

collation element table

Run For font binding | Determine extent of run of like
or search script in (potentially) mixed-
script text

1.5 Classification of Text by Script Property

The exact way in which one uses script information about text depends on the kind of
processing that is involved. In addtion to being normally less-fine-grained,
Bibliographical, graphological, or historical classifications of scripts need different
distinctions than commont text processing-related taks.To assist in the development of
interoperable implementations for text processing that depends on script classification,
the Unicode Standard defines two character properties, Script and Script_Extensions.

The script property assigns a single value to each character, either explicitly associating
it with a particular script, or assigning one of several specail values. The Script property
is discussed in detail in <Section 2>The Script_Extensions build on this model, by better
documenting cases where characters are neither used solely with members of a single
script nor shared universally. The Script_Extensions property is unusual in that each of
its values is a set of Script values. The Script_Extensions property is discussed in detail
in <Section 3>.

The special property values required to support text-processing needs are different from
those needed in other classifications. For example, when bibliographers are unable to
determine the script of a document, they may classify it using a special value for
Unknown. In text processing, the identities of all characters are normally known, but
some characters may be shared across scripts or attached to any character, thus
requiring special values for Common and Inherited.

Despite these differences in focus, the vast majority of Unicode Script property values
correspond more or less directly to the script identifiers used by bibliographers and
others.

This annex documents the definition and use of those properties and describes the data
files in the Unicode Character Database [UCD] that specify exact values of those
properties for all Unicode characters.

1.6 Usage Not Reflected in the Script Property

Many characters are regularly used out of their normal contexts for specialized
purposes—for example, for pedagogical use or as part of mathematical, scientific, or
scholarly notations. Such uses are not reflected in the assignment of values for either
the Script or Script_Extensions properties, because those properties aim rather to
reflect ordinary and common usage of characters with a script (or set of scripts).
Implementers are cautioned that such "out-of-context" usage of characters does exist
and needs to be supported where required, regardless of the Script and
Script_Extensions property values for a given character.

2 The Script Property

2.1 Script Property Values

The Script property values form a full partition of the codespace: every Unicode code
point is assigned a single Script property value. This value is either the explicit value for
a specific script, such as Cyrillic, or is one of the following three special values:

¢ Inherited—for characters that may be used with multiple scripts, and that inherit
their script from a preceding base character. These include nonspacing combining
marks and enclosing combining marks. U+200C ZERO WIDTH NON-JOINER and
U+200D ZERO WIDTH JOINER are also assigned this value, and are subject to
special script inheritance rules in text run processing.

e Common—for other characters that may be used with multiple scripts.

¢ Unknown—for unassigned, private-use, noncharacter, and surrogate code points.

All other Script property values are referred to as explicit script values, because they
each refer to one specific script. In contrast, the three special values are also referred to
collectively as implicit script values.

The Script property is an enumerated property of type catalog. As new scripts are
added to the standard, explicit Script property values will be added to the enumeration.
Implementations are advised to allow for this growth in enumerated values. See also
Section 2.3, Initial Assignment of Script Property Values.

The implicit values Common or Inherited do not indicate which scripts a character is
used with—only that the character is used with more than one script. For example,
U+30FC (—) KATAKANA-HIRAGANA PROLONGED SOUND MARK is shared
between Hiragana and Katakana and is not typically used with other scripts, such as
Latin or Greek. For many applications such a coarse classification may be insufficient;
they require further detailed information. For example, a character picker application
which organizes characters into visual buckets by script may need to show a Common
script character in two or more buckets, depending on which particular scripts use that
character. Such supplementary classification will depend on the particular usage and is
not provided as a normative or informative property in the Unicode Character Database.

The Script property values assigned for all characters are specified in the file Scripts.txt
[Data24] in the Unicode Character Database [UCD]. A complete enumeration of Script
property values and their short names in provided in [PropValue]. For further discussion,
see Section 4, Data Files.

2.2 Relation to ISO 15924 Codes

ISO 15924: Code for the Representation of Names of Scripts [ISO15924] provides an
enumeration of four-letter script codes. In [PropValue], where feasible, the short name
for the Unicode Script property value matches the corresponding ISO 15924 code, as
exemplified in Table 3.

Table 3. Unicode Script Property Values and ISO 15924 Codes

Script Property ISO 15924

Long Short

Common Zyyy zyyy

Inherited| Zinh, Qaai| Zinh

Unknown 2222 2227

Latin Latn Latn (Latf, Latg)
Cyrillic | Cyrl Cyrl (Cyrs)
Coptic Copt, Qaac | Copt

Armenian | Armn Armn

Georgian | Geor Geor (Geok)
Hebrew Hebr Hebr

Arabic Arab Arab (Aran)
Syriac Syrc Syrc (Syrj, Syrn, Syre)
Braille Brai Brai

Han Hani Hani (Hans, Hant)

In some cases the match between the Script property values and the ISO 15924 codes
is not precise, because the goals are somewhat different. ISO 15924 is aimed primarily
at the bibliographic identification of scripts; consequently, it occasionally identifies
varieties of scripts that may be useful for book cataloging, but that are not considered
distinct scripts in the Unicode Standard. For example, ISO 15924 has separate script
codes for the Fraktur and Gaelic varieties of the Latin script. Such codes for script
varieties are shown in parentheses in Table 3.

Where there are no corresponding ISO 15924 codes, private-use codes starting with the
letter Q are used. Such values are likely to change in the future. In such a case, the
Q-names will be retained as aliases in the file [PropValue] for backward compatibility.
For example, the older Script property value Qaai was retained as an alias for
Inherited, when the newly defined script code Zinh was added to ISO 15924 and then
used as the preferred short name for Inherited starting in Unicode 5.2.

2.3 Initial Assignment of Script Property Values

New characters and scripts are continually added to the Unicode Standard. The
following principle determines the assignment of Script property values for existing
characters and for characters that are newly added to the Unicode Standard:

A. If a character is only regularly used in one script, it takes the Script property value
for that script

B. Otherwise, if the predominant use of the character is in one script, but it is also
used in others, then it takes the Script property value associated with that
predominant use

C. Otherwise, nonspacing marks (Mn, Me) and zero width joiner/non-joiner are
Inherited

D. Otherwise, use Common

An example of criterion "B" would be the occasional use of an Arabic character in a
related minor-use or historic script. In such a case, the predominant use would still be
for Arabic, and the Script property value is determined to be Arabic, rather than
Common. The determination of predominant use in such cases is based in part on an
estimation of likely frequency of use. This choice is designed to maximize the
usefulness of the Script property value for determination of script runs in text, for regular
expressions, and so on, without having to branch to more elaborate processing to
determine how to handle Common property values by examining the Script_Extensions
value set in these edge cases. The choice of an explicit Script property value, instead of
Common or Inherited, in these edges cases is done when, in the judgement of the
Unicode Technical Committee, that explicit Script property value is a reasonable default.
However, some characters that are definitely members of a given script, based on their
forms and history, nevertheless are assigned one of the implicit Script values instead.

Although Braille is not a script in the same sense as Latin or Greek, it is given an explicit
Script property value. This is useful for various applications for which these Script
property values are intended, such as matching spans of similar characters in regular
expressions.

Script values are not immutable. As more data on the usage of individual characters is
collected, the Script property value assigned to a character may change. Rarely would a
character change from one specific script to another. However, if it becomes established
that a character is regularly used with more than one script, it will be assigned the
Common or Inherited Script property value. Similarly, if it becomes established that a
character is regularly used with only a single, specific script, it will be assigned an
explicit Script property value. The occasional use of character from one script in the
context of another script, as for instance the citation of a Greek letter used as a
mathematical constant in the midst of Latin text, or the use of a Latin letter in the midst
of Han text, is not considered sufficient evidence of "regular use" requiring a designation
of Common Script property value. It is also possible for a character, once given a
Common or Inherited Script property value, upon further research, to be changed to a
specific script, instead.

2.4 Script Designators in Character and Block Names
Many character names contain a script designator as their first element(s). For example:

LATIN SMALL LETTER S
KATAKANA LETTER SA

NEW TAI LUE LETTER LOW SA
PHAGS-PA LETTER SA

Character names are guaranteed to be unique even when ignoring case differences and
the presence of SPACE or HYPHEN-MINUS. Underscores are not used in character
names. In practice, this means that script designators are also unique, and, because
they are a part of character names, they are limited to the same characters used in
character names:

e Latin letters A—Z
¢ Digits 0-9
¢ SPACE and medial HYPHEN-MINUS

Digits do not actually occur in script designators used in character names.

Many block names, for example, "Latin-1 Supplement", also contain script designators.
These script designators are closely (but not precisely) aligned with the script
designators used for character names in the corresponding blocks. Similar restrictions
apply to script designators as part of block names, except that there is no restriction on
the case of letters.

2.5 Script Property Value Aliases

In addition to short names derived from ISO 15924 script codes, as discussed in
Section 2.2, Relation to ISO 15924 Codes, each Script property value is also given a
long name as a Script property value alias. These long names are also listed in
[PropValue]. They are constructed to be appropriate for use as identifiers. The long or
short property value aliases are the identifiers that should be used in regular
expressions and similar usages.

Except for the implicit Script property values Common and Inherited, the long name
aliases usually correspond to the script designators, with the replacement of SPACE or
HYPHEN-MINUS by underscores, and titlecasing each subpart of the resulting identifier,
for consistency with the conventions used for aliases for other Unicode character
properties. For example:

e Latin

o Katakana

e New_Tai_Lue
e Phags_Pa

As for all property aliases, Script property value aliases are guaranteed to be unique
within their respective namespace. See the Character Encoding Stability Policies
[Stability] for details. When comparing Script property value aliases, loose matching
criteria which ignore case differences and the presence of spaces, hyphens, and
underscores, should be used. See Section 5.9, Matching Rules, in [UAX44] for
explanation of loose matching criteria.

2.6 Script Names

The term script name is no longer used as part of the formal specification of the
Unicode Script property because it tends to be used informally in several ambiguous
senses:

1. To designate the orthographic name of a script in the Unicode Standard. For
example: chirilica, Knpunnuua, or ¥ !J JL3X = for Cyrillic (Cyrl). Even in
English, such names may occasionally include characters not allowed in script
designators or Script property values. For example: Hanunéo or N'Ko

2. To designate any variety of writing, some of which may have ISO 15924 script

variety codes, such as the Gaelic script, and some of which may not, such as the
Hebrew Cursive script.

3. As a synonym of the term script designator as it appears in character or block
names. For example: HANUNOO or NKO

4. As a synonym of the long name alternate of Script property value aliases. For
example: Hanunoo (as opposed to the script code Hano) or Nko (as opposed to
the script code Nkoo)

Because of these ambiguities, in Unicode contexts where precision of denotation is
required, use of the terms Script property value or script designator, whichever may be
appropriate, is preferred.

2.7 Script Anomalies

There are a number of compatibility symbols derived from East Asian character sets
which have the Script property value Common but whose compatibility decompositions
contain characters with other Script property values. In particular, the parenthesized
ideographs, circled ideographs, Japanese era name symbols, and Chinese telegraph
symbols in the 3200..33FF range contain Han ideographs, and the squared Latin
abbreviation symbols in the same range contain Latin (and occasional Greek) letters.
Examples of such characters are listed in Table 4. Some of these characters have
different scripts in their compatibility decompositions. This means that script extents
calculated on the basis of the script property value of the symbols themselves will differ
from script extents calculated on NFKD normalized text, in which these characters
decompose into sequences including the Han and/or Latin characters.

Table 4. Examples of East Asian Symbols with Script Value = Common

U+249C ((a)) PARENTHESIZED LATIN SMALL LETTER A

U+24B6 (®) CIRCLED LATIN CAPITAL LETTER A

U+1F130 (L“]) SQUARED LATIN CAPITAL LETTER A

U+3382 (pA) SQUARE MU A

U+1F12A ([“]) TORTOISE SHELL BRACKETED LATIN CAPITAL LETTER S
U+3192 (-) IDEOGRAPHIC ANNOTATION ONE MARK

U+3220 (&) PARENTHESIZED IDEOGRAPH ONE

U+3244 ([*]) CIRCLED IDEOGRAPH QUESTION

U+3280 (©) CIRCLED IDEOGRAPH ONE

U+32CO0 (18) IDEOGRAPHIC TELEGRAPH SYMBOL FOR JANUARY

U+3358 (04) IDEOGRAPHIC TELEGRAPH SYMBOL FOR HOUR ZERO

U+337B (¥) SQUARE ERA NAME HEISEI

U+33EO (1H) IDEOGRAPHIC TELEGRAPH SYMBOL FOR DAY ONE

The UTC has determined that because these symbols may be used with multiple scripts
in Chinese, Japanese, and/or Korean contexts, their Script property value should simply
be left as Common. There are other, more reliable clues about the behavior of these
compatibility symbols, such as their association with East Asian character sets, which
can be used by rendering systems to assure their appropriate display and appropriate
font choice. This determination is somewhat different from that for the more script-
specific parenthesized and circled Hangul and Katakana symbols in the same range,
which are given specific Script property values. Examples of such characters are shown
in Table 5.

Table 5. Examples of East Asian Symbols with Katakana or Hangul Script Values

U+32D0 (@) CIRCLED KATAKANA A
U+3260 (@) CIRCLED HANGUL KIYEOK
U+3200 ((M) PARENTHESIZED HANGUL KIYEOK

U+3300 (Z{) SQUARE APAATO

There are other symbols not constrained to primary use in East Asian contexts, which
have the Common script, but where some users would expect to have a specific script.
Examples are shown in Table 6. Symbols in such cases are assigned to the Common
script because they may be used with a wide variety of scripts, and are not necessarily
limited to the script values of their compatibility decompositions.

Table 6. Examples of Other Symbols with Script Value = Common

U+2122 (™) TRADE MARK SIGN

U+2120 (™) SERVICE MARK

U+00A9 (©) COPYRIGHT SIGN

U+210F (72) PLANCK CONSTANT OVER TWO PI
U+2109 (°F) DEGREE FAHRENHEIT

U+214D (4%) AKTIESELSKAB

At this point keeping the Script property value stable for these compatibility symbols is
more useful for implementers than attempting to reconcile these distinctions in
treatment by modifying values for them. Implementations that wish to have Script
property values that are preserved over compatibility equivalence would tailor the Script
property values for these characters.

3 The Script_Extensions Property

Where a character is commonly used in the context of several scripts, it is often
desirable to know more precisely in which script context such characters can be
expected to occur. The implicit Script property values Common and Inherited were
originally designed simply to indicate that a character, such as a punctuation mark,
occurs widely in conjunction with many scripts, rather than being associated with use for
just one script. However, many of the characters that are assigned a value of Common
or Inherited are not commonly used with all scripts, but rather only with a limited set of
scripts. In cases where the list of such scripts can be explicitly enumerated, it can help
various processing to have the list specified. Such lists of use by a character across
several scripts are documented with the Script_Extensions (scx) property.

The Script_Extensions property is implemented as sets of Script property values, known
as scx sets ("Es Cee Ex sets"). Table 7 gives examples of scx sets for various Unicode
code points, along with their Script and General_Category property values. Note that for
completeness, default values for scx sets are given for all Unicode code points,
including reserved code points and noncharacters. The details of assignment of scx set
values are discussed further below.

rrr

The following table contains all new content. It is displayed without change highlighting, '
to make it easier to see the content for review. 3

Table 7. Script_Extensions Examples

Code | Scx Set Script Gc | Character Name

Scx set contains one implicit Script value

0020 {Common} Common | Zs |SPACE

0301 {Inherited} Inherited | Mn | COMBINING ACUTE ACCENT
243F |{Unknown} Unknown |Cn <reserved-243F>

FFFF | {Unknown} Unknown | Cn | <noncharacter-FFFF>

Scx set contains one explicit Script value

0061 | {Latn} Latin LI | LATIN SMALL LETTER A
0363 |{Latn} Inherited Mn COMBINING LATIN SMALL LETTER A
1CD1 {Deva} Inherited Mn | VEDIC TONE SHARA

Scx set contains multiple explicit Script values; Script(cp) is implicit

30FC | {Hira Kana} Common Lm | KATAKANA-HIRAGANA PROLONGED
SOUND MARK

3099 {Hira Kana} Inherited Mn COMBINING KATAKANA-HIRAGANA
VOICED SOUND MARK

1CDO | {Deva Gran} Inherited Mn VEDIC TONE KARSHANA
1802 {Mong Phag} Common | Po MONGOLIAN COMMA
060C {Arab Syrc Thaa} Common Po | ARABIC COMMA

0640 {Arab Mand Mani Common Lm ARABIC TATWEEL
Phlp Syrc}

Scx set contains multiple explicit Script values; Script(cp) is explicit
096F | {Deva Kthi Mahj} | Devanagarin Nd | DEVANAGARI DIGIT NINE

O9EF {Beng Cakm Bengali Nd | BENGALI DIGIT NINE
Sylo}

1049 | {Cakm Mymr Myanmar | Nd MYANMAR DIGIT NINE
Tale}

For example, U+30FC KATAKANA-HIRAGANA PROLONGED SOUND MARK is shared
across the Hiragana and Katakana scripts, but is not used in other scripts, [so it is
assigned an scx set value of {Hira Kata}. U+0640 ARABIC TATWEEL is used in
Mandaic, Manichaean, Psalter Pahlavi, and Syriac, as well as the Arabic script, but is
not used with non-cursive scripts or with scripts unrelated to that family of writing
systems |, so it is assigned an scx set value of {Arab Mand Mani Phlp Syrc}.

The Script_Extensions property is primarily targeted at customary modern use of
characters, and does not encompass technical usage such as phonetic transcriptional
systems or mathematics.

|3.1 Script_Extensions Property Values

This section describes formal construction and constraints on the Script_Extensions
(scx) property values.

A. Each code point is associated with exactly one non-empty set of values of the sc
property. This set is known as the code point's scx set.

Unlike most other character properties, all values of the scx property constitute sets of
values. The empty set is not allowed; the scx value for unassigned, private use, and
non-character code points is the set { Unknown }.

B. The elements of the scx set consist of an unordered list of unique values of the Script
(sc) property values.

The scx values { Latn Grek } and { Grek Latn } are identical; for ease of comparison,

the values in the sets may be sorted and listed in alphabetical order. |

IC. An scx set either contains a single implicit sc value or one or more explicit sc values. |

The vast majority of characters in the standard are used with only a single script. For
those characters, the Script_Extensions property value is a set containing as its single
member the Script property value for that character.

D. If the sc property value of a code point is explicit, then that value must be an element
of the scx set for that code point as well.

Even though there is no formal constraint on the number of explicit values that may
occur in an scx set, it is unlikely that any scx value would individually list even a majority,
of existing scripts. The implicit sc value Common is intended instead for use in those
cases where a character is in very widespread use across many scripts.

There are no formal rules specifying when a particular sc value must be added to the
scx set for a particular assigned character. Whether to document that a character is
used with multiple scripts via the Script_Extensions property remains a judgment call,
and is always based on the best information available to the Unicode Technical
Committee.

Occasionally, even characters that have a Script property value of Common or
Inherited might have a Script_Extensions property value containing only a single script.
This does not mean that those characters are used solely with a single script—rather,
such characters are known or strongly suspected of being used with multiple scripts.
However, reliable information is lacking regarding which other scripts belong in this set.
[Examples illustrating this can be seen in Table 7, where the Samavedic tone mark
U+1CDO0 VEDIC TONE KARSHANA is attested at least for Devanagari and for Grantha,
but where U+1CD1 VEDIC TONE SHARA is only known (for now) to occur in
Devanagari Samavedic texts. The Script_ Extensions property for such characters will
be updated in future versions of the standard, if . better information becomes
available.

Conversely, characters for which the Script_Extensions property value contains multiple
Script property values typically have a Script property value of either Common or
Inherited. However, in some cases, a character belonging to a particular script may be
borrowed for use with one or more other scripts. While the Script property value for such
a borrowed character would be the same as the script it is primarily used with, the
Script_Extensions property value at times will also include additional scripts. Examples
can be seen in Table 7 for shared sets of digits. It is common for one Indic script to use
digits from another script; Devanagari digits are known, for example, to also be used in
Kaithi and Mahajani. As a result of this kind of borrowing across scripts, there is no
guarantee that it will always be true that:

Script Extensions(c) # {Script(c)} - (Script(c) = Common) V (Script(c) = Inherited)

Table 8 provides examples of scx sets that are not allowed, according to the
well-formedness rules for scx sets.

rrr

The following table contains all new content. It is displayed without change highlighting,
to make it easier to see the content for review. :

Table 8. Examples of Disallowed (lll-formed) Scx Sets

Scx Set Script Problem Description

{Latn} Unknown | Set contains an explicit value for
Script(cp)=Unknown

{Common} Inherited | Set contains an implicit value that does not
match Script(cp)

{Latn Latn} Latn Same value occurs more than once in the set

{Inherited Inherited More than one implicit value occurs in the set

Common}

{Lath Common} | Latn Explicit and implicit values both occur in the set

{Latn Grek} Hani Script(cp) does not occur in the list of explicit
values

The complete list of Script_Extensions scx set values are specified in the file
ScriptExtensions.txt in the Unicode Character Database [UCD].

3.2 Initial Assignment of Script_Extensions Property Values

The following principle determines the assignment of Script_Extensions property values
for existing characters and for characters that are newly added to the Unicode
Standard:

A. If a character has the Script property value of Common or Inherited, and in
principle might occur with almost any script, its Script_Extensions value is
{Common} or {Inherited}, respectively

B. If a character is regularly or occasionally used in more than one script, but such
usage is limited to a small, enumerable list, then the character takes the
Script_Extensions property value consisting of the set of Script property values for
each of those scripts

C. Otherwise, the Script_Extensions property value defaults to a set containing a
single value, the Script property value for that code point

Examples of characters that have the Script property value of Common or Inherited,
but in principle might occur with almost any script, would include many symbol
characters. They simply get a Script_Extensions default value of {Common} or
{Inherited}. Only when the common usage consists of a relatively small and
well-determined list of scripts is it useful to enumerate that set explicitly for a
Script_Extensions property value. In many cases such sets may involve shared

typographical traditions between neighboring or related scripts. Note that assignment of
an enumerated set of more than one Script property values to the Script_Extensions
property value for a character can occur both in cases where that character has the
Script property value Common or Inherited and in cases where it has an explicit Script
property value such as Arabic.

Script_Extensions property values are not immutable. As more data on the usage of
individual characters is collected, Script_Extensions property values may be adjusted.
This may occur either as a result of the Script property value for the character being
changed, or as a result of a determination that a given character is used with more (or
fewer) scripts than earlier determined. The values can be expected to change more
frequently than many other Unicode character properties, as more information is
gleaned about the usage of given characters. Thus, implementers should be prepared
for enhancements and corrections to the values whenever they upgrade to a new
version of the property.

4 Data Files

The data files associated with the Unicode Script property are available in the Unicode
Character Database. See [Data24].

4.1 Scripts.txt

The format of this file is similar to that of Blocks.txt [Blocks]. The fields are separated by
semicolons. The first field contains either a single code point or the first and last code
points in a range separated by “..”. The second field provides the script property value
for that range. The comment (after a #) indicates the General_Category and the
character name. For each range, it gives the character count in square brackets and

uses the names for the first and last characters in the range. For example:

0BO1; Oriya # Mn ORIYA SIGN CANDRABINDU
0B02..0B03; Oriya # Mc [2] ORIYA SIGN ANUSVARA..ORIYA SIGN VISARGA

The default value for the Script property is Unknown, given to all code points that are
not explicitly mentioned in the data file.

4.2 ScriptExtensions.txt

The format of this data file is similar to Scripts.txt, except that the second field contains
a space-delimited list of short Script property values. That list defines the set of Script
property values which constitute the Script_Extension property value for that code point.
For example:

Script Extensions=Arab Syrc
064B..0655 ; Arab Syrc # Mn [11] ARABIC FATHATAN..ARABIC HAMZA BELOW
Script Extensions=Arab Mand Mani Phlp Syrc

0640 ; Arab Mand Mani Phlp Syrc # Lm ARABIC TATWEEL

The default value for the Script_Extensions property for a code point not explicitly listed

in ScriptExtensions.txt is an scx set containing one value: the Script property value of
that code point.

4.3 PropertyValueAliases.txt

This file provides the complete enumerated list of all Script property values: both long
and short names. As for all property value aliases, the Script property values listed in
the PropertyValueAliases.txt are not case sensitive, and the presence of hyphen or
underscore is optional. The aliases are listed alphabetically, but that order is only a
convenience for reference and is not otherwise significant. See [PropValue].

5 Implementation Notes

This section discusses various topics related to the implementation of the Script
property and the Script_Extensions property.

5.1 Handling Characters with the Common Script Property

In determining the boundaries of a run of text in a given script, programs must resolve
any of the special Script property values, such as Common, based on the context of the
surrounding characters. A simple heuristic uses the script of the preceding character,
which works well in many cases. However, this may not always produce optimal results.
For example, in the text “... gamma (y) is ...”, this heuristic would cause matching
parentheses to be in different scripts.

Generally, paired punctuation, such as brackets or quotation marks, belongs to the
enclosing or outer level of the text and should therefore match the script of the
enclosing text. In addition, opening and closing elements of a pair resolve to the same
Script property values, where possible. The use of quotation marks is language
dependent; therefore it is not possible to tell from the character code alone whether a
particular quotation mark is used as an opening or closing punctuation. For more
information, see Section 6.2, General Punctuation, of [Unicode].

Some characters that are normally used as paired punctuation may also be used singly.
An example is U+2019 RIGHT SINGLE QUOTATION MARK, which is also used as
apostrophe, in which case it no longer acts as an enclosing punctuation. An example

from physics would be <y| or |@>, where the enclosing punctuation characters may not
form consistent pairs.

5.2 Handling Combining Marks

Implementations that determine the boundaries between characters of given scripts
should never break between a combining mark (a character with General_Category
value of Mc, Mn or Me) and its base character. Thus, for boundary determinations and
similar sorts of processing, a combining mark—whatever its Script property value—
should inherit the script property value of its base character. Spacing combining marks
are typically only used with one script and have the corresponding Script property value.

The nonspacing marks normally have the Inherited Script property value to reflect the
fact that their Script property value depends on the base character. However, in cases

where the best interpretation of a nonspacing mark in isolation would be a specific
script, its Script property value may be different from Inherited. For example, the
Hebrew marks and accents are used only with Hebrew characters and are therefore
assigned the Hebrew Script property value.

The recommended implementation strategy is to treat all the characters of a combining
character sequence, including spacing combining marks, as having the Script property
value of the first character in the sequence. This strategy can also be applied to
implementations that use extended grapheme clusters; the differences between
combining character sequences and extended grapheme clusters are not material for
script resolution. For example, rendering generally works best if an entire combining
character sequence can be treated as a segment having a single script, using one set of
orthographic rules, and ideally using a single font for display. Because of this
recommended strategy, even if a combining mark is really only used with a single script,
it makes little difference in practice whether the mark has that particular Script property
value or Inherited.

In cases where the first (base) character itself has the Common Script property value,
and it is followed by one or more combining marks with a specific Script property value,
such as the Hebrew marks, it may be even better for processing to let the base acquire
the Script property value from the first mark. This would be the case, for example, if
using a graphic symbol as a base to illustrate the placement of nonspacing marks in a
particular script. This approach can be generalized by treating all the characters of a
combining character sequence (or extended grapheme cluster) as having the Script
property value of the first non-Inherited, non-Common character in the sequence if
there is one, and otherwise treating all the characters as having the Common Script
property value. See Section 2.8, Multiple Script Values.

Note that exceptional fallback for rendering may be required for defective combining
character sequences or in some cases where a base character and a combining mark
have different specific Script property values. For example, there may simply be no
felicitous way to display a Devanagari combining vowel on a Mongolian consonant
base.

5.3 Multiple Script Values

More precise information about the use of a character with multiple scripts is important
for a number of different kinds of processing. The following examples illustrate such
cases:

Example 1. Mixed script detection for spoofing.

Using the Script property alone, for example, will not detect that the U+30FC (—)
KATAKANA-HIRAGANA PROLONGED SOUND MARK (Script=Common) should
not be mixed with Latin. See [UTS39] and [UTS46].

Example 2. Determination of script runs for text layout.

U+30FC (—) KATAKANA-HIRAGANA PROLONGED SOUND MARK should not
continue a Latin script run, but instead should only continue runs of certain scripts.

Example 3. Regex property testing.

For many common tasks, the regex expression [:script=Arab:] is too narrow,
because it does not include U+060C ARABIC COMMA, but the expression
[[:script=Arab:][:script=Common:]] is far too broad, because it also includes
thousands of symbols, plus the U+30FC (—) KATAKANA-HIRAGANA
PROLONGED SOUND MARK. A regex engine can instead specify a regular
expression like [:scx=Arab:], which matches based on the Script_Extensions
property value, and which would include appropriate Script=Common characters
such as U+060C ARABIC COMMA. For more information, see Unicode Technical
Standard #18, "Unicode Regular Expressions" [UTS18].

5.4 Using Script Property Values in Regular Expressions

The script property is useful in regular expression syntax for easy specification of spans
of text that consist of a single script or mixture of scripts. In general, regular expressions
should use specific Script property values only in conjunction with both Common and
Inherited. For example, to distinguish a sequence of characters appropriate for Greek
text, one would use

((Greek | Common) (Inherited | Me | Mn)?)*

The preceding expression matches all characters that have a Script property value of
Greek or Common and which are optionally followed by characters with a Script
property value of Inherited. For completeness, the regular expression also allows any
nonspacing or enclosing mark.

Some languages commonly use multiple scripts, so, for example, to distinguish a
sequence of characters appropriate for Japanese text one might use:

((Hiragana | Katakana | Han | Latin | Common) (Inherited | Me | Mn)?)*

Note that while it is necessary to include Latin in the preceding expression to ensure
that it can cover the typical script use found in many Japanese texts, doing so would
make it difficult to isolate a run of Japanese inside an English document, for example.
For more information, see Unicode Technical Standard #18, “Unicode Regular
Expressions” [UTS18].

The assignment of a Script property value, and in particular of a Script_Extensions
property value, is not guaranteed to be stable. The most recently published values
always represent the best information available at the time of publication. It is important
not to use the Script or Script_Extensions properties in regular expressions if the goal is
to match a reproducible, fixed set of characters across versions of the Unicode
Standard.

5.5 Use of the Script Property in Rendering Systems

In rendering systems, it is generally necessary to respect a certain set of orthographic
and typographic rules, which vary across the world. For example, the placement of

some diacritics which are nominally rendered above their base may be adjusted to be
slightly on the side, as is normally the case for Greek. Another example of variation in

rendering is the treatment of spaces in justification. In the absence of an explicit
specification of those rules, the Script property value of the characters involved provides
a good first approximation. Typically, a rendering system will partition a text string into
segments of homogeneous script (after resolution of the Common and Inherited
occurrences along the lines described in the previous sections), and then apply the
rules appropriate to the script of each segment.

5.6 Limitations

The script property values form a full partition of the Unicode codespace, but that
partition does not exhaust the possibilities for useful and relevant script-like subsets of
Unicode characters.

For example, a user might wish to define a regular expression to span typical
mathematical expressions, but the subset of Unicode characters used in mathematics
does not correspond to any particular script. Instead, it requires use of the Math
property, other character properties, and particular subsets of Latin, Greek, and Cyrillic
letters. For information on other character properties, see [UCD].

In texts of an academic, scientific, or engineering nature, Greek characters are
frequently used in isolation—for example, Q for ohm; a, 3, and y for types of radioactive
decays or in names of chemical compounds; 1 for 3.1415..., and so on. It is generally
undesirable to treat such usage the same as ordinary text in the Greek script. Some
commonly used characters, such as y, already exist twice in the Unicode Standard, but
with different Script property values.

5.7 Spoofing

The Script property values may also be useful in providing users feedback to signal
possible spoofing, where visually similar characters (confusable characters) are
substituted in an attempt to mislead a user. For example, a domain name such as
macchiato.com could be spoofed with macchiato.com (using U+03BF GREEK LETTER
SMALL LETTER OMICRON for the first “0”) or macchiato.com (using U+0441 CYRILLIC
SMALL LETTER ES for the first two “c”s). The user can be alerted to odd cases by
displaying mixed scripts with different colors, highlighting, or boundary marks:
macchiato.com OF macchiato.com, fOr example.

Possible spoofing is not limited to mixtures of scripts. Even in ASCII, there are
confusable characters such as 0 and O, or 1 and |. For a more complete approach, the
use of Script property values needs to be augmented with other information such as
General_Category values and lists of individual characters that are not distinguished by
other Unicode properties. For additional information, see Unicode Technical Report #36,
“Unicode Security Considerations” [UTR36].

Acknowledgments

Mark Davis authored the initial versions. Ken Whistler has added to and maintains the
text of this annex.

Thanks to Julie Allen for comments on this annex, including earlier versions. Asmus
and 19, and 25 and

Freytag added significant sections to the text for Revisions 7, 9

assisted in the rewrite of Section 3 for Revision 13. Eric Muller added Section 2.4 (now
2.5) for Revision 11 and suggested modifications for Section 2.3.

References

For references for this annex, see Unicode Standard Annex #41, “Common References
for Unicode Standard Annexes.”

Modifications

The following summarizes modifications from the previous revision of this annex.

Revision 25 [KW]

¢ Proposed Update for Unicode 9.0.0.
e Complete top-to-bottom rewrite for clarity.
e Added Section 3.1 Script Extensions Property Values

Revision 24 [KW]

¢ Reissued for Unicode 8.0.0.
e Updates to table styles and three table titles; minor edits.

¢ Clarification added regarding the choice of Script value for a character when its
Script_Extensions value set contains more than one value in Section 3.2
Assignment of Script Property Values.

Revision 23 being a proposed update, only changes between revisions 24 and 22 are
noted here.

Revision 22 [KW]

¢ Reissued for Unicode 7.0.0.
e Updated some values for the Script_Extensions property.
e Minor edits.

Revision 21 [KW]

e Reissued for Unicode 6.3.0.
e Minor edits.

Revision 20 being a proposed update, only changes between revisions 21 and 19 are
noted here.

Revision 19 [KW]

e Reissued for Unicode 6.2.0.

e Updated information about Script_Extensions property, to reflect its change from
provisional to informational.

¢ Revised the Summary, to reflect the updated scope.

e Rewrote Section 1 Introduction.
e Added new Section 1.3 Script Extensions.
¢ Added new Section 1.4 Usage Not Reflected in the Script Property.

¢ Added new header for Section 2.9 Script Extensions Property and rewrote
content for that section.

e Added new Section 3.3, Assignment of Script Extensions Property Values and
adjusted numbering of other sections.

¢ Added disclaimer about stability of Script and Script_Extensions property values in
Section 2.4, Using Script Property Values in Reqular Expressions.

e Applied consistent capitalization to the phrase "Script property value", to match
capitalization conventions used for other property names in the standard.

Revision 18 being a proposed update, only changes between revisions 19 and 17 are
noted here.

Revision 17 [KW, MD]

e Reissued for Unicode 6.1.0.

e Updated text explaining ScriptExtensions.txt, to account for the change of status
from a provisional data file to a data file defining a new provisional property,
Script_Extensions.

¢ Moved section 4.1 to be 3.6 Script Anomalies, broadened name, added more
cases.

Revision 16 being a proposed update, only changes between revisions 17 and 15 are
noted here.

Revision 15

e Reissued for Unicode 6.0.0.

¢ Minor editorial updates. [KW]

¢ Added Section 2.8, Multiple Script Values and new cross-references to it. [MD]
e Changed Section 4 Data Files to add discussion of ScriptExtensions.txt. [MD]

Revision 14 being a proposed update, only changes between revisions 15 and 13 are
noted here.

Revision 13

¢ Reissued for Unicode 5.2.0

e Made extensive editorial corrections, particularly for the term of art, "script
property value". [KW]

e Added paragraph in Section 2 explaining that the Common script value does not
indicate what scripts a Common script character is actually used with. [KW]

e Added the term "explicit script value" to Section 2, Usage Model, and added a
header to what is now subsection 2.1 to clarify the structure of the section. [KW]

e Updated short alias for Inherited from Qaai to Zinh. [KW]

e Rewrote Section 3. Added a new subsection 3.4, to clarify the distinction between
script designators and script property value aliases, their respective matching
rules, and the use of underscores. Added a new subsection 3.5 to clarify
ambiguity in the term script name. [KW]

Revision 12 being a proposed update, only changes between revisions 13 and 11 are
noted here.

Revision 11

¢ Prepared for Unicode 5.1.0 release and updated title. [KW]

e Added surrogates to list of code points which get Unknown script value. [KW]

e Added new Section 2.4 regarding use of the script property in rendering systems.
[EM]

e Added clarification in Section 2.2 regarding script inheritance in combining
character sequences. [MD, EM, KW]

e Added new Section 4.1 noting script anomalies for some East Asian compatibility
symbols. [KW]

Revision 10 being a proposed update, only changes between revisions 11 and 9 are
noted here.

Revision 9

¢ Prepared for Unicode 5.0.0 release [AF].
¢ Added Unknown, and made it default value instead of Common [AF].

Revision 8 being a proposed update, only changes between revisions 9 and 7 are noted
here.

Revision 7

e Prepared for Unicode 4.1 release [AF].

e Split section 3.2 and added section 3.3 [AF].

e Major rewrite of Introduction and usage model. [AF].

¢ Added section on Maintenance and table of classifications types [AF].

Revision 6 being a proposed update, only changes between revisions 7 and 5 are noted
here.

Revision 5

e Changed to Unicode Standard Annex.
¢ Added note on the stability of Q names

e Abbreviated the list of values, so that people would not get the mistaken
impression that it was complete

e Added note on Braille
e Added note on Mn, Me characters
e Added note on use of scripts with regard to spoofing

e Minor edits
Revision 4

e Updated references, including reference to Property Value Aliases
o Clarified that the list is for illustration only; the definitive values are in the UCD
e Minor edits

Revision 3

e Minor link editing only

Copyright © 1999-2015 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied
warranty of any kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and
consequential damages in connection with or arising out of the use of the information or programs contained or
accompanying this technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

