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1 Introduction

This is a revision of L2/16-210, incorporating syntax as anticipated in Section 9 of L2/16-210 and specified
formally in L2/16-233, with slight differences. The first version of this document was L2/16-177.

Some arguments from past versions will not be repeated. Those unfamiliar with the background and
motivations of this proposal are encouraged to read Sections 2 and 3 of L2/16-177. In particular, our
observation in Section 2 thereof remains highly relevant:

An encoding scheme for a script only makes the least bit of sense if there is reason-
able hope one can encode a text not seen before.

Apart from the new syntax, used in all examples and described formally in Section A, the following has
changed relative to L2/16-210:

• Extended discussion of the motivations for stacking (Section 7.1).

• Introduced case studies (Section 13).

• Description of a new OpenType implementation (Section C).

In final stages of putting this document together, we were informed that thanks to continued efforts by
Andrew Glass and the subcommittee, there is now a wish to return to bracketed notation. In Section A.1,
we formalize this notation as we understand it and relate it to the notation used elsewhere in this document.

2 The encoding

In this document we present a proposal on the basis of proven concepts taken from various frameworks for
encoding hieroglyphic text, most notably PLOTTEXT [12, 13] and RES [6, 7], which shares some primitives
with JSesh [10]. The first was used, among other things, to prepare a grammar [4], the second was used,
among other things, for the St Andrews corpus [8], and the third in the Ramses Project [9].

Our starting points were:

• The encoding should rely on a small set of primitives, each of which can be precisely defined in a
self-contained manner, in terms of relatively simple geometric principles, without reference to external
databases of any kind, nor to any heuristics that might lead to unpredictable behaviour.

• It should be possible to implement the primitives, preferably using off-the-shelf rendering engines, to
give satisfactory visual realizations for typical encodings.

• The primitives should be expressive enough to be able to (approximately) reflect relative positions
of signs in a wide range of original hieroglyphic texts. Of secondary importance are reproductions of
existing type-set editions, as these suffer from limitations of partly outdated printing technology.
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Table 1: The most important control characters.

default glyph short name character name

HOR EGYPTIAN HIEROGLYPH HORIZONTAL

VERT EGYPTIAN HIEROGLYPH VERTICAL

KERN EGYPTIAN HIEROGLYPH KERN

INSERT T L EGYPTIAN HIEROGLYPH INSERT TOP LEFT

INSERT B L EGYPTIAN HIEROGLYPH INSERT BOTTOM LEFT

INSERT T R EGYPTIAN HIEROGLYPH INSERT TOP RIGHT

INSERT B R EGYPTIAN HIEROGLYPH INSERT BOTTOM RIGHT

INSERT CENTER EGYPTIAN HIEROGLYPH INSERT CENTER

STACK EGYPTIAN HIEROGLYPH STACK

EMPTY EGYPTIAN HIEROGLYPH EMPTY

• The primitives do not specify exact distances between signs nor exact scaling factors.

• The functionality of the encoding should be extensible by formats outside the realm of Unicode, to
allow more precise specification of positioning and scaling. However, neither by Unicode nor by the
extended formats do we intend to achieve quasi-facsimiles of original texts.

A powerful encoding scheme not only relieves font developers of the permanent and unreasonable burden
of having to update fonts ad nauseum with new spatial arrangements of signs, it will also avoid proliferation
of the sign list by unnecessary composite signs, which would place a permanent and unreasonable burden on
Unicode itself to provide frequent updates, as well as a collective burden on the Egyptological community
to provide suggestions for such updates.

The main control characters introduced in this proposal are listed in Table 1, and will be motivated step
by step in the following sections, where we will use abbreviated names for these characters. Code points
will be assigned in a follow-up document. Implicit in the table is that there are in fact three copies of the
HOR and VERT primitives, for different levels of operator precedence, and similarly two copies of each of
the insertion primitives. This will become clearer shortly.

3 Linear text

In the simplest case, hieroglyphic text can consist of a series of signs one after the other, in a horizontal row.
For this, no control characters are needed. The signs are separated by a default, font-defined, inter-sign
distance. An example is:

Appearance Unicode PLOTTEXT RES

  a     R8 R8 R8 V30 G43 R8-R8-R8-V30-G43

aBM EA 584 [2, p. 122]
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Table 2: Groups.

Appearance Unicode PLOTTEXT RES



a     M23/X1,R4/X8 M23-X1:R4-X8

  b    ”R8 R8 R8” R8*R8*R8

 

 c     V30,U23 D58/

N26,O49
V30:U23*D58-N26:O49


 d    (1)


N35,V28 ”N29,D21” N35:V28*(N29:D21)

aBM EA 571 [2, p. 77]
bBM EA 585 [2, p. 48]
cBM EA 587 [2, p. 46]
dBM EA 1783 [2, p. 74]

Note that the fourth sign from the left,


, is less high than the height of a line, and is therefore vertically
centered by default.

As we will see later, a sign may be scaled down when it is combined with other signs in a group. The
size of a sign before it is scaled down will be called its natural size. The natural size is measured in terms

of the height of the unscaled ‘sitting man’ sign , which is called the unit size. In the above example, the

natural height of  is 1.0, while that of


may be closer to 0.4 (in our font). Often, but not always, the
height of a line is the same as the unit size.

In the example above, the text is written from left to right. Original hieroglyphic texts, however, are
often written from right to left. The signs then appear mirrored, with the hieroglyphs representing living
entities facing right. Text may also be written in vertical columns, either left-to-right or right-to-left. We
will assume most rendering engines can only realize (hieroglyphic) text horizontally from left to right, but
see Section 10.2 for further discussion.

4 Groups

For encoding complex groups of signs, we need to be able to compose signs horizontally and vertically, at

the very least. This may require repeated composition. An example is the group


 , which is a vertical

arrangement of two groups, of which the bottom one,  , is a horizontal arrangement of two groups, of

which the second,
, is a vertical arrangement of two signs.

We will use control character HOR with default glyph between signs or groups to be arranged

horizontally, and VERT with default glyph between signs or groups to be arranged vertically. The
former binds more tightly. To be able to represent deeper structures, we add subscripts (1) or (2) to these
control characters for nested horizontal or vertical groupings; see further Section 9. Examples are listed in
Table 2.

The simplest case of grouping is if we have a horizontal arrangement of signs in horizontal text, as in
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Table 3: Empty signs.

Appearance Unicode PLOTTEXT RES

   a     M17/Aa28/”D46,”/G43/A1 M17-Aa28-D46:.-
G43-A1


  b 

(1)
 

R4,”,X1” Q3 R4:(.:X1)*Q3

aBM EA 584 [2, p. 122]
bBM EA 581 [2, p. 59]

  . The intended rendering of this is very similar to what we would get without grouping, except that
line breaks are disallowed within a group.

5 Empty

It is convenient to have an EMPTY sign with zero width and height. Placing this sign above or below
another sign effectively pushes the latter sign down or up, respectively. Examples are listed in Table 3.

We leave open the question whether EMPTY can be an existing empty character from Unicode, or
whether a dedicated character for hieroglyphic encoding is appropriate. We suspect that if we do not
explicitly introduce the possibility of using EMPTY in hieroglyphic encoding here, then the use will sneak
in some time in the future, using this or using another existing empty character, as encoders will frequently
want to flush the position of a sign to the top or to the bottom of a line, to describe the appearance on
original manuscripts.

6 Insertion

A fair number of signs have empty space in one of the corners of their bounding box. Often this empty
space is used for placement of a smaller sign, especially, but not exclusively, if the two signs are in a special
relationship, for example, if the two signs together are the writing of (a part of) a morpheme or a direct
genitive. The empty space may also be occupied by several signs. Our encoding includes a number of
primitives for such a composition of signs.

In our current syntax, the main sign, in which smaller signs are inserted, comes first. This is followed by
one of four ‘corner insertion’ control characters and then the sign or group to be inserted. In fact, the main
sign may be followed by more than one such insertion, in the extreme case by all four, which must appear
in a canonical order.

There is also evidence suggesting use of a ‘center insertion’ of one sign inside another. Here the main

sign is followed by and then the sign or group to be inserted. Such insertion is particularly common in

the writing of wcbt (‘priestess’, ’pure thing’, etc.) as  ; the inserted sign is the feminine ending, and an

analysis of the group as an atomic sign would be highly unsatisfactory. In groups such as moreover,
an encoding using vertical arrangement and kerning (Section 8) is inappropriate, as this would not express

4



Table 4: Insertions.

Appearance Unicode PLOTTEXT RES

 a  
D60;/X1/; insert(D60,X1)

  
F4;X1//; insert[ts](F4,X1)

 b   F20;Z1/; insert[b](F20,Z1)

 c   I10;S29/; insert[b](I10,S29)

 d  
I10;D46/; insert[s](I10,D46)

 e  
(1)


I10;X1,N17; insert[bs](I10,X1:N17)

 f  
D17;/X1; insert[t](D17,X1)

 g   G39;/N5; insert[te](G39,N5)




 
G17;/%B4+D36; insert[te](G17*.,D36)

 h  
A17;//X1; insert[be](A17,X1)




  
G39;X1/;;/N21; insert[te](insert[s](G39,X1),N21)



 i   

 

N35,X1,
”V28 E6;/X1;” N35:X1:V28*insert[te](E6,X1)

aBM EA 143 [2, p. 110], Meir I, pl. 9 [2, p. 45]
bBM EA 581 [2, p. 59]
cBM EA 1783 [2, p. 74]
dBM EA 581 [2, p. 59]
eBM EA 101 [2, p. 58]
fURK IV,373,12
gBM EA 117 [2, p. 31]
hP. Turin Cat. 2070
iKarnak (KRI II,226,6)

that the inserted group is to be entirely inside the bigger sign.
Examples are listed in Table 4. In some cases, the inserted sign or group fits entirely within the bounding

box of the main sign, possibly after scaling it down. There are cases however where the inserted sign or group

may spill over to outside the bounding box, as in the case of 


. It is for the font to decide whether the
inserted group is small enough to fit within the bounding box, possibly after some scaling down, or whether
it should extend to beyond the bounding box. In PLOTTEXT and RES, additional control characters would
be required to artificially extend the bounding box, whereas in our Unicode encoding, we sacrifice precision
for ease of use.

The inserted groups may be arbitrarily complex. For example in  we have a vertical group within a
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Table 5: Stacking.

Appearance Unicode PLOTTEXT RES

 a  
P6=D36 stack(P6,D36)

 b  
U34=I9 stack(U34,I9)

 c   P6=V12 stack(P6,V12)

aBM EA 581 [2, p. 59]
bBM EA 584 [2, p. 122]
c[11, p. 758]

horizontal group within a vertical group, which is inserted into another sign.1 Note that the inserted group
here spills over to below the bounding box.

Relative to PLOTTEXT, our notation is simplified in that ‘insert just above the feet of a bird’ and
‘insert into the lower-left corner’ have been merged. This sacrifice of precision for simplicity seems justifiable.
Relative to RES, our notation is simplified in that we have only five insertion primitives, rather than nine.
The functionality of the extra four in RES, i.e. ‘insert into the right/left/bottom/top side’, can partly be

taken over by the KERN, to be discussed in Section 8. Further, the appearances of for example and ,
encoded using ‘insert into the left side’ and ‘insert into the bottom-left corner’ in RES, could be confused
without causing significant problems for typical users.

JSesh has two primitives for insertion, each corresponding to one of up to two rectangular zones per
sign. These primitives are used as GˆˆˆS and S&&&G, respectively, where S is a sign and G is a group. In
the first case, G is inserted in zone 1 of S and in the second case, G is inserted in zone 2 of S. The zones
can be defined in the font or can be computed automatically through heuristics. Typically, zone 1 is at the
bottom or in front of a sign and zone 2 is at the top of or behind a sign. The zones may extend beyond the
bounding box. Moreover, a zone of a sign is associated with a gravity, which indicates towards which of the
four sides of the rectangle the inserted group is to be flushed. If a sign has two zones, the two insertions
may be combined in the form of G1ˆˆˆS&&&G2.

7 Stacking

Sometimes two signs or groups are superimposed. Table 5 presents examples. The first two happen to also
exist as individual Unicode characters, while the third is not part of any established sign list as far as we

know. There are also many examples of whole groups being stacked, such as
 , which is the stacking

of horizontal group  and vertical group
. In JSesh, stacking of two signs is expressed using binary

operator ##.
It cannot be emphasized enough that stacking is part of how the Ancient Egyptian writing system works.

Much like horizontal and vertical grouping and insertion, it was one of the mechanisms the ancient scribes
had to their disposal to position signs relative to one another. In other words, stacking is to a large extent
productive. The fact that some frameworks in the past (most notably the Manuel de Codage [1]) resorted
to introducing separate code points for stacked sign combinations, even for those that are hapax, may be

1Stela Cairo, JE 60539, l. 8
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Table 6: Stacking as compositional operation.

Stacking Attested alternatives Transliteration

 a h. c

 b h. cc

 c  h. c

 d  e cbb

 f   g bcbc

 h  bs̆

 i , 

 j bt

¯
aWB III p. 40
bDendera VII, 148.4
cStacked form and non-stacked alternative: WB III p. 40
dASAE 43, p. 254
eWB I p. 178
fBIFAO 43, p. 118 and WB I p. 447
gWB I p. 446
hStacked form and non-stacked alternative: WB I p. 477
iMIFAO 16, p. 49
jBoth non-stacked alternatives: WB I p. 485

blamed on shortcomings of the used technology more than anything else.
Another selection from the many thousands of known stacked signs is given in Figure 6. Some have

attested non-stacked alternatives, while for others we cannot immediately verify whether non-stacked al-
ternatives might have existed. In the overwhelming majority of cases, the meaning of the stacked signs is
completely compositional. For example, a stacked sign may represent a sequence of phonemes, each of which
corresponds to one of the constituent signs.

One may naively object that stacked signs are not entirely compositional, because they not only represent
the constituent signs themselves, but also the order in whether these are to be read. This objection is
weakened, if not invalidated altogether, by the many known cases where in fact all conceivable orders are

valid, as long as an existing word is written. For example, may be used both in words starting with cb,

where the non-stacked alternative
 may be used, and in words starting with bc, where the non-stacked

alternative  may be used.2

7.1 The arguments against stacking refuted

Various objections have been raised against a stacking primitive, and none have held up to scrutiny. We
discuss these arguments one by one.

2See WB I p. 173-178 and p. 446-450, respectively.
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“It would create multiple encodings for the same appearance”

The argument was that there are already single code points in Unicode that represent stacked sign combi-

nations, such as , which could then be alternatively encoded as the combination of two signs with the
stacking primitive.

This was the first objection raised by members of the UTC, and was presented to us as the foremost and
definitive argument again a stacking primitive. Surprisingly, this objection was thereafter silently dropped.
Perhaps this is because there are many composite signs in Unicode, formed not only by stacking, but also by

horizontal and vertical grouping and by insertion. Examples are,,,,


,,, and many
dozens more. The implication is that if no control characters may be introduced that create alternative
encodings for signs that already exist, then no control characters whatsoever may be introduced, by which
encoding of Ancient Egyptian in Unicode is at an impasse.

“We might as well continue adding more code points for stacked signs”

A reminder is in order of the motto stated in the introduction:

An encoding scheme for a script only makes the least bit of sense if there is reasonable hope one
can encode a text not seen before.

An encoding scheme that requires regular additions is not fit for purpose, and needing to use a new code
point for each newly discovered stacked sign combination would require regular additions.

“A stacking primitive cannot be implemented in OpenType”

This is patently false. We have been able to implement stacking using OpenType substitution rules. In
fact, compared to the difficulties of implementing several levels of horizontal grouping, vertical grouping and
insertions, implementing stacking is trivial.

“Stacking achieved using substitution rules would not look perfect”

This is a curious argument, given that we keep being reminded that we should not expect paleographic
accuracy from Unicode.

Suppose an encoder of large amounts of hieroglyphic texts has the choice between two scenarios:

• The next time they find a new stacked sign combination, they need to apply to the Unicode Consortium
to have it added, and after a considerable delay, the stacked combination can be encoded and printed
in its final form.

• They can encode and print it on the spot, but relative to the ‘ideal’ appearance, the rendering is off
by a tiny fraction, which can be corrected if desired by a font designer adding one extra rule to a font.

It requires no further evidence the second scenario is much preferable.

“It is interesting to make lists of stacked sign combinations, which we can put in a big
database”

It is far more interesting and useful to encode stacked sign combination as stacked sign combinations, rather
than as code points like any other. Corpora encoded in this way contain strictly more information. Con-
cretely, if anyone is interested in a database of stacked sign combinations, it can be extracted automatically
from a corpus.

8



Table 7: Kerning.

Appearance Unicode RES


 a  

(1)


(1)  G17-[fit]N1:X1:Z1




b  
(1) G17-[fit]D21:.



 c  

(1) (1)  G43-[fit]D46:.*O49

 d    U23*N26*[fit]D58

 e   F39:[fit]Aa1

aBM EA 581 [2, p. 59]
bBM EA 584 [2, p. 122]
cBM EA 585 [2, p. 48]
dBM EA 143 [2, p. 110]
eBM EA 587 [2, p. 46]

8 Kerning

A natural consequence of the tendency to make efficient and esthetically pleasing use of available space was to
squeeze groups together. It would be highly undesirable to have a rendering engine do this indiscriminately

for all groups. Therefore, we introduce KERN, with default glyph , which can be put behind the

and operators to indicate that neighbouring signs or groups may, but need not, move towards each
other, to have their bounding boxes overlap. The signs should preferably not touch each other however.

Table 7 presents examples. The second example is similar, but not quite identical, to an insertion in the
top-right corner. (As a rule, insertions try to scale down inserted groups before they spill over to outside
the bounding box, which is not what happens here. Admittedly, there are no absolute criteria when to use
KERN and when to use insertion.)

9 Operator precedence

As there was opposition to the use of bracketed notation in the earliest versions of this proposal, we made the
transition to operators with multiple levels of operator precedence. The multiple levels are needed because
there is true recursion in the structure of groups of signs, and Ancient Egyptian may be one of the very few
writing systems with this property. Concretely, we can have a vertical group containing a horizontal group
containing a vertical group, etc. The deeper the nesting, the more rare such groups become, but we see no
obvious reason why a nesting of say 4 or 5 levels deep could not be found if one looked hard enough.

It seem reasonable that some implementations (fonts) can only handle up to a bounded depth, and as
Unicode wants to restrict itself to encodings that can be realized in OpenType today, it seems acceptable
to choose a bound of say 3 levels, for now. But it is important that the design of the syntax is extendable
to more levels, for the sake of future font technology.

To illustrate the levels of operator precedence, consider a group such as
, which suggests that an
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Table 8: Enclosures.

Appearance Unicode PLOTTEXT RES

 # $%%%%a    %Z1 N5 L1 D28 %Z2 cartouche(N5-L1-D28)

aBM EA 586 [2, p. 25]

operator for vertical grouping should have a lower binding value than that for insertion.3 An appropriate
encoding is therefore:

 (0)


(0)


where the basic level is explicitly indicated by a subscript (0).

But now consider again   . Here we need two more operators for vertical grouping with different
binding values, both higher than that of the insertion operator. The encoding is now:

 (0)  (2)


(1)  (1)


So at the very least, we need vertical grouping at three different levels.
For a precise definition of the syntax involving operator precedence, see Section A.

10 Secondary issues

The following are on our wish list, but should not distract from the main issues.

10.1 Cartouches and other enclosures

It may be noted that the existing hieroglyphs in Unicode include individual symbols for starting and ending
parts of several kinds of ‘enclosures’, but [3] writes “Plain text and general purpose software should likewise
treat these signs as characters and not render the fully enclosed form.” As this is the only authoritative
source we have been able to find that tells us anything at all about intended purpose and use of hieroglyphs
in Unicode, we infer we cannot reuse these characters for representing actual, full-form cartouches, serekhs,
etc.

Furthermore, cartouches in hieratic are written as two isolated starting and ending parts. It seems

natural to reserve  and  for representing these, and to introduce additional primitives to denote full-
form cartouches. These primitives may differ between one protocol and another, so it is a pair < and > in
JSesh, a pair \%Z1 and \%Z2 in PLOTTEXT, and cartouche( ) in RES,

For Unicode one could consider an open cartouche sign (or open serekh or open ‘castle walls’),

followed by a number of groups and closed by some fixed closing sign . An example is given in Table 8.
If such a bracketed notation is acceptable, one may wonder why the bracketed notation we proposed originally
for horizontal and vertical groups was not.

One could also consider encoding an enclosure by a special use of the INSERT CENTER , con-
sisting of a sign for a cartouche (there is such a sign in the existing Unicode repertoire already, but not for

3BM EA 581.
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serekh or ’castle walls’), followed by INSERT CENTER, followed by a horizontal group (in horizontal
text) or a vertical group (in vertical text). The downside is that automatic conversion from vertical text
to horizontal text or vice versa becomes more difficult, as in vertical text a cartouche can be unboundedly
high, whereas in horizontal text a cartouche can be unboundedly wide. A restructuring between vertical and
horizontal grouping would therefore be required for the conversion to give satisfactory results. The question
of how to best encode cartouches is thereby connected to Section 10.2.

10.2 Changes in text direction

In the simplest case, hieroglyphic text consists of a sequence of signs that are reasonably wide and high. The
signs can then be placed next to one another for horizontal text directions and underneath one another for
vertical text directions. However, two tall narrow signs would typically be put next to one another and two
wide thin signs would typically be put above one another. Note however that top-level horizontal groups
are strictly speaking redundant in our encoding of horizontal text, and so are top-level vertical groups in
vertical text, and as a result we may miss appropriate groupings if we convert between text directions.

These problems are partially avoided in PLOTTEXT by allowing the user to omit groupings of signs,
leaving it to the application to find suitable groupings based on the dimensions of the individual signs. In
this proposal, we have assumed that we do need to specify groupings in the encoding, relieving the font
and rendering engines from this difficult task. However, we wish to keep open the possibility that adequate
rearrangements of groups are made automatically by the application in case it imposes a change of text
direction relative to the original manuscript. This however requires that the original text direction is or can
be encoded.

Some examples are given in Table 9. In the first, the vertical text is best changed to horizontal text by
simply stringing signs together horizontally. In the second example however, a more pleasing appearance
is achieved by introducing some vertical groups. In the third example, there is kerning between the two
signs that was meant to apply to the vertical direction only, but there is no reason to believe kerning would
be appropriate for horizontal direction as well so there it should be ignored. In the fourth example, the
group is exceptionally high for horizontal text, and becomes quite small if scaled down to fit within a row
of height 1, and a thorough restructuring would be desirable.

It would be advantageous therefore to be able to encode text direction. This could be done by, optionally,

putting one from the set of four newly introduced characters , , or at the beginning of a
fragment of hieroglyphic. This does not dictate the direction of rendering, but it informs the application
for which direction the encoding is meant.

11 Rendering

Here we discuss the ideal scaling and positioning of signs within groups. Practical implementations may
deviate from this ideal due to technical limitations; see Section C.

11.1 Horizontal and vertical groups

What is described here is consistent with both JSesh and RES. Formatting of groups is done in two steps.
First, we determine how much signs need to be scaled down (signs are never scaled up) to fit two main
constraints. Second, we insert additional whitespace to center and align signs and groups.

For the first step, that of scaling down, we consider inner-most groups before considering enclosing
groups. A first constraint is that a vertical or horizontal subgroup within an enclosing group, together with
the default inter-sign distance, should not be higher or wider, respectively, than 1 (in terms of the unit size).
We illustrate this using Figure 1. Here, the natural size of the signs B and C plus the default inter-sign
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Table 9: Change of text direction from vertical to horizontal imposed by the application (all examples from
BM EA 101 [2, p. 58])

Original text Allowable rendering Better rendering




    
     







 


 


 




distance add up to a height smaller than 1. Therefore B and C by themselves need not be scaled down.
However, they form a horizontal group with A (which is enclosed in another vertical group), of which the
natural width exceeds 1. Therefore, A, B and C are all scaled down uniformly, to make that width exactly 1.
Similarly, D, E and F need to be scaled down to make their added width exactly 1. A second constraint is
that a group within a line of horizontal text does not exceed the height of that line, which is normally 1.
This may require further uniform scaling down of all signs and their inter-sign distances.

If we have a group with a similar structure but with signs of different sizes, the following would happen,
with w for the natural width, h for the natural height, and sep for the default inter-sign distance.

• If h(B) + sep + h(C) > 1, then determine scaling f1 such that f1 · (h(B) + sep + h(C)) = 1; otherwise
let f1 = 1.

• If w(A) + sep + max(f1 ·w(B), f1 ·w(C)) > 1, then determine f2 such that f2 · (w(A) + sep + max(f1 ·
w(B), f1 · w(C))) = 1; otherwise let f2 = 1.

• If w(D) + sep +w(E) + sep +w(F ) > 1, then determine scaling f3 such that f3 · (w(D) + sep +w(E) +
sep + w(F )) = 1; otherwise let f3 = 1.

• If the text is written horizontally in rows, with line height 1, then in the same vein we compute f4 to
make the whole group fit within the line.

For the second step, we distribute ‘excess whitespace’ equally over subgroups. We need to distinguish
between two cases, namely subgroups consisting of a single sign, and subgroups consisting of several recursive
subgroups. In the first case the single sign is centered within the available space, and in the second case,
the excess whitespace is divided equally between the subgroups. This is illustrated in Figure 2.
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A
B

C

D

E

F

1 unit

1 unit

A

B

C

D E F

1 unit

1 unit

Figure 1: A nested group, before scaling and positioning (left) and after (right).

1 unit

Figure 2: In this horizontal group, there is excess whitespace in all three vertical subgroups. In the rightmost
subgroup, there is only a single sign, which is centered. In the leftmost two subgroups, the excess whitespace
is divided equally between the (recursive) subgroups (which here happen to be three and two single signs,
respectively; they could have been nested horizontal groups as well).

11.2 Insertion

For the implementation of , the sun sign is placed in the upper right corner of the bounding box
of the duck, with the top-most and right-most points of the sun flushed against the bounding box. The sun
is ideally as large as possible (but not bigger than the natural size), while keeping some distance (ideally
the default inter-sign distance) away from the duck.

A less ideal, but still acceptable, rendering results if we precompile tables indicating for each sign where
inserted groups are to be placed. For example, the table might indicate the rectangle as in Figure 3, to
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Figure 3: The rectangle that can be designated for the second group after an occurrence of INSERT T R,
if the main sign is the duck.

define how the duck is to be combined with another group if we use INSERT T R. This is similar to how
insertions in JSesh are implemented. Note that this does not place any restrictions on the groups that can
be inserted.

11.3 Stacking

The rendering of STACK followed by two groups lets (roughly) the centers of the two groups coincide. The
rendering is simply the addition of the curves of the two constituent groups.

For some sign combinations, a more satisfactory realization may result if not the exact centers of the

groups, but points a little distance away from the centers are chosen to coincide. For example, in  the

center of coincides with a point a little to the right of the center of . This can be realized by letting a
font assign an anchor to a sign, which defines a ‘conceptual’ center, different from the center of the bounding
box. (Cf. the notion of anchor in OpenType.) It may also be realized in the font through substitutions of
entire stacked groups by optimized glyphs.

12 Outside Unicode

Because Unicode has its limitations, extended formats with additional functionality are needed for advanced
purposes. It is highly desirable that Unicode and the extended formats can be converted seamlessly one
to the other. In particular, converting Unicode to extended formats should be a matter of converting
syntax only, and converting extended formats to Unicode should be a matter of systematically removing
functionality that is unavailable in Unicode, while retaining an acceptable rendering. We mention RES in
particular as a format whose functionality has the proposed Unicode system as a strict subset. We also
address absolute positioning and scaling in JSesh.

12.1 Scaling

RES allows tweaking of the natural size of a sign, before the processing of group structure. This can be
helpful to improve the rendering, but it is not essential to obtain an acceptable rendering.

Scaling in RES may also be applied on only the height or only the width of a sign. For example, a sign

such as  may be manually flattened to become , which gives a more satisfactory result if it occurs
in a vertical group together with more signs, and a similar distortion of the shape may be witnessed in
original inscriptions.4 The two shapes shown here in fact exist as separate code points in Unicode, which
should definitely be avoided for future extensions of the sign list. A font may well include flattened graphical

4Cf. pp. 4-5 of [5].
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variants, which it may prefer over the original shape depending on context, but there should be only one
code point per sign.

The EMPTY of this proposal is a special case, with zero width and height, of the ‘empty’ symbol
in RES, which can be parameterized with arbitrary width and height. It is a useful auxiliary symbol to
influence placement of neighboring signs.

12.2 Rotation

Some rotation of signs has semantic significance. For example,  is a logogram for the object depicted,

namely a mace, while the tilted form, suggesting a mace being applied, is a determinative in words such
as “smite”. These two signs have two distinct code points in the existing Unicode set, and this is entirely
justifiable.

There are other cases however, such as , , , , that are pure graphical variants. The choice
between any particular inclination and orientation was probably made by a scribe on a whim, partially
depending on how well it would fit within the graphical context of other signs. The same holds for a number

of thin signs that are used in lying or upright form, such as


and .
The fact that all these are currently separate code points in Unicode is difficult to justify other than by

pragmatic considerations: rotation is difficult to realize using off-the-shelf font technology. For this reason
we abstain from proposing generic rotation in Unicode at this time. We would make a note however that once
font technology has evolved further, introduction of rotation as a primitive in the encoding of hieroglyphic
text should definitely be considered.

Of course, RES and JSesh possess primitives for rotation by arbitrary angles.

12.3 Mirroring

Some mirroring of signs has semantic significance. For example, the sign depicting forward walking legs

 is used as determinative in words involving (forward) movement, while the mirrored sign  is used
as determinative in words involving backward movement. Having separate code points for a sign and its
mirrored counterpart is fully justifiable in such cases.

However, some occurrences of mirroring were motivated by other considerations, as for example, symme-
try of signs within groups. In such cases, a mirrored sign should be seen as a different graphical realization
of the same sign, and does not deserve a separate code point. Moreover, such mirroring is not very com-
mon and for many applications the mirroring can be ignored. We therefore will not argue at this time in
favour of including generic mirroring in Unicode. Extended formats, such as RES, do include a primitive
for mirroring.

12.4 Groups

Rendering of groups can be fine-tuned in several ways. For example, one may override the default inter-sign

distance to obtain  rather than   . In RES this is done by R8-[sep=0]R8-[sep=0]R8. It is definitely
not justifiable to have a separate code point for a combination of signs with particular inter-sign distances,
even when that distance is 0.

As explained in Section 11.1, the width of a horizontal subgroup is reduced to 1 and the height of a
vertical subgroup is reduced to 1, before the scaling of the enclosing group is considered. In some cases,

this is undesirable. For example, in

 , the top-most two signs should appear with the same scaling as the
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bottom sign. This is achieved in RES by changing the above value 1 to something else, or by avoiding prior
scaling down of the horizontal group altogether, by using inf in D28*D28:[size=inf]D28.

In some later periods of Ancient Egyptian history, lines tended to be much higher than 1 unit, and this
greatly affects layout of signs, due to the interaction between the natural sizes of signs and the line height.
In RES, the line height (and the column width) can be adjusted.

None of the above seem essential for Unicode and will not be proposed at this time.

12.5 Insertion

RES allows fine-tuning of the x and y positions of a group that is inserted into another, as well as fine-tuning
of the minimum distance between the two groups. If the distance is chosen to be 0, then the second group
may touch the first.

12.6 Stacking

In RES, the stacking primitive can be extended with functionality to let one group erase the un-

derlying curves of the other group. For example, we may obtain stack[x=0.4](S12, D58)  ,

stack[x=0.4,under](S12, D58)  , or stack[x=0.4,on](S12, D58)  . We know of no examples
where this difference in appearance has semantic significance, and would therefore not consider any corre-
sponding primitive for inclusion in Unicode.

As also illustrated by the above examples, RES allows fine-tuning of the relative positions of stacked
signs. For Unicode, we rely on the font to choose suitable positioning, as explained in Section 11.3.

12.7 Modify

RES includes a primitive that replaces the physical bounding box by a virtual bounding box. This is a
powerful operation that can in rare cases be useful to give complex groups a more pleasing realization than
would otherwise be possible. It can also be used to let a part of a sign be rendered outside a line of text.
Additionally, one may erase parts of a sign. For many applications however the intricacies of the modify
primitive do not outweigh its benefits, and consequently we are not considering adoption of an analogue for
Unicode.

12.8 Absolute positioning and scaling

There is a strong demand from the Egyptological community for rendering exact appearances from original
texts, mainly for publication purposes. JSesh therefore allows expression of absolute positioning and scal-
ing. For example, S34\R30{{0,357,51}}**G5{{194,0,97}} expresses that sign S34 is to be rotated by 30
degrees, scaled by factor 0.51, and placed at (x, y) coordinate (0.0, 0.357), while G5 is scaled by factor 0.97
and placed at coordinate (0.194, 0.0); coordinates refer to the top-left corners of bounding boxes of signs. In
this syntax, ** connects a number of signs together that are formatted by absolute scaling and positioning
relative to the same reference point (0.0, 0.0). If the triple is absent, it defaults to {{0,0,100}}.

The disadvantage of absolute scaling and positioning is that it makes the encoding dependent on the
exact shapes and natural sizes of signs, in other words on the font, which complicates exchange of encodings
between tools. Absolute scaling and positioning is therefore best avoided, unless it is essential to the
application.

16



12.9 Shading

In our domain it is the rule rather than the exception that manuscripts are only partially legible, as the
passing of several millennia has left few textual artefacts completely unscathed. It is important to let an
encoding of a text express that identities of certain damaged signs are merely hypothesized, in order to avoid
incorrect interpretations. JSesh, PLOTTEXT and RES all allow shading (also called hatching) of signs or
parts of signs with varying precision, to indicate damage to the text. RES is the most flexible of the three,
allowing the bounding box of a sign or inter-sign distance to be divided into smaller rectangles, through
repeated partitioning into two equal parts. For each such smaller rectangle, shading can be individually set.

Our current proposal does not include shading, for two reasons:

• We are unsure about a satisfactory syntax to express shading as part of plain-text encoding.

• We anticipate that the UTC will want to delegate shading to a higher-level protocol.

However, because shading is very important to our domain, we intend to revisit this matter in the near
future.

13 Case studies

On the following pages we discuss excerpts from two Middle-Egyptian hieroglyphic texts (both from the
12th dynasty). The main purpose is to demonstrate to the reader that encoding of hieroglyphic texts is far
from straightforward. This is because encoding requires use of discrete signs and discrete control characters,
whereas in reality the placement of signs, their scaling, and even the shapes of individual sign occurrences
were more fluid, motivated by esthetical concerns that are hard to capture in simple terms.

For highly normalized scripts, one may well argue that each inscription should allow for precisely one
encoding. For Ancient Egyptian however, this position is untenable, as there is no one-to-one mapping
between relative positionings of signs in original inscriptions and control characters. Hence, there are often
alternative ways of analyzing the observed spatial layout, which may lead to different encodings. However,
we hope the examples will at least convince the reader that the repertoire of primitives of this proposal is
sufficiently powerful to create encodings that capture most of the essence of the spatial layout found in real
texts.

We present excerpts from line drawings that are reproduced with kind permission from Richard Parkinson
and ©Trustees of the British Museum. For the convenience of the reader, the excerpts are printed mirrored
(the originals read right to left rather than left to right), so that the text direction matches that of the given
normalized transcriptions. More information on the stelae is available in easily accessible form in [2].
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13.1 Stela of Ity and Iuri (BM EA586)

Lines 1-4:

(1) 



      


 # $%%%%       

The sky sign above a cartouche is unusual. A suitable encoding scheme for hieroglyphic text should be
flexible enough to deal with the unexpected.

In this line we see two typical insertions of groups into the bottom-left corner of the cobra. Note in
the original how the two cobras are shaped slightly differently, to nicely bend around the inserted groups,
depending on the shapes of the inserted groups.

(2)     

  


     




 

   

In the original we see typical ‘squeezing together’ of several groups to make efficient use of the available
space. It may not be a coincidence that this happens in particular for groups of signs that together form

writings of words or of frozen expressions such as
 and



. We have here not attempted to

express this in the encoding, but one may consider using the kerning operation.

(3)

       
    



 

 

The most plausible encoding seems   . What is interesting is that the stroke belongs to the preceding ,
and so does the viper (as suffix pronoun). The reading order is in fact    . This means that however
one wishes to analyze the layout of the group, the reading order is not straightforwardly reflected in the
structure of the encoding.

Should one encode, with an insertion in the top-right corner, or perhaps, as a horizontal group
with or without kerning? The two signs belong to the writing of the same word, so perhaps the former is
more appropriate. This is despite the fact that more than half of the smaller sign is outside the bounding box

of the main sign. One may ask the same question for


, which similarly lacks a straightforward answer.
All this shows that, like for other graphemic systems, coherence in the encoding can only be achieved by
adopting general normalizing principles, here regarding the uses of the control characters.

(4)

           and

 
   

In this line, we see several more groups that are squeezed together. Some of this is expressed in the
transcription, throughout using kerning rather than insertions.
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13.2 Stela of Intef son of Senet (BM EA581)

Lines 1-3:

(1) 




    

The rotation of  was justifiably ignored. One may argue whether to encode the three vertical strokes as
two underneath each other followed by a third, or as one above two others.

(2) 





 
 



 





A clear insertion occurs in


 . From the appearance in the original, it is not so clear whether to encode



or , so an insertion of one sign, with another sign below, or an insertion of a vertical group.

Should


be seen as a stacking (the stacked sign in fact exists as character in Unicode) with an insertion

of


in the upper-left corner? Note that


in fact belongs to the preceding word, and therefore the insertion
is completely accidental, through opportunistic use of available space, rather than a ‘ligature’ taken from

any imaginary finite list of such sign combinations. As alternatives one could encode
 or


 (the

latter using an empty sign below to push the


up), possibly with kerning.

(3)


 

 


 

 


 

In the encoding we have disentangled the first 4 signs into two groups, with the next 2 signs belonging to a
third group, and have not used any kerning to try to mimic the original appearance.

In the original, the signs  and  are squeezed towards one another, as these two signs in this combination

typically are. Some form of kerning could also express the relative positioning of


and


.
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Lines 4-6:

(4)

  

 




 

 



In  we see a classical case of two insertions into a bird sign. One may argue whether to encode

 or

 . In various places in this line we see groups that are squeezed together, and one would be tempted

to resort to kerning to let the transcription resemble the original appearance more faithfully. The sign
occurs in a different graphical variant in the original.

(5)

 

 


 


 



 

In


  we see a vertical group within a horizontal group within a vertical group. If one prefers to read the

three strokes as three separate signs (there is a character for the three strokes together), we even obtain

four levels of nesting. Another example of three or four levels is



 . Here once more, it is confirmed that

deep nesting of groups was nothing out of the ordinary in classical Middle Egyptian inscriptions.

(6) 



 


     



 

    

The transcription


 


seems acceptable, but looks rather unnatural, and is much unlike the original.

Kerning might help. An alternative encoding might be


.

Given the appearance of the original, one may argue whether to encode 


, with two insertions into the

chick, or
 , with only one insertion, and a separate stroke following it (which could be pushed down using

the empty sign).

In


   we find one more example of a vertical group within a horizontal group within a vertical group.

The


preceding the  in line (4) is a mistake and so is the final  in line (6); our encoding gives
the signs that were carved rather than the ones that were intended.
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Line 7:

(7)
 
 
   


  


 





The first group is a classical insertion into the bottom-left corner of a bird. Note that in line (4), the same
sign is inserted into the same bird, but there it was in the top-right corner. This once more confirms the
importance of an explicit encoding of the positions of inserted signs and groups, rather than relying on
defaults that may give the desired result only some of the time.

We would prefer to see
 as vertical group, possibly with kerning, rather than as an insertion. This is

despite the original appearance, which has the stroke well within the bounding box of the bigger sign.

In   we see a group of three signs inserted into a fourth sign. In the original the inserted group
extends below the bounding box of the bigger sign. One may ask why one would not encode instead the
insertion of only one sign (the arm), with two more signs underneath, which would roughly match the
physical appearance of the original. Our justification for the insertion of the entire group of three signs is

that these signs belong closely together, as part of the writing of a word, together with the following


and
the two oblique strokes.

In the encoding we have used the character


for two oblique strokes, because there is no Unicode
character for its graphical variant with the two strokes underneath each other as it appears in the original.

The last group consists of five signs arranged vertically, just above the foot of a figure drawn to the right
of the text.

14 Conclusions

The Ancient Egyptian writing system is not simple by any stretch of the imagination. A satisfactory
encoding will therefore necessarily involve a few non-trivial elements. Moreover, Ancient Egyptian writing
is very different from other writing systems, which makes implementation using existing rendering engines
challenging. Nonetheless, proof-of-concept exists for critical parts of the proposed encoding.
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A Structure of hieroglyphic encoding

For a sequence of signs and control characters to have their intended meanings, it should comply with the
following (Backus-Naur) specification. Lower-case non-bold names are classes. Bold-face names represent
characters, with upper-case boldface names representing particular characters, and sign representing any
hieroglyph. The pipe symbol | separates alternatives. Square brackets [ ] indicate optional elements, round
brackets followed by an asterisk ( )∗ indicate repetition zero or more times, and round brackets followed by
a plus symbol ( )+ indicate repetition one or more times.

In the below we need classes for different levels of operator precedence. The variable of i can stand
for one of the levels 0, 1 or 2 (more powerful systems could allow for 3 and 4 as well). Different control
characters exist for these values. So we have for example the binary operators HOR0, HOR1, HOR2 for
horizontal grouping.

The following states that a fragment of hieroglyphic text consists of one or more groups of the lowest
level, and that a general group may be a vertical group, a horizontal group, or a basic group.

fragment ::= ( group0 )+

groupi ::= vertical groupi | horizontal groupi | basic groupi

The following states that vertical and horizontal groups consist of subgroups separated by the appropriate
operator, optionally followed by a kerning modifier KERN. A subgroup of a vertical group may not be
another vertical group and a subgroup of a horizontal group may not be another horizontal group. If a
horizontal group contains a vertical group, the latter must be one level of precedence up.
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vertical groupi ::= vert subgroupi ( vert separatori vert subgroupi )+

vert subgroupi ::= horizontal groupi | basic groupi

vert separatori ::= VERTi [ KERN ]
horizontal groupi ::= hor subgroupi ( hor separatori hor subgroupi )+

hor subgroupi ::= vertical groupi+1 | basic groupi

hor separatori ::= HORi [ KERN ]

A basic group is empty, or it is a core group, followed by optional insertions, with subgroups that must all
be one level of precedence up. A core group is a sign by itself, or is a stacking of two subgroups, the first
of which is a horizontal arrangement of one or more signs and the second a vertical arrangement of one or
more signs.

basic groupi ::= EMPTY |
core group [ INSERT T Li groupi+1 ] [ INSERT B Li groupi+1 ]

[ INSERT T Ri groupi+1 ] [ INSERT B Ri groupi+1 ]
[ INSERT CENTERi groupi+1 ]

core group ::= sign | stack hor subgroup STACK stack vert subgroup
stack hor subgroup ::= sign ( STACKHOR sign )∗

stack vert subgroup ::= sign ( STACKVERT sign )∗

A different way of looking at the above is that for the same level of precedence, the insertion operators bind
more tightly than the horizontal operators, which bind more tightly than the vertical operators. Stacking
binds more tightly than any other operator of any level.

A.1 A return to bracketed notation ?

An alternative syntax that has been discussed recently replaces each transition to a higher level in operator
precedence by a pair of brackets. The formal syntax then becomes as follows:

fragment ::= ( group )+

group ::= vertical group | horizontal group | basic group

vertical group ::= vert subgroup ( vert separator vert subgroup )+

vert subgroup ::= horizontal group | basic group
vert separator ::= VERT [ KERN ]
horizontal group ::= hor subgroup ( hor separator hor subgroup )+

hor subgroup ::= OPEN vertical group CLOSE | basic group
hor separator ::= HOR [ KERN ]

basic group ::= EMPTY |
core group [ INSERT T L nested group ] [ INSERT B L nested group ]

[ INSERT T R nested group ] [ INSERT B R nested group ]
[ INSERT CENTER nested group ]

nested group ::= OPEN vertical group CLOSE |
OPEN horizontal group CLOSE |
core group

where core group is as before. Note we have here assumed nested groups do not directly contain
nested groups. We have done this as a quick fix to avoid a situation where a pair of brackets is optional;
we understand that in Unicode it is desirable that only one sequence of characters be allowed for each
appearance. In hieroglyphic texts, insertions inside insertions are very rare, but they do occur. To refine
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Table 10: Notation with several levels of operator precedence versus bracketed notation.

Appearance Levels of operator precedence Bracketed notation
     (1)

   (   )


  

(1)


(1)   (    )

    (2)


(1)  (1)
 

( (   )   )

the syntax to allow this, one could define a nested group to be a basic group that is enclosed in a pair of
brackets if and only if it is not a core group by itself, so if it is a vertical or horizontal group or if it is a
core group followed by at least one insertion operator. A Backus-Naur specification of this is possible but
tedious. An alternative is to always require brackets, which may not be user-friendly.

Table 10 compares the old syntax and the prospective new syntax, with
(

and
)

for OPEN and
CLOSE.

B Realization in general-purpose programming languages

The encoding that this document proposes is a functional subset of RES, which has been implemented in
C, Java and JavaScript, with the ideal formatting described in Section 11. There is a graphical editor at:

https://mjn.host.cs.st-andrews.ac.uk/egyptian/res/js/edit.html

which allows experimentation with the JavaScript implementation. The existence of these implementa-
tions shows that the functionality of the proposed encoding can be realized. The differences in syntax are
inessential.

C Realization in OpenType

Here we present a revision of our original implementation described in L2/16-177 and L2/16-210, now
using additional concepts within OpenType that were suggested to us by Andrew Glass. In the spirit of
academic openness we wish to inform interested parties as soon as possible of our progress, not only to
announce that implementation in OpenType is possible, but also to explain how. At the same time, we must
stress the preliminary nature of our implementation, as we are aware that a wide range of potential further
improvements awaits to be explored, also in the light of a second implementation, by Andrew Glass, which
may be reported elsewhere.

Our original implementation was highly restricted, allowing only a few signs and a few groups. The
current implementation includes many more signs, potentially to be extended to the entire Unicode set,
and allows a wide variety of groups. The basic idea of the design however is the same as before: the signs
are interspersed with auxiliary symbols, which are initially ’nil’ and subsequently obtain their actual values
through two passes:

• The first pass propagates ’bottom-up’ the sums of widths and maxima of heights of parts of horizontal
groups, and the maxima of widths and sums of heights of parts of vertical groups.
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• The second pass propagates ’top-down’ the available widths and heights, leading to suitable scal-
ings and positionings, through the ratio of the available dimensions and the unscaled dimensions of
subgroups.

Our progress is largely thanks to the introduction of the OpenType lookup flags IgnoreBaseGlyphs and
UseMarkFilteringSet. The importance of these flags is that they allow certain information to flow across the
input stream without needing to consider symbols that represent unrelated information. For example, while
the maximum height is determined of a sequence of signs in a horizontal group, through substitution rules
that simulate a ’maximum’ operation on neighboring heights, the auxiliary symbols representing e.g. widths
can be ignored, as can the signs themselves. This is very different from the original implementation, where all
possibilities of intervening auxiliary symbols were enumerated (despite the use of so-called classes), leading
to a exponential blow-up in the number of such auxiliary symbols per input sign, in the interpretation of
substitution rules.

As in our earlier implementation, OpenType feature files are not created by hand, but generated by a
Python script, which manipulates a font through FontForge. This allowed us to make progress relatively
quickly. We do not believe actual OpenType feature file notation would be helpful to the reader, and
therefore we use an ad hoc notation to formulate our design. Our notation will also abstract away from
implementational details, such as the granularity of scaling and positioning values. That is, where we write
open or closed intervals, we implicitly assume only a finite number of values in those intervals. For example,
(0, 1] may, depending on context, represent the finite set {0.2, 0.4, 0.6, 0.8, 1.0}. In other contexts it may
represent {1/3, 2/3, 3/3}, etc.

The generation of a font is parameterized by a few constants, which can be changed by changing a
single line of the Python script. These determine for example the granularity in the intervals exemplified
above. Further constants are the maximum number of signs in a horizontal group, denoted by Nh, and
the maximum number of subgroups of a vertical group, denoted by Nv. (In the present implementation a
horizontal group consists only of signs, not of nested vertical groups.)

The minimum and maximum scaling factors are denoted by constants Smin and Smax. There is another
constant that represents the step of the scaling factor. That could typically be

√
2, so that the allowed

scalings are Smin = 20/2Smin, 21/2Smin, 22/2Smin, . . ., 2k/2Smin = Smax, for some k. This constant
may be implicit in notation of intervals such as [Smin, Smax], as explained earlier.

The most important concept in OpenType features is that of substitution rules, which each replace a
pattern by another pattern, possibly with a left and right context. For example, A B 7→ C denotes that two
consecutive characters A B should be replaced by C, and the contextual rule C D { A 7→ B } E F denotes
that A may be replaced by B if it is immediately preceded by C D and immediately followed by E F. That
not all rules of this form are allowed in OpenType should not concern us here.

Substitution rules can be told to ignore certain classes of characters. For example, in our notation, the
‘code’:

With @myclass:
C { A 7→ B }

expresses that A is replaced by B if the first character to the left of A that is in @myclass is C, ignoring
intervening characters between C and A that are not in @myclass.

C.1 The auxiliary symbols

For convenience, the auxiliary symbols are arranged into ‘records’. There is one record for each horizontal
group (hrec) and each vertical group (vrec), as well as one record for each suffix of a horizontal or vertical
group (shrec, svrec). Lastly, there is one record for each sign (grec). We will use a notation that supports
this organization of auxiliary symbols and records. For example, the auxiliary value hrec.w(w), for some
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number w, denotes a field within a record for a horizontal group, meaning that w is the unscaled width of
that group.

An hrec consists of the following fields:

• hrec.bw(w), for w ∈ (0, 1]. The meaning is the same as hrec.w below, but bounded to be maximally 1.

• hrec.w(w), for w ∈ (0, Nh]. Total unscaled width; sum of widths of subgroups.

• hrec.h(h), for h ∈ (0, 1]. Total unscaled height, maximum of heights of subgroups.

• hrec.s(s), for s ∈ [Smin, Smax]. Scaling factor as determined by ratio of available and unscaled sizes.

• hrec.tx(x), hrec.ty(y), for x, y ∈ [0, 1]. Target x-coordinate and y-coordinate of the lower left corner.

• hrec.tw(w), hrec.th(h), for w, h ∈ [0, 1]. Target width and height of the group.

An shrec consists of the following fields:

• shrec.w(w), shrec.h(h), for w ∈ [0, Nh − 1], h ∈ [0, 1].

• shrec.tx(x), shrec.ty(y), for x, y ∈ [0, 1].

• shrec.tw(w), shrec.th(h), for w, h ∈ [0, 1].

The meanings of the fields are similar to those of hrec, but the values only pertain to a suffix of the horizontal
group.

Similarly, a vrec consists of:

• vrec.w(w), for w ∈ (0, 1]. Total unscaled width; maximum of widths of subgroups.

• vrec.bh(h), for h ∈ (0, 1]. The meaning is the same as vrec.h below, but bounded to be maximally 1.

• vrec.h(h), for h ∈ (0, Nv]. Total unscaled height, sum of heights of subgroups.

• vrec.s(s), for s ∈ [Smin, Smax]. As before.

• vrec.tx(x), vrec.ty(y), for x, y ∈ [0, 1]. Target x-coordinate and y-coordinate of the upper left corner.

• vrec.tw(w), vrec.th(h), for w, h ∈ [0, 1]. As before.

and an svrec consists of:

• svrec.w(w), svrec.h(h), for w ∈ [0, 1], for h ∈ [0, Nv − 1].

• svrec.tx(x), svrec.ty(y), for x, y ∈ [0, 1].

• svrec.tw(w), svrec.th(h), for w, h ∈ [0, 1].

The record grec(g) for a sign g consists of:

• grec.anchor. Intermediate symbol for positioning g.

• g itself, later to be replaced by a scaled sign.

• grec.s(s), for s ∈ [Smin, 1]. Overall scaling factor for sign.

• grec.w(w), grec.h(h). Unscaled dimensions of g.
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• grec.sw(s), for s ∈ [Smin, Smax]. Scaling factor due to ratio of widths.

• grec.sh(s), for s ∈ [Smin, 1]. Scaling factor due to ratio of heights, capped to 1.

• grec.tx(x), grec.ty(y), for x, y ∈ [0, 1]. Target x-coordinate and y-coordinate of the lower left corner.

• grec.tw(w), grec.th(h), for w, h ∈ [0, 1]. As before.

As mentioned before, most fields of most records are initially ‘nil’. Where we use hrec, shrec, vrec, svrec in
substitution rules, this stands for the corresponding sequences of fields with all ‘nil’ values.

An expression such as @hrec.w stands for the class of all symbols hrec.w(w) for all allowable values w,
including ‘nil’.

C.2 Initialization of auxiliary symbols

Add brackets and records for signs

Whereas the encoding of our earlier proposals had brackets for horizontal and vertical groups, the UTC
wanted us to change to a notation with binary operators with varying operator precedence. As bracket-like
delimiters are still needed to interpret the encoding, we need to reconstruct them. Our solution is to first
place all brackets around all signs, and then to remove some brackets depending on operator precedence.

For the first step, we want to achieve the result of applying:

For each sign g:
g 7→ [ ( grec(g) ) ]

To save precious space however from the OpenType tables (limited to 64KB), the same is achieved through
several intermediate steps, with auxiliary symbols grec.preaux, grec.postaux, and grec.dim(w,h) for width
w and height h.

For each sign g of width w and height h:
g 7→ grec.preaux g grec.dim(w,h)

grec.preaux 7→ [ ( grec.anchor

For w ∈ (0, 1], h ∈ (0, 1]:
grec.dim(w,h) 7→ grec.s(nil) grec.w(w) grec.h(h) grec.postaux

grec.postaux 7→ grec.sw(nil) grec.sh(nil) grec.tx(nil) grec.ty(nil) grec.tw(nil), grec.th(nil) ) ]

For example, with ∗ short for an operator of horizontal grouping and : for an operator of vertical grouping,
the input could be “A∗B∗C : B∗C : F” and after the first step, we would have:

[ ( grec(A) ) ] ∗ [ ( grec(B) ) ] ∗ [ ( grec(C) ) ] : [ ( grec(D) ) ] ∗ [ ( grec(E) ) ] : [ ( grec(F) ) ]

Remove superfluous brackets

To remove the brackets that do not delimit the appropriate groups, we do:

] ∗ [ 7→ ∗
] : [ 7→ :

and then:

) ∗ ( 7→ ∗
In the running example we would now have:

[ ( grec(A) ∗ grec(B) ∗ grec(C) ) : ( grec(D) ∗ grec(E) ) : ( grec(F) ) ]
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Add records at brackets and at operators

To prepare for the bottom-up analyses, we insert records between the signs and operators:

( 7→ ( hrec
∗ 7→ shrec ∗
) 7→ shrec(w=0,h=0) )
[ 7→ [ vrec
: 7→ svrec :
] 7→ svrec(w=0,h=0) ] adv(nil)

Here shrec(w=0,h=0) and svrec(w=0,h=0) denote suffix records for horizontal and vertical groups, respec-
tively, meant for empty suffixes, with all values being nil, except those for width and height, which are 0.

In the running example we would now have:

[ ( hrec grec(A) shrec ∗ grec(B) shrec ∗ grec(C) shrec(w=0,h=0) ) svrec :
( hrec grec(D) shrec ∗ grec(E) shrec(w=0,h=0) ) svrec :
( hrec grec(F) shrec(w=0,h=0) ) svrec(w=0,h=0) ] adv(nil)

C.3 Right-to-left analysis of horizontal groups

Sum widths from right to left

Here we ignore all glyphs, except those relevant to widths within horizontal groups. We then let the width
of a suffix be the sum of the width of its first sign (w1) and the width of the suffix after that (w2). At the
beginning of a horizontal group, we need to compute the bounded width (maximally 1):

With @hrec.bw, @hrec.w, @shrec.w, @grec.w:
For n = 0, . . . , Nh − 2:

For w1 ∈ (0, 1], w2 ∈ [0, n]:
{ shrec.w(nil) 7→ shrec.w(w1 + w2) } grec.w(w1) shrec.w(w2)

For w1 ∈ (0, 1], w2 ∈ [0, Nh − 1]:
{ hrec.w(nil) 7→ hrec.w(w1 + w2) } grec.w(w1) shrec.w(w2)

For w ∈ (0, Nh]:
{ hrec.bw(nil) 7→ hrec.bw(min(w,1)) } hrec.w(w)

For the first horizontal group in the running example, we would now have:

( hrec(bw=w′3,w=w3) grec(A,w=wA) shrec(w=w2) ∗
grec(B,w=wB) shrec(w=w1) ∗
grec(C,w=wC) shrec(w=w0) )

where w0 = 0, w1 = wC , w2 = wB +wC , w3 = wA +wB +wC , and w′3 = w3 if w3 ≤ 1 and w′3 = 1
otherwise. Here we use ad hoc notation such as grec(A,w=wA) to denote a record for sign A, with field
grec.w(wA) and values of other fields left unspecified.

Maximize heights from right to left

Here we ignore all glyphs, except those relevant to heights within horizontal groups. The task is now to
maximize heights, just as above we summed widths:
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With @hrec.h, @shrec.h, @grec.h:
For n = 0, . . . , Nh − 2:

For h1 ∈ (0, 1], h2 ∈ [0, 1]:
{ shrec.h(nil) 7→ shrec.h(max(h1,h2)) } grec.h(h1) shrec.h(h2)

For h1 ∈ (0, 1], h2 ∈ [0, 1]:
{ hrec.h(nil) 7→ hrec.h(max(h1,h2)) } grec.h(h1) shrec.h(h2)

C.4 Right-to-left analysis of vertical groups

Here we analyze vertical groups, similar to how we analyzed horizontal groups, except that we swap addition
and maximization for widths and heights. From each horizontal group, the analysis now only needs the values
of hrec.bw and hrec.h that were determined earlier. All other glyphs (i.e. signs and auxiliary glyphs) from
the horizontal groups are ignored.

Maximize widths from right to left

With @vrec.w, @svrec.w, @hrec.bw:
For n = 0, . . . , Nv − 2:

For w1 ∈ (0, 1], w2 ∈ [0, 1]:
{ svrec.w(nil) 7→ svrec.w(max(w1,w2)) } hrec.bw(w1) svrec.w(w2)

For w1 ∈ (0, 1], w2 ∈ [0, 1]:
{ vrec.w(nil) 7→ vrec.w(max(w1,w2)) } hrec.bw(w1) svrec.w(w2)

Sum heights from right to left

With @vrec.bh, @vrec.h, @svrec.h, @hrec.h:
For n = 0, . . . , Nv − 2:

For h1 ∈ (0, 1], h2 ∈ [0, n]:
{ svrec.h(nil) 7→ svrec.h(h1 + h2) } hrec.h(h1) svrec.h(h2)

For h1 ∈ (0, 1], h2 ∈ [0, Nv − 1]:
{ vrec.h(nil) 7→ vrec.h(h1 + h2) } hrec.h(h1) svrec.h(h2)

For h ∈ (0, Nv]:
{ vrec.bh(nil) 7→ vrec.bh(min(h,1)) } vrec.h(h)

C.5 Determining global layout of vertical group

Once the width and height of a top-level group have been determined, we can set the target width and
height, that is, the dimensions within which the subgroups will be laid out. Where subgroups have natural
dimensions that are bigger, one needs to scale them down. Where subgroups have natural dimensions that
are smaller, there needs to be padding with whitespace.

First, we will assume the relevant top-level group appears in a horizontal line of text of height 1. Later
we will consider horizontal/vertical groups that are placed inside other signs, with an insertion operator.

Determine target x

By default, a group is placed from the current x-coordinate onward.

vrec.tx(nil) 7→ vrec.tx(0)
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Determine target y

By default, a group is placed from the top of the line downward, which is here represented by y-coordinate 1.

vrec.ty(nil) 7→ vrec.ty(1)

Determine target width

By default, the target width of a vertical group is the computed width.

With @vrec.w, @vrec.tw:
For w ∈ (0, 1]:

vrec.w(w) { vrec.tw(nil) 7→ vrec.tw(w) }

Determine target height

By default, the target height is 1, which concurs with the assumed height of a line.

vrec.th(nil) 7→ vrec.th(1)

C.6 Left-to-right propagation in vertical groups

Propagate target x-coordinate

The target x-coordinate is propagated to all suffixes of a vertical groups, and from these suffixes to the
records of horizontal groups just before:

With @vrec.tx, @svrec.tx:
For x ∈ [0, 1]:

vrec.tx(x) { svrec.tx(nil) 7→ svrec.tx(x) }
For n = Nv − 1, . . . , 1:

For x ∈ [0, 1]:
svrec.tx(x) { svrec.tx(nil) 7→ svrec.tx(x) }

With @hrec.tx, @svrec.tx:
For x ∈ [0, 1]:
{ hrec.tx(nil) 7→ hrec.tx(x) } svrec.tx(x)

Propagate target width

The target width is propagated in the same way. In addition, we set the advance of the group, copied from
the target width.

With @vrec.tw, @svrec.tw:
For w ∈ [0, 1]:

vrec.tw(w) { svrec.tw(nil) 7→ svrec.tw(w) }
For n = Nv − 1, . . . , 1:

For w ∈ [0, 1]:
svrec.tw(w) { svrec.tw(nil) 7→ svrec.tw(w) }

With @hrec.tw, @svrec.w:
For w ∈ [0, 1]:
{ hrec.tw(nil) 7→ hrec.tw(w) } svrec.tw(w)
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With @vrec.tw:
vrec.tw(w) { adv(nil) 7→ adv(w) }

Propagate target y coordinate and height

First, we take the ratio of the target height and the unscaled height of the vertical group. This determines
the scaling factor of the first horizontal group. (The division operation is to be suitably rounded off to one
from a finite number of available values, which may include values greater than 1, in which case there will
be padding with whitespace.)

With @vrec.h, @vrec.th, @hrec.s:
For h1 ∈ (0, Nv], h2 ∈ [0, 1]:

vrec.h(h1) vrec.th(h2) { hrec.s(nil) 7→ hrec.s(h2/h1) }

Subsequently, the target height of the first horizontal group is determined by multiplying the scaling factor
with its unscaled height:

With @hrec.h, @hrec.s, @hrec.th:
For h ∈ (0, 1], s ∈ [Smin, Smax]:

hrec.h(h) hrec.s(s) { hrec.th(nil) 7→ hrec.th(s ∗ h) }

By subtracting the target height of the first subgroup, we obtain the target height for the remaining sub-
groups:

With @vrec.th, @hrec.th, @svrec.th:
For h1 ∈ [0, 1], h2 ∈ [0, 1]:

vrec.th(h1) hrec.th(h2) { svrec.th(nil) 7→ svrec.th(h1 − h2) }

Similarly, by subtracting the target height of the first subgroup from the target y-coordinate, we obtain the
target y-coordinate for the remaining subgroups:

With @vrec.ty, @hrec.th, @svrec.ty:
For y ∈ [0, 1], h ∈ [0, 1]:

vrec.ty(y) hrec.th(h) { svrec.ty(nil) 7→ svrec.ty(y − h) }

The same needs to be repeated, for every suffix of the vertical group, making sure we do not confuse svrec
elements with horizontal subgroups of following vertical groups (which is why we consider @] as a singleton
class in the ‘With’ clauses):

For n = Nv − 1, . . . , 1:
With @svrec.h, @svrec.th, @hrec.s, @]:

For h1 ∈ (0, n], h2 ∈ [0, 1]:
svrec.h(h1) svrec.th(h2) { hrec.s(nil) 7→ hrec.s(h2/h1) }

With @svrec.th, @hrec.h, @hrec.s, @hrec.th, @]:
For h ∈ (0, 1], s ∈ [Smin, Smax]:

hrec.h(h) hrec.s(s) { hrec.th(nil) 7→ hrec.th(s ∗ h) }
With @svrec.th, @hrec.th, @]:

For h1 ∈ [0, 1], h2 ∈ [0, 1]:
svrec.th(h1) hrec.th(h2) { svrec.th(nil) 7→ svrec.th(h1 − h2) }

With @svrec.ty, @hrec.th, @]:
For y ∈ [0, 1], h ∈ [0, 1]:

svrec.ty(y) hrec.th(h) { svrec.ty(nil) 7→ svrec.ty(y − h) }
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Finally, the target y-coordinate of a subgroup is copied from the following suffix:

With @hrec.ty, @svrec.ty:
For y ∈ [0, 1]:
{ hrec.ty(nil) 7→ hrec.ty(y) } svrec.ty(y)

C.7 Left-to-right propagation in horizontal groups

Propagation in horizontal groups is similar to that in vertical groups, but swapping the roles of y-coordinate
and height with x-coordinate and width.

Propagate target x-coordinate and width

With @hrec.w, @hrec.tw, @grec.sw:
For w1 ∈ (0, Nh], w2 ∈ [0, 1]:

hrec.w(w1) hrec.tw(w2) { grec.sw(nil) 7→ grec.sw(w2/w1) }
With @hrec.tw, @grec.w, @grec.sw, @grec.tw:

For w ∈ (0, 1], s ∈ [Smin, Smax]:
grec.w(w) grec.sw(s) { grec.tw(nil) 7→ grec.tw(s ∗ w) }

With @hrec.tw, @grec.tw, @shrec.tw:
For w1 ∈ [0, 1], w2 ∈ [0, 1]:

hrec.tw(w1) grec.tw(w2) { shrec.tw(nil) 7→ shrec.tw(w1 − w2) }
With @hrec.tx, @grec.tw, @shrec.tx:

For x ∈ [0, 1], w ∈ [0, 1]:
hrec.tx(x) grec.tw(w) { shrec.tx(nil) 7→ shrec.tx(x + w) }

For n = Nh − 1, . . . , 1:
With @shrec.w, @shrec.tw, @grec.sw, @):

For w1 ∈ (0, n], w2 ∈ [0, 1]:
shrec.w(w1) shrec.tw(w2) { grec.sw(nil) 7→ grec.sw(w2/w1) }

With @shrec.tw, @grec.w, @grec.sw, @grec.tw, @):
For w ∈ (0, 1], s ∈ [Smin, Smax]:

grec.w(w) grec.sw(s) { grec.tw(nil) 7→ grec.tw(s ∗ w) }
With @shrec.tw, @grec.tw, @):

For w1 ∈ [0, 1], w2 ∈ [0, 1]:
shrec.tw(w1) grec.tw(w2) { shrec.tw(nil) 7→ shrec.tw(w1 − w2) }

With @shrec.tx, @grec.tw, @):
For x ∈ [0, 1], w ∈ [0, 1]:

shrec.tx(x) grec.tw(w) { shrec.tx(nil) 7→ shrec.tx(x + w) }

The target x-coordinate of a sign is copied from the preceding hrec or shrec rather than the following shrec,
which seems more convenient and natural.

With @hrec.tx, @shrec.tx, @grec.tx:
For x ∈ [0, 1]:

hrec.tx(x) { grec.tx(nil) 7→ grec.tx(x) }
For x ∈ [0, 1]:

shrec.tx(x) { grec.tx(nil) 7→ grec.tx(x) }
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Propagate target y coordinate

With @hrec.ty, @shrec.ty:
For y ∈ [0, 1]:

hrec.ty(y) { shrec.ty(nil) 7→ shrec.ty(y) }
For n = Nh − 1, . . . , 1:

For y ∈ [0, 1]:
shrec.ty(y) { shrec.ty(nil) 7→ shrec.ty(y) }

With @grec.ty, @shrec.ty:
For y ∈ [0, 1]:
{ grec.ty(nil) 7→ grec.ty(y) } shrec.ty(y)

Propagate target height

With @hrec.th, @shrec.th:
For h ∈ [0, 1]:

hrec.th(h) { shrec.th(nil) 7→ shrec.th(h) }
For n = Nh − 1, . . . , 1:

For h ∈ [0, 1]:
shrec.th(h) { shrec.th(nil) 7→ shrec.th(h) }

With @grec.th, @shrec.th:
For h ∈ [0, 1]:
{ grec.th(nil) 7→ grec.th(h) } shrec.th(y)

C.8 Final scaling and positioning of signs

Determine vertical scaling factors for signs and combine with horizontal scaling factors

Signs in a horizontal group may need to be scaled down because their natural width or their natural height
may exceed the target width or target height. We computed the ratio of the target width and natural width
before. That ratio could exceed 1, which was useful for computing padding between signs. Here we need to
make the scaling factor maximally 1. Then we need to compute the scaling factor that is the ratio of the
target height and the natural height, capped to be maximally 1. The total scaling factor is the minimum of
the two scaling factors.

For s ∈ [Smin, Smax]:
grec.sw(s) 7→ grec.sw(min(s,1))

With @grec.h, @grec.sh, @grec.th:
For h1 ∈ (0, 1], h2 ∈ [0, 1]:

grec.h(h1) { grec.sh(nil) 7→ grec.sh(min(h2/h1,1)) } grec.th(h2)
With @grec.s, @grec.sw, @grec.sh:

For s1 ∈ [Smin, 1], s2 ∈ [Smin, 1]:
{ grec.s(nil) 7→ grec.s(min(s1,s2)) } grec.sw(s1) grec.sh(s2)

Scale signs

An unscaled sign g is replaced by scaled(g,s), which is the same sign scaled down by factor s < 1:

With @signs, @grec.s:
For s ∈ [Smin, 1):
{ g 7→ scaled(g,s) } grec.s(s)
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Position signs

We will not introduce more notation for OpenType positioning rules. Instead we will describe in words how
signs are positioned. Recall that at this stage we have, for each sign occurrence, a subsequence consisting of
the auxiliary symbol grec.anchor, the scaled sign, and auxiliary symbols of the form grec.x(x) and grec.y(y),
which determine where the sign should be placed relative to the bottom-left corner of the group. We proceed
in two steps. First we position the zero-width, zero-height glyph grec.anchor at (x, y). Next, we position
the scaled sign at (0, 0) relative to grec.anchor. The signs in the font are given advance 0, so that this
positioning can be done for any number of signs in a group, relative to the same bottom-left corner of the
group.

At this point we should mention that the actual sizes of the signs in the font are slightly smaller than
the width and height they are given in the substitution rules. This means that appropriate inter-sign space
does not need to be manipulated explicitly in our design.

Advance

The auxiliary symbols adv(w), with w being the computed width of a top-level group, are assigned the
advance w, so that the next top-level group will be positioned correctly.

C.9 Insertion

Let us now consider how we can combine the above with insertions. Assume for example a sequence of
the form A insert b l B∗C:D, where insert b l, the operator for insertion in the bottom-left corner, has a
lower precedence than the operators ∗ and : for horizontal and vertical grouping. The first sign A could for
example be the cobra.

Before applying the rules in Section C.5 and following, we would now have (omitting several records and
several fields irrelevant to the discussion):

[ ( A ) ] adv(nil) insert b l [ vrec.ty(nil) vrec.tw(nil) vrec.th(nil) ( B ∗ C ) : ( D ) ] adv(nil)

In order for the inserted group to be positioned inside sign A, we need to set the vrec.ty, vrec.tw and vrec.th
values to be something other than the defaults. It suffices to add rules such as:

With @signs, @insert b l, @grec.ty:
A insert b l { vrec.ty(nil) 7→ vrec.ty(0.8) }

With @signs, @insert b l, @grec.tw:
A insert b l { vrec.tw(nil) 7→ vrec.tw(0.8) }

With @signs, @insert b l, @grec.th:
A insert b l { vrec.th(nil) 7→ vrec.th(0.8) }

adv(nil) insert b l 7→ insert b l

We now have:

[ ( A ) ] insert b l [ vrec.ty(0.8) vrec.tw(0.8) vrec.th(0.8) ( B ∗ C ) : ( D ) ] adv(nil)

Now the rules from Section C.5 and following function as before except that the inserted group is formatted
within the free corner of the cobra. With a small adjustment to the rules presented earlier, the advance is
now copied from the width of the cobra, rather than from the width of the inserted group, so that later we
would have:

[ ( A ) ] insert b l [ vrec.ty(0.8) vrec.tw(0.8) vrec.th(0.8) ( B ∗ C ) : ( D ) ] adv(1)
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assuming the cobra has width 1. Note we removed the first adv(nil) earlier, to avoid a premature advance.
We have verified that the above design works as required in the implementation. Further refinements

can be made however. It is noteworthy that although the insertions are the most innovative element of our
encoding, their implementation is simple compared to that of horizontal and vertical grouping.

C.10 Stacking

For stacking two signs, we need to make the following adjustments:

• In the bottom-up phase, the maxima of the widths and heights of the two signs are taken, for the
purpose of the analysis of the unscaled widths and heights of enclosing groups.

• In the top-down phase, the stacked signs share their target coordinates and target dimensions.

It is relatively straightforward to extend this to stacking of groups.

C.11 Discussion and outlook

We feel no need to hide our impression that OpenType is the wrong technology to use for a writing system as
involved as Ancient Egyptian. The process of designing the presented solution was extremely laborious, and
the smallest mistakes in the Python code producing the substitution rules tended to break the functionality
completely, making debugging very hard. Moreover, the design may strike the reader as decidedly inelegant.
Nonetheless, we come to the conclusion that proof-of-concept has been delivered for realization of the control
characters in OpenType, through our implementation, as well as the implementation by Andrew Glass, which
may be reported elsewhere.

A few obvious improvements await realization:

• We have investigated groupings consisting of signs within horizontal groups within vertical groups.
Having more than two levels of nesting is straightforwardly realized by repeating the same pattern,
in each subsequent level switching the roles of addition and maximization. Also our mechanism for
‘parsing’ of expressions with operator precedence can be extended in the obvious way to several levels
of operator precedence, with one pair of brackets for each level, initially adding all brackets around all
signs, and then systematically removing brackets on either side of operators that have equal or higher
precedence.

• If we have a horizontal group consisting of, say, three identical signs, then our design does not guarantee
that each of the three is given the same scaling, due to rounding error, which leads to an ugly rendering.
This could be solved by computing only one scaling factor per subgroup, which is propagated to each
suffix.

• Similarly, padding is not guaranteed to be uniform between neighboring subgroups. One possible
solution, suggested to us by Andrew Glass, is to detach the granularity of the space between subgroups
from the granularity of the x-coordinates and y-coordinates, and to position a subgroup relative to its
preceding neighbour or to its directly enclosing group, through mark-to-mark positioning.

• We currently do not center scaled signs within the target width and height. Doing so would require
few, simple adjustments.

The community developing OpenType implementations could support us in the following ways:

• Creating far more readable and precise documentation, detailing not only the syntax, but also the
semantics of the concepts that exist in OpenType feature files.
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• Creating benchmarks with (non-standard) use of lookups. We have found particular combinations of
lookups of substitution rules that gave three completely different outcomes in three different implemen-
tations of OpenType. Mentioned benchmarks could help developers of OpenType implementations to
guarantee consistent behaviour.

• In particular, we would wish that multiple calls of the same lookup give predictable results. At
present, we avoid calling the same lookup more than once, because of the varying behaviour of different
implementations. Regrettably that implies the exact same substitution rules need to be repeated a
number of times, wasting precious resources and bringing the 64KB limitation closer than it would
otherwise be.
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