
Technical Reports

Proposed Update Unicode® Technical Standard #39

Version 10.0.0 (draft 1)

Editors Mark Davis (markdavis@google.com),
Michel Suignard (michel@suignard.com)

Date 2016-10-21

This Version http://www.unicode.org/reports/tr39/tr39-14.html

Previous
Version

http://www.unicode.org/reports/tr39/tr39-13.html

Latest
Version

http://www.unicode.org/reports/tr39/

Latest
Proposed
Update

http://www.unicode.org/reports/tr39/proposed.html

Revision 14

Summary

Because Unicode contains such a large number of characters and incorporates the
varied writing systems of the world, incorrect usage can expose programs or systems
to possible security attacks. This document specifies mechanisms that can be used to
detect possible security problems.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as
other than a work in progress.

A Unicode Technical Standard (UTS) is an independent specification.
Conformance to the Unicode Standard does not imply conformance to any UTS.

Please submit corrigenda and other comments with the online reporting form
[Feedback]. Related information that is useful in understanding this document is found
in the References. For the latest version of the Unicode Standard, see [Unicode]. For a
list of current Unicode Technical Reports, see [Reports]. For more information about

rick@unicode.org
Text Box
L2/16-350

versions of the Unicode Standard, see [Versions].

Contents

1 Introduction
2 Conformance
3 Identifier Characters

3.1 General Security Profile for Identifiers
Table 1. Identifier Status and Type

3.2 IDN Security Profiles for Identifiers
3.3 Email Security Profiles for Identifiers

4 Confusable Detection
4.1 Whole-Script Confusables
4.2 Mixed-Script Confusables

5 Detection Mechanisms
5.1 Mixed-Script Detection
5.2 Restriction-Level Detection
5.3 Mixed-Number Detection
5.4 Optional Detection

6 Development Process
6.1 Confusables Data Collection
6.2 Identifier Modification Data Collection

7 Data Files
Table 2. Data File List

Migration
Table 3. Version Correspondence
Migrating Persistent Data
Version 8.0 Migration
Version 7.0 Migration

Acknowledgments
References
Modifications

1 Introduction

Unicode Technical Report #36, "Unicode Security Considerations" [UTR36] provides
guidelines for detecting and avoiding security problems connected with the use of
Unicode. This document specifies mechanisms that are used in that document, and
can be used elsewhere. Readers should be familiar with [UTR36] before continuing.
See also the Unicode FAQ on Security Issues [FAQSec].

2 Conformance

An implementation claiming conformance to this specification must do so in
conformance to the following clauses:

C1 An implementation claiming to implement the General Profile for Identifiers shall do
so in accordance with the specifications in Section 3.1, General Security Profile for
Identifiers.

Alternatively, it shall declare that it uses a modification, and provide a precise list
of characters that are added to or removed from the profile.

C1.1 An implementation claiming to implement the IDN Security Profiles for Identifiers
shall do so in accordance with the specifications in Section 3.2, IDN Security Profiles
for Identifiers.

Alternatively, it shall declare that it uses a modification, and provide a precise list
of characters that are added to or removed from the profile.

C1.2 An implementation claiming to implement the Email Security Profiles for Identifiers
shall do so in accordance with the specifications in Section 3.3, Email Security Profiles
for Identifiers.

Alternatively, it shall declare that it uses a modification, and provide a precise list
of characters that are added to or removed from the profile.

C2 An implementation claiming to implement any of the following confusable-detection
functions must do so in accordance with the specifications in Section 4, Confusable
Detection.

X and Y are single-script confusables1.

X and Y are mixed-script confusables2.

X and Y are whole-script confusables3.

X has any simple single-script confusable4.

X has any mixed-script confusable5.

X has any whole-script confusable6.

Alternatively, it shall declare that it uses a modification, and provide a precise list
of character mappings that are added to or removed from the provided ones.

C3 An implementation claiming to detect mixed scripts must do so in accordance with
the specifications in Section 5.1, Mixed-Script Detection.

Alternatively, it shall declare that it uses a modification, and provide a precise
specification of the differences in behavior.

C4 An implementation claiming to detect Restriction Levels must do so in accordance
with the specifications in Section 5.2, Restriction-Level Detection.

Alternatively, it shall declare that it uses a modification, and provide a precise
specification of the differences in behavior.

C5 An implementation claiming to detect mixed numbers must do so in accordance
with the specifications in Section 5.3, Mixed-Number Detection.

Alternatively, it shall declare that it uses a modification, and provide a precise
specification of the differences in behavior.

3 Identifier Characters

Identifiers are special-purpose strings used for identification—strings that are
deliberately limited to particular repertoires for that purpose. Exclusion of characters
from identifiers does not affect the general use of those characters, such as within

documents. Unicode Standard Annex #31, "Identifier and Pattern Syntax" [UAX31]
provides a recommended method of determining which strings should qualify as
identifiers. The UAX #31 specification extends the common practice of defining
identifiers in terms of letters and numbers to the Unicode repertoire.

That specification also permits other protocols to use that method as a base, and to
define a profile that adds or removes characters. For example, identifiers for specific
programming languages typically add some characters like "$", and remove others like
"-" (because of the use as minus), while IDNA removes "_" (among others)—see
Unicode Technical Standard #46, "Unicode IDNA Compatibility Processing" [UTS46],
as well as [IDNA2003], and [IDNA2008].

This document provides for additional identifier profiles for environments where security
is an issue. These are profiles of the extended identifiers based on properties and
specifications of the Unicode Standard [Unicode], including:

The XID_Start and XID_Continue properties defined in the Unicode Character
Database (see [DCore])

The toCasefold(X) operation defined in Chapter 3, Conformance of [Unicode]

The NFKC and NFKD normalizations defined in Chapter 3, Conformance of
[Unicode]

The data files used in defining these profiles follow the UCD File Format, which has a
semicolon-delimited list of data fields associated with given characters, with each field
referenced by number. For more details, see [UCDFormat].

3.1 General Security Profile for Identifiers

The files under [idmod] provides data for a profile of identifiers in environments where
security is at issue. The file contains a set of characters recommended to be restricted
from use. It also contains a small set of characters that are recommended as additions
to the list of characters defined by the XID_Start and XID_Continue properties,
because they may be used in identifiers in a broader context than programming
identifiers.

The Restricted characters are characters not in common use, and they can be blocked
to further reduce the possibilities for visual confusion. They include the following:

characters not in modern use

characters only used in specialized fields, such as liturgical characters, phonetic
letters, and mathematical letter-like symbols

characters in limited use by very small communities

The principle has been to be more conservative initially, allowing for the set to be
modified in the future as requirements for characters are refined. For information on
handling modifications over time, see Section 2.9.1, Backward Compatibility in Unicode
Technical Report #36, "Unicode Security Considerations" [UTR36].

An implementation following the General Security Profile does not permit Restricted
characters, unless it documents the additional characters that it does allow. Common
candidates for such additions include characters for scripts listed in Table 6,
Aspirational Use Scripts and Table 7, Limited Use Scripts of [UAX31]. However,
characters from these scripts have not been a priority for examination for confusables

or to determine specialized, non-modern, or uncommon-use characters.

Canonical equivalence is applied when testing candidate identifiers for inclusion of
Allowed characters. For example, suppose the candidate string is the sequence

<u, combining-diaeresis>

The target string would be Allowed in either of the following 2 situations:

u is Allowed and ¨ is Allowed, or1.

ü is Allowed2.

For details of the format for the [idmod] files, see Section 7 Data Files.

Table 1. Identifier Status and Type

Status Type Description

Restricted Not_Character Unassigned characters, private use characters,
surrogates, most control characters

Deprecated Characters with the Unicode property
Deprecated=Yes

Default_Ignorable Characters with the Unicode property
Default_Ignorable_Code_Point=Yes

Not_NFKC Characters that cannot occur in strings
normalized to NFKC.

Not_XID Other characters that do not qualify as default
Unicode identifiers; that is, they do not have
the Unicode property XID_Continue=True.

Exclusion Characters from scripts that are not in
customary modern use: Table 4, Candidate
Characters for Exclusion from Identifiers from
[UAX31]

Obsolete Characters that are no longer in modern use.

Technical Specialized usage: technical, liturgical, etc.

Uncommon_Use Characters whose status is uncertain, or that
are not commonly used in modern text.

Limited_Use Characters from scripts that are in limited use:
Table 7, Limited Use Scripts in [UAX31].

Aspirational Characters from scripts would otherwise
qualify as Limited Use, but have strong current
efforts to increase their usage: Table 6,
Aspirational Use Scripts in [UAX31].

Allowed Inclusion Exceptional allowed characters, including Table
3, Candidate Characters for Inclusion in
Identifiers in [UAX31], and some characters for
IDNA2008, except for those characters that are
Restricted above.

Recommended Table 5, Recommended Scripts in [UAX31],
except for those characters that are Restricted
above.

For stability considerations, see Migrating Persistent Data.

The distinctions among the Type values is not strict; if there are multiple Types for
restricting a character only one is given. The important characteristic is the Status:
whether or not the character is Restricted. As more information is gathered about
characters, this data may change in successive versions. That can cause either the
Status or Type to change for a particular character. Thus users of this data should be
prepared for changes in successive versions, such as by having a grandfathering
policy in place for previously supported characters or registrations. Both Status and
Type values are to be compared case-insensitively and ignoring hyphens and
underbars.

Restricted characters should be treated with caution in registration, and disallowed
unless there is good reason to allow them in the environment in question. However, the
set of Status=Allowed characters are not typically used as is by implementations.
Instead, they are applied as filters to the set of characters C that are supported by the
identifier syntax, generating a new set C′. Typically there are also particular characters
or classes of characters from C that are retained as Exception characters.

C′ = (C ∩ {Status=Allowed}) ∪ Exceptions

The implementation may simply restrict use of new identifiers to C′, or may apply some
other strategy. For example, there might be an appeal process for registrations of ids
that contain characters outside of C′ (but still inside of C), or in user interfaces for
lookup of identifiers, warnings of some kind may be appropriate. For more information,
see [UTR36].

The Exception characters would be implementation-specific. For example, a particular
implementation might extend the default Unicode identifier syntax by adding Exception
characters with the Unicode property XID_Continue=False, such as “$”, “-”, and “.”.
Those characters are specific to that identifier syntax, and would be retained even
though they are not in the Status=Allowed set. Some implementations may also wish
to add some [CLDR] exemplar characters for particular supported languages that have
unusual characters.

The Type=Inclusion characters already contain some characters that are not letters or
numbers, but that are used within words in some languages. For example, it is
recommended that U+00B7 (·) MIDDLE DOT be allowed in identifiers, because it is
required for Catalan.

The implementation may also apply other restrictions discussed in this document, such
as checking for confusable characters or doing mixed-script detection.

3.2 IDN Security Profiles for Identifiers

Version 1 of this document defined operations and data that apply to [IDNA2003],
which has been superseded by [IDNA2008] and Unicode Technical Standard #46,
"Unicode IDNA Compatibility Processing" [UTS46]. The identifier modification data can
be applied to whichever specification of IDNA is being used. For more information, see
the [IDN FAQ].

However, implementations can claim conformance to other features of this document
as applied to domain names, such as Restriction Levels.

3.3 Email Security Profiles for Identifiers

The SMTP Extension for Internationalized Email provides for specifications of
internationalized email addresses [EAI]. However, it does not provide for testing those
addresses for security issues. This section provides an email security profiles that may
be used for that. It can be applied for different purposes, such as:

When an email address is registered, flag anything that does not meet the profile:

Either forbid the registration, or

Allow for an appeals process.

1.

When an email address is detected in linkification of plain text:

Do not linkify if the identifier does not meet the profile.

2.

When an email address is displayed in incoming email:

Flag it as suspicious with a wavy underline, if it does not meet the profile.

Filter characters from the quoted-string-part to prevent display problems.

3.

This profile does not exclude characters from EAI. Instead, it provides a profile that can
be used for registration, linkification, and notification. The goal is to flag "structurally
unsound" and “unexpectedly garbagy” addresses.

An email address is formed from three main parts. (There are more elements of an
email address, but these are the ones for which Unicode security is important.) For
example:

"Joey" <joe31834@gmail.com>

The domain-part is "gmail.com"

The local-part is "joe31834"

The quoted-string-part is "Joey"

To meet the requirements of the Email Security Profiles for Identifiers section of this
specification, an identifier must satisfy the following conditions for the specified
<restriction level>.

Domain-Part

The domain-part of an email address must satisfy Section 3.2 IDN Security Profiles for
Identifiers, and satisfy the conformance clauses of [UTS46].

Local-Part

The local-part of an email address must satisfy all the following conditions:

It must be in NFKC format1.

It must have level = <restriction level> or less, from Restriction_Level_Detection2.

It must not have mixed number systems according to Mixed_Number_Detection3.

It must satisfy dot-atom-text from RFC 5322 §3.2.3, where atext is extended as
follows:

4.

Where C ≤ U+007F, C is defined as in §3.2.3. (That is, C ∈ [!#-'*+\-/-9=?A-Z\^-~].
This list copies what is already in §3.2.3, and follows HTML5 for ASCII.)

Where C > U+007F, both of the following conditions are true:

C has IdentifierStatus=Allowed from General_Security_Profile1.

If C is the first character, it must be XID_Start from
Default_Identifier_Syntax in [UAX31]

2.

Note that in RFC 5322 §3.2.3:

dot-atom-text = 1*atext *("." 1*atext)

That is, dots can also occur in the local-part, but not leading, trailing, or two in a row. In
more conventional regex syntax, this would be:

dot-atom-text = atext+ ("." atext+)*

Note that bidirectional controls and other format characters are specifically disallowed
in the local-part, according to the above.

Quoted-String-Part

The quoted-string-part of an email address must satisfy the following conditions:

It must be in NFC.1.

It must not contain any stateful bidirectional format characters.

That is, no [:bidicontrol:] except for the LRM, RLM, and ALM, since the
bidirectional controls could influence the ordering of characters outside the
quotes.

2.

It must not contain more than four nonspacing marks in a row, and no sequence
of two of the same nonspacing marks.

3.

It may contain mixed scripts, symbols (including emoji), and so on.4.

Other Issues

The restrictions above are insufficient to prevent bidirectional-reordering that could
intermix the quoted-string-part with the local-part or the domain-part in display. To
prevent that, implementations could use bidirectional isolates (or equivalent) around
the each of these parts in display.

Implementations may also want to use other checks, such as for confusability, or
services such as Safe Browsing.

A serious practical issue is that clients do not know what the identity rules are for any
particular email server: that is, when two email addresses are considered equivalent.
For example, are mark@macchiato.com and Mark@macchiato.com treated the same
by the server? Unfortunately, there is no way to query a server to see what identity
rules it follows. One of the techniques used to deal with this problem is having
whitelists of email providers indicating which of them are case-insensitive,
dot-insensitive, or both.

4 Confusable Detection

The data in [confusables] provide a mechanism for determining when two strings are
visually confusable. The data in these files may be refined and extended over time. For
information on handling modifications over time, see Section 2.9.1, Backward
Compatibility in Unicode Technical Report #36, "Unicode Security Considerations"
[UTR36] and the Migration section of this document.

Collection of data for detecting gatekeeper-confusable strings is not currently a goal for
the confusable detection mechanism in this document. For more information, see
Section 2 Visual Security Issues in [UTR36].

The data provides a mapping from source characters to their prototypes. A prototype
should be thought of as a sequence of one or more classes of symbols, where each
class has an exemplar character. For example, the character U+0153 (œ), LATIN
SMALL LIGATURE OE, has a prototype consisting of two symbol classes: the one with
exemplar character U+006F (o), and the one with exemplar character U+0065 (e). If an
input character does not have a prototype explicitly defined in the data file, the
prototype is assumed to consist of the class of symbols with the input character as the
exemplar character.

For an input string X, define skeleton(X) to be the following transformation on the
string:

To see whether two strings X and Y are confusable (abbreviated as X ≅ Y), an
implementation uses a transform of X called a skeleton(X) defined by:

Converting X to NFD format, as described in [UAX15].1.

Concatenate the prototypes for each character in X according to the specified
data, producing a string of exemplar characters.

2.

Reapplying NFD.3.

The strings X and Y are defined to be confusable if and only if skeleton(X) =
skeleton(Y). This is abbreviated as X ≅ Y.

This mechanism imposes transitivity on the data, so if X ≅ Y and Y ≅ Z, then X ≅ Z. It

is possible to provide a more sophisticated confusable detection, by providing a metric
between given characters, indicating their "closeness." However, that is
computationally much more expensive, and requires more sophisticated data, so at this
point in time the simpler mechanism has been chosen. That means that in some cases
the test may be overly inclusive.

Note: The strings skeleton(X) and skeleton(Y) are not intended for display,
storage or transmission. They should be thought of as an intermediate processing
form, similar to a hashcode. The exemplar characters in skeleton(X) and
skeleton(Y) are not guaranteed to be identifier characters.

Definitions

Confusables are divided into three classes: single-script confusables, mixed-script
confusables, and whole-script confusables, defined below. All confusables are either a
single-script confusable or a mixed-script confusable, but not both. All whole-script
confusables are also mixed-script confusables.

X and Y are single-script confusables if and only if they are confusable, and and their
resolved script sets have at least one element in common according to Section 5,
Mixed-Script Detection, and it is the same script for each.

Examples: “ǉeto” and “ljeto” in Latin (the Croatian word for “summer”), where the
first word uses only four codepoints, the first of which is U+01C9 (ǉ) LATIN
SMALL LETTER LJ.

X and Y are mixed-script confusables if and only if they are confusable but their
resolved script sets have no elements in common.

Examples: "paypal" and "pаypаl", where the second word has the character
U+0430 (а) CYRILLIC SMALL LETTER A.

X and Y are whole-script confusables if and only if they are mixed-script confusables,
and each of them is a single script string (has a nonempty resolved script set).

Example: "scope" in Latin and "ѕсоре" in Cyrillic.

As noted in Section 5, the resolved script set ignores characters with Script_Extensions
{Common} and {Inherited} and augments characters with CJK scripts with their
respective writing systems.Characters with the Script_Extension property values
COMMON or INHERITED are ignored when testing for differences in script.

Data File Format

Each line in the data file has the following format: Field 1 is the source, Field 2 is the
target, and Field 3 is obsolete, always containing the letters “MA” for backwards
compatibility. For example:

0441 ; 0063 ; MA # (с → c) CYRILLIC SMALL LETTER ES → LATIN SMALL
LETTER C #

2CA5 ; 0063 ; MA # (→ c) COPTIC SMALL LETTER SIMA → LATIN SMALL

LETTER C # →ϲ→

Everything after the # is a comment and is purely informative. A asterisk after the
comment indicates that the character is not an XID character [UAX31]. The comments
provide the character names.

Implementations that use the confusable data do not have to recursively apply the
mappings, because the transforms are idempotent. That is,

skeleton(skeleton(X)) = skeleton(X)

If the data was derived via transitivity, there is an extra comment at the end. For
instance, in the above example the derivation was:

 (U+2CA5 COPTIC SMALL LETTER SIMA)1.

→ ϲ (U+03F2 GREEK LUNATE SIGMA SYMBOL)2.

→ c (U+0063 LATIN SMALL LETTER C)3.

To reduce security risks, it is advised that identifiers use casefolded forms, thus
eliminating uppercase variants where possible.

The data may change between versions. Even where the data is the same, the order of
lines in the files may change between versions. For more information, see Migration.

Note: due to production problems, versions before 7.0 did not maintain
idempotency in all cases. For more information, see Migration.

4.1 Whole-Script Confusables

For some applications, it may be useful to determine if a given input string has any
whole-script confusable. For example, the identifier "ѕсоре" using Cyrillic characters
would pass the single-script test described in Section 5.2, Restriction-Level Detection,
even though it is likely to be a spoof attempt.

It is possible to determine whether a single-script string X has a whole-script
confusable:

Consider Q, the set of all strings that are confusable with X.1.

If any string in Q has a nonempty resolved script set that does not intersect with
the resolved script set of X, return TRUE.

2.

Otherwise, return FALSE.3.

The set of all strings that are confusable with X grows exponentially with the length of
the string, so in practice, an equivalent but more efficient algorithm should be used.

Note that the confusables data include a large number of mappings between Latin and
Cyrillic text. For this reason, the above algorithm is likely to flag a large number of
legitimate strings written in Latin or Cyrillic as potential whole-script confusables.

This section specifies how test whether a string has a whole-script confusables, such
as "scope" in Latin and "ѕсоре" in Cyrillic. The results depend on the set of characters
that are accepted by the implementation.

The following gives the logical process for determing whether a single-script
string source string has a whole-script confusable, given the implementation repertoire
of characters R.

If the source string is mixed script, then return false. Otherwise transform the
source string into nfd, called nfd-source.

1.

Generate the set of all variants of nfd-source, using all of the combinations for
each character from the equivalence classes in the confusables.txt file, filtered to
keep only characters in R.

2.

Remove all combinations that have mixed scripts, according
to Mixed_Script_Detection, and remove the nfd-source string.

3.

If that remainder set is not empty, then there is a whole-script confusable for the
original.

4.

If one of the remainder set has the same script from nfd-source, then there is a
same-script confusable for the original.

5.

Example:

The nfd-source for the source string is AB.1.

Assume A has the equivalence class {A, X, ZW}, and B has the equivalence
class {B, C}. Then the result of generating all variants of the nfd-source is {AB,
AC, XB, XC, ZWB, ZWC}

2.

Assume A is Latin, C and Z are Hiragana, and the others are Common. Then the
remainders after removing mixed-script strings are: {XB, XC, ZWB, ZWC}

3.

Because that set is not empty, there is a whole-script confusable for the input
string.

4.

For this example, there are none.5.

The logical description can be used for a reference implementation for testing, but is
not particularly efficient. A production implementation can be optimized to incrementally
test for mixed scripts as the combinations in step 2 are built up, and remove any initial
substring that fails. That avoids adding the set tree of combinations that start with that
initial substring without having to compute them in the first place. For example:

Process nfd-source character by character1.

Start with a mapping of scripts to samples, where each sample is initially “”.2.

Get each successive character’s confusable equivalence class as a set.

Filter to remove entries with characters that are not in R. If the remaining
set is empty, drop the script mapping

a.

For each script in the mapping, find a string in the remaining set that can be
appended and yet remain in that script (avoiding the original character from
nfd-source, where possible). If there is no such string, drop the script
mapping

b.

3.

At the end of this process, drop any <script, nfd-source> entry.4.

The result is a mapping from the scripts to a sample whole-script confusable for
the input in that script.

5.

This process can be further optimized by the following techniques.

The mapping of characters to confusable equivalence classes can be preprocessed to
filter out characters not in R, and filtered to remove strings with conflicting scripts. That
makes step 3a faster.

A mapping can be produced that replaces each confusable equivalence class set by a
map from script to characters. Note that the same string can appear under multiple
scripts. That makes step 3b faster.

If the implementation does not require explicit string samples for the scripts, the
algorithm can be recast to operate on sets of scripts instead. There is one complication
to this: an entry that has only one character needs to be marked specially, so that it can
be taken into account for step 4 above (removing generated strings that are identical to
nfd-source).

4.2 Mixed-Script Confusables

To determine the existence of a mixed-script confusable, a similar process could be
used:

Consider Q, the set of all strings that are confusable with X.1.

Remove all strings from Q whose resolved script set intersects with the resolved
script set of X.

2.

If Q is nonempty, return TRUE.3.

Otherwise, return FALSE.4.

Note that due to the number of mappings provided by the confusables data, the above
algorithm is likely to flag a large number of legitimate strings as potential mixed-script
confusables.

To test for mixed-script confusables, use the following process:

Convert the given string to NFD format, as specified in [UAX15].1.

For each script found in the given string, see if all the characters in the string
outside of that script have whole-script confusables for that script (according
to Section 4.1, Whole-Script Confusables) .

2.

Example 1: "pаypаl", with Cyrillic "а"s.

There are two scripts, Latin and Cyrillic. The set of Cyrillic characters {a} has a
whole-script confusable in Latin. Thus the string is a mixed-script confusable.

Example 2: "toys-я-us", with one Cyrillic character "я".

The set of Cyrillic characters {я} does not have a whole-script confusable in Latin
(there is no Latin character that looks like "я", nor does the set of Latin characters
{o s t u y} have a whole-script confusable in Cyrillic (there is no Cyrillic character
that looks like "t" or "u"). Thus this string is not a mixed-script confusable.

Example 3: "1iνе", with a Greek "ν" and Cyrillic "е".

There are three scripts, Latin, Greek, and Cyrillic. The set of Cyrillic characters

{е} and the set of Greek characters {ν} each have a whole-script confusable in
Latin. Thus the string is a mixed-script confusable.

5 Detection Mechanisms

5.1 Mixed-Script Detection

The Unicode Standard supplies information that can be used for determining the script
of characters and detecting mixed-script text. The determination of script is according
to the UAX #24, Unicode Script Property [UAX24], using data from the Unicode
Character Database [UCD].

Define a character's augmented script set to be a character's Script_Extensions with
the following two modifications.

Entries for the writing systems containing multiple scripts — Hanb (Han with
Bopomofo), Jpan (Japanese), and Kore (Korean) — are added according to the
following rules.

If Script_Extensions contains Hani (Han), add Hanb, Jpan, and Kore.1.

If Script_Extensions contains Hira (Hiragana), add Jpan.2.

If Script_Extensions contains Kata (Katakana), add Jpan.3.

If Script_Extensions contains Hang (Hangul), add Kore.4.

If Script_Extensions contains Bopo (Bopomofo), add Hanb.5.

1.

Sets containing Zyyy (Common) or Zinh (Inherited) are treated as Σ, the set of all
script values.

2.

The Script_Extensions data is from the Unicode Character Database [UCD]. For more
information on the Script_Extensions property and Jpan, Kore, and Hanb, see UAX
#24, Unicode Script Property [UAX24].

Define the resolved script set for a string to be the intersection of the augmented script
sets over all characters in the string.

A string is defined to be mixed-script if its resolved script set is empty and defined to be
single-script if its resolved script set is nonempty.

As well as providing an API to detect whether a string has mixed-scripts, is also useful
to offer an API that returns those scripts. Look at the examples below.

Table 1b. Mixed Script Examples

String Code
Points

Script_Extensions Augmented
Script Sets

Resolved
Script Set

Is
single-
script
string?

Circle U+0043
U+0069
U+0072

{Latn}
{Latn}
{Latn}

{Latn}
{Latn}
{Latn}

{Latn} Yes

U+0063
U+006C
U+0065

{Latn}
{Latn}
{Latn}

{Latn}
{Latn}
{Latn}

СігсӀе U+0421
U+0456
U+0433
U+0441
U+04C0
U+0435

{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}

{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}

{Cyrl} Yes

Сirсlе U+0421
U+0069
U+0072
U+0441
U+006C
U+0435

{Cyrl}
{Latn}
{Latn}
{Cyrl}
{Latn}
{Cyrl}

{Cyrl}
{Latn}
{Latn}
{Cyrl}
{Latn}
{Cyrl}

{} No

Circ1e U+0043
U+0069
U+0072
U+0063
U+0031
U+0065

{Latn}
{Latn}
{Latn}
{Latn}
{Zyyy}
{Latn}

{Latn}
{Latn}
{Latn}
{Latn}
Σ
{Latn}

{Latn} Yes

C U+0043
U+1D5C2
U+1D5CB
U+1D5BC
U+1D5C5
U+1D5BE

{Latn}
{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}

{Latn}
Σ
Σ
Σ
Σ
Σ

{Latn} Yes

U+1D5A2
U+1D5C2
U+1D5CB
U+1D5BC
U+1D5C5
U+1D5BE

{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}

Σ
Σ
Σ
Σ
Σ
Σ

Σ Yes

〆切 U+3006
U+5207

{Hani, Hira, Kata}
{Hani}

{Hani, Hira,
Kata, Hanb,
Jpan, Kore}
{Hani, Hanb,

{Hani,
Hanb, Jpan,
Kore}

Yes

Jpan, Kore}

ねガ U+306D
U+30AC

{Hira}
{Kata}

{Hira, Jpan}
{Kata, Jpan}

{Jpan} Yes

A set of scripts is defined to cover a string if the intersection of that set with the
augmented script sets of all characters in the string is nonempty; in other words, if
every character in the string shares at least one script with the cover set. For example,
{Latn, Cyrl} covers "Сirсlе", the third example in Table 1b.

A cover set is defined to be minimal if there is no smaller cover set. For example, {Hira,
Hani} covers "〆切", the seventh example in Table 1b, but it is not minimal, since {Hira}
also covers the string, and {Hira} is smaller than {Hira, Hani}. Note that minimal cover
sets are not unique: a string may have different minimal cover sets.

Typically an API that returns the scripts in a string will return one of the minimal cover
sets.

For computational efficiency, a set of script sets (SOSS) can be computed, where the
augmented script sets for each character in the string map to one entry in the SOSS.
For example, { {Latn}, {Cyrl} } would be the SOSS for "Сirсlе". A set of scripts that
covers the SOSS also covers the input string. Likewise, the intersection of all entries of
the SOSS will be the input string's resolved script set.

The Unicode Standard supplies information that can be used for determining the script
of characters and detecting mixed-script text. The determination of script is according
to the Unicode Standard Annex #24, "Unicode Script Property" [UAX24] , using data
from the Unicode Character Database [UCD]. For a given input string, the logical
process is the following:

Define a set of sets of scripts SOSS.

For each character in the string:

Use the Script_Extensions property to find the set of scripts that the
character has.

1.

Remove Common and Inherited from that set of scripts.2.

If the result is not empty, add that set to SOSS.3.

If no single script is common to all of the sets in SOSS, then the string contains
mixed scripts.

Characters with the script values Common and Inherited are ignored, because they are
used with more than one script. For example, "abc-def" counts as a single script Latin
because the script of "-" is ignored.

A set of scripts S is said to cover a SOSS if S intersects each element of SOSS. For
example, {Latin, Greek} covers {{Latin, Georgian}, {Greek, Cyrillic}}, because:

{Latin, Greek} intersects {Latin, Georgian} (the intersection being {Latin}).1.

{Latin, Greek} intersects {Greek, Cyrillic} (the intersection being {Greek}).2.

The actual implementation of this algorithm can be optimized; as usual, the
specification only depends on the results. The following Java sample using [ICU]
shows how the above process can be implemented:

 public static boolean isSingleScript(String identifier) {
 // Non-optimized code, for simplicity
 Set<BitSet> setOfScriptSets = new HashSet<BitSet>();
 BitSet temp = new BitSet();
 int cp;
 for (int i = 0; i < identifier.length(); i += Character.charCount(i)) {
 cp = Character.codePointAt(identifier, i);
 UScript.getScriptExtensions(cp, temp);
 if (temp.cardinality() == 0) {
 // HACK for older version of ICU
 final int script = UScript.getScript(cp);
 temp.set(script);
 }
 temp.andNot(COMMON_AND_INHERITED);
 if (temp.cardinality() != 0 && setOfScriptSets.add(temp)) {
 // If the set hasn’t been added already,
 // add it and create new temporary for the next pass,
 // so we don’t rewrite what’s already in the set.
 temp = new BitSet();
 }
 }
 if (setOfScriptSets.size() == 0) {
 return true; // trivially true
 }
 temp.clear();
 // check to see that there is at least one script common to all the sets
 boolean first = true;
 for (BitSet other : setOfScriptSets) {
 if (first) {
 temp.or(other);
 first = false;
 } else {
 temp.and(other);
 }
 }
 return temp.cardinality() != 0;
 }

This formulation ignores Common and Inherited scripts, and returns an error when a
string contains mixed scripts.

5.2 Restriction-Level Detection

Restriction Levels 1-5 are defined here for use in implementations. These place
restrictions on the use of identifiers according to the appropriate Identifier Profile as
specified in Section 3, Identifier Characters. The lists of Recommended and
Aspirational scripts are taken from Table 5, Recommended Scripts and Table 6,
Aspirational Use Scripts of [UAX31]. For more information on the use of Restriction
Levels, see Section 2.9 Restriction Levels and Alerts in [UTR36].

For each of the Restriction Levels 1-6, the identifier must be well-formed according to
whatever general syntactic constraints are in force, such as the Default Identifier
Syntax in [UAX31].

In addition, an application may provide an Identifier Profile such as the General

Security Profile for Identifiers, which restricts the allowed characters further. For each
of the Restriction Levels 1-5, characters in the string must also be in the Identifier
Profile. Where there is no such Identifier Profile, Levels 5 and 6 are identical.

ASCII-Only

All characters in the string are in the ASCII range.

1.

Single Script

The string qualifies as ASCII-Only, or

The string is single-script, according to the definition in Section 5.1.

2.

Highly Restrictive

The string qualifies as Single Script, or

The string is covered by any of the following sets of scripts, according to the
definition in Section 5.1:

Latin + Han + Hiragana + Katakana; or equivalently: Latn + Jpan

Latin + Han + Bopomofo; or equivalently: Latn + Hanb

Latin + Han + Hangul; or equivalently: Latn + Kore

3.

Moderately Restrictive

The string qualifies as Highly Restrictive, or

The string is covered by Latin and any one other Recommended or
Aspirational script, except Cyrillic, Greek

4.

Minimally Restrictive

There are no restrictions on the set of scripts that cover the string.

The only restrictions are the identifier well-formedness criteria and Identifier
Profile, allowing arbitrary mixtures of scripts such as Ωmega, Teχ,
HλLF-LIFE, Toys-Я-Us.

5.

Unrestricted

There are no restrictions on the script coverage of the string.

The only restrictions are the criteria on identifier well-formedness.
Characters may be outside of the Identifier Profile.

This level is primarily for use in detection APIs, providing return value
indicating that the string does not match any of the levels 1-5.

6.

Note that in all levels except ASCII-Only, any character having Script_Extensions
{Common} or {Inherited} are allowed in the identifier, as long as those characters meet
the Identifier Profile requirements.

These levels can be detected by reusing some of the mechanisms of Section 5.1. For a
given input string, the Restriction Level is determined by the following logical process:

If the string contains any characters outside of the Identifer Profile, return
Unrestricted.

1.

If no character in the string is above 0x7F, return ASCII-Only.2.

Compute the string's SOSS according to Section 5.1.3.

If the SOSS is empty or the intersection of all entries in the SOSS is nonempty,
return Single Script.

4.

Remove all the entries from the SOS that contain Latin.5.

If any of the following sets cover SOSS, return Highly Restrictive.

{Kore}

{Hanb}

{Japn}

6.

If the intersection of all entries in the SOSS contains any single Recommended
or Aspirational script except Cyrillic or Greek, return Moderately Restrictive.

7.

Otherwise, return Minimally Restrictive.8.

The actual implementation of this algorithm can be optimized; as usual, the
specification only depends on the results.

5.3 Mixed-Number Detection

There are three different types of numbers in Unicode. Only numbers with
General_Category = Decimal_Numbers (Nd) should be allowed in identifiers. However,
characters from different decimal number systems can be easily confused. For
example, U+0660 (٠) ARABIC-INDIC DIGIT ZERO can be confused with U+06F0 (٠)
EXTENDED ARABIC-INDIC DIGIT ZERO, and U+09EA (৪) BENGALI DIGIT FOUR
can be confused with U+0038 (8) DIGIT EIGHT.

For a given input string which does not contain non-decimal numbers, the logical
process of detecting mixed numbers is the following:

For each character in the string:

Find the decimal number value for that character, if any.1.

Map the value to the unique zero character for that number system.2.

If there is more than one such zero character, then the string contains multiple decimal
number systems.

The actual implementation of this algorithm can be optimized; as usual, the
specification only depends on the results. The following Java sample using [ICU]
shows how this can be done :

 public UnicodeSet getNumberRepresentatives(String identifier) {
 int cp;
 UnicodeSet numerics = new UnicodeSet();
 for (int i = 0; i < identifier.length(); i += Character.charCount(i)) {
 cp = Character.codePointAt(identifier, i);
 // Store a representative character for each kind of decimal digit
 switch (UCharacter.getType(cp)) {
 case UCharacterCategory.DECIMAL_DIGIT_NUMBER:
 // Just store the zero character as a representative for comparison.
 // Unicode guarantees it is cp - value.
 numerics.add(cp - UCharacter.getNumericValue(cp));
 break;
 case UCharacterCategory.OTHER_NUMBER:
 case UCharacterCategory.LETTER_NUMBER:
 throw new IllegalArgumentException("Should not be in identifiers.");
 }
 }
 return numerics;
 }
...
 UnicodeSet numerics = getMixedNumbers(String identifier);
 if (numerics.size() > 1) reject(identifer, numerics);

5.4 Optional Detection

There are additional enhancements that may be useful in spoof detection. This
includes such mechanisms as marking strings as "mixed script" where they contain
both simplified-only and traditional-only Chinese characters, using the Unihan data in
the Unicode Character Database [UCD], or detecting sequences of the same
nonspacing mark.

Other enhancements useful in spoof detection include the following:

Mark Chinese strings as “mixed script” if they contain both simplified (S) and
traditional (T) Chinese characters, using the Unihan data in the Unicode
Character Database [UCD].

The criterion can only be applied if the language of the string is known to be
Chinese. So, for example, the string “写真だけの結婚式 ” is Japanese, and
should not be marked as mixed script because of a mixture of S and T
characters.

a.

Testing for whether a character is S or T needs to be based not on whether
the character has a S or T variant , but whether the character is an S or T
variant.

b.

1.

Forbid sequences of the same nonspacing mark2.

Check to see that all the characters are in the sets of exemplar characters for at
least one language in the Unicode Common Locale Data Repository [CLDR].

3.

6 Development Process

As discussed in Unicode Technical Report #36, "Unicode Security Considerations"
[UTR36], confusability among characters cannot be an exact science. There are many
factors that make confusability a matter of degree:

Shapes of characters vary greatly among fonts used to represent them. The
Unicode Standard uses representative glyphs in the code charts, but font
designers are free to create their own glyphs. Because fonts can easily be
created using an arbitrary glyph to represent any Unicode code point, character
confusability with arbitrary fonts can never be avoided. For example, one could
design a font where the ‘a’ looks like a ‘b’ , ‘c’ like a ‘d’, and so on.

Writing systems using contextual shaping (such as Arabic, and many South Asian
systems) introduce even more variation in text rendering. Characters do not really
have an abstract shape in isolation and are only rendered as part of cluster of
characters making words, expressions, and sentences. It is a fairly common
occurrence to find the same visual text representation corresponding to very
different logical words that can only be recognized by context, if at all.

Font style variants such as italics may introduce a confusability which does not
exist in another style. For example, in the Cyrillic script, the U+0442 (т)
CYRILLIC SMALL LETTER TE looks like a small caps Latin ‘T’ in normal style,
while it looks like a small Latin ‘m’ in italic style.

In-script confusability is extremely user-dependent. For example, in the Latin script,
characters with accents or appendices may look similar to the unadorned characters
for some users, especially if they are not familiar with their meaning in a particular
language. However, most users will have at least a minimum understanding of the
range of characters in their own script, and there are separate mechanisms available to

deal with other scripts, as discussed in [UTR36].

As described elsewhere, there are cases where the confusable data may be different
than expected. Sometimes this is because two characters or two strings may only be
confusable in some fonts. In other cases, it is because of transitivity. For example, the
dotless and dotted I are considered equivalent (ı ↔ i), because they look the same
when accents such as an acute are applied to each. However, for practical
implementation usage, transitivity is sufficiently important that some oddities are
accepted.

The data may be enhanced in future versions of this specification. For information on
handling changes in data over time, see Section 2.9.1, Backward Compatibility of
[UTR36].

6.1 Confusables Data Collection

The confusability data was created by collecting a number of prospective confusables,
examining those confusables according to a set of common fonts, and processing the
result for transitive closure.

The primary goal is to include characters that would be Status=Allowed as in Table 1.
Identifier Status and Type. Other characters, such as NFKC variants, are not a primary
focus for data collection. However, such variants may certainly be included in the data,
and may be submitted using the online forms at [Feedback].

The prospective confusables were gathered from a number of sources. Erik van der
Poel contributed a list derived from running a program over a large number of fonts to
catch characters that shared identical glyphs within a font, and Mark Davis did the
same more recently for fonts on Windows and the Macintosh. Volunteers from Google,
IBM, Microsoft and other companies gathered other lists of characters. These included
native speakers for languages with different writing systems. The Unicode compatibility
mappings were also used as a source. The process of gathering visual confusables is
ongoing: the Unicode Consortium welcomes submission of additional mappings. The
complex scripts of South and Southeast Asia need special attention. The focus is on
characters that can be in the Recommended profile for identifiers, because they are of
most concern.

The fonts used to assess the confusables included those used by the major operating
systems in user interfaces. In addition, the representative glyphs used in the Unicode
Standard were also considered. Fonts used for the user interface in operating systems
are an important source, because they are the ones that will usually be seen by users
in circumstances where confusability is important, such such as when using IRIS
(Internationalized Resource Identifiers) and their sub-elements (such as domain
names). These fonts have a number of other relevant characteristics:

They rarely changed in updates to operating systems and applications; changes
brought by system upgrades tend to be gradual to avoid usability disruption.

Because user interface elements need to be legible at low screen resolution
(implying a low number of pixels per EM), fonts used in these contexts tend to be
designed in sans-serif style, which has the tendency to increase the possibility of
confusables. There are, however, some languages such as Chinese where a serif
style is in common use.

Strict bounding box requirements create even more constraints for scripts which

use relatively large ascenders and descenders. This also limits space allocated
for accent or tone marks, and can also create more opportunities for confusability.

Pairs of prospective confusables were removed if they were always visually distinct at
common sizes, both within and across fonts. The data was then closed under
transitivity, so that if X≅Y and Y≅Z, then X≅Z. In addition, the data was closed under

substring operations, so that if X≅Y then AXB≅AYB. It was then processed to produce
the in-script and cross-script data, so that a single data table can be used to map an
input string to a resulting skeleton.

A skeleton is intended only for internal use for testing confusability of strings; the
resulting text is not suitable for display to users, because it will appear to be a
hodgepodge of different scripts. In particular, the result of mapping an identifier will not
necessary be an identifier. Thus the confusability mappings can be used to test
whether two identifiers are confusable (if their skeletons are the same), but should
definitely not be used as a "normalization" of identifiers.

6.2 Identifier Modification Data Collection

The idmod data is gathered in the following way. The basic assignments are derived
based on UCD character properties, information in [UAX31], and a curated list of
exceptions based on information from various sources, including the core specification
of the Unicode Standard, annotations in the code charts, information regarding CLDR
exemplar characters, and external feedback.

The first condition that matches in the order of the items from top to bottom in Table 1.
Identifier Status and Type is used, with a few exceptions:

When a character is in Table 3, Candidate Characters for Inclusion in Identifiers in
[UAX31], then it is given the Type Inclusion, regardless of other properties.

1.

When the Script_Extensions property value for a character contains multiple
Script property values, the Script used for the derivation is the first in the following
list:

Table 5, Recommended Scripts1.

Table 6, Aspirational Use Scripts2.

Table 7, Limited Use Scripts3.

Table 4, Candidate Characters for Exclusion from Identifiers

Table 4 also has some conditions that are not dependent on script;
those conditions are applied regardless of Script_Extensions property
value.

4.

2.

The script information in Table 4, Table 5, Table 6 and Table 7 are in machine-readable
form in CLDR, as scriptMetadata.txt.

7 Data Files

The following files provide data used to implement the recommendations in this
document. The data may be refined in future versions of this specification. For more
information, see Section 2.9.1, Backward Compatibility of [UTR36].

The Unicode Consortium welcomes feedback on additional confusables or
identifier restrictions. There are online forms at [Feedback] where you can

suggest additional characters or corrections.

The files are in http://www.unicode.org/Public/security/. The directories there contain
data files associated with a given version. The directory for this version is:

http://www.unicode.org/Public/security/9.0.0

The data files for the latest approved version are also in the directory:

http://www.unicode.org/Public/security/latest

The format for IdentifierStatus.txt follows the normal conventions for UCD data files,
and is described in the header of that file. All characters not listed in the file default to
IdentifierType=Restricted. Thus the file only lists characters with
IdentifierStatus=Allowed. For example:

002D..002E ; Allowed # 1.1 HYPHEN-MINUS..FULL STOP

The format for IdentifierType.txt follows the normal conventions for UCD data files, and
is described in the header of that file. The value is a set whose elements are delimited
by spaces. This format is identical to that used for ScriptExtensions.txt. This differs
from prior versions which only listed the strongest reason for exclusion. This new
convention allows the values to be used for more nuanced filtering. For example, if an
implementation wants to allow an Exclusion script, it could still exclude Obsolete and
Deprecated characters in that script. All characters not listed in the file default to
IdentifierType=Recommended. For example:

2460..24EA ; Technical Not_XID Not_NFKC # 1.1 CIRCLED DIGIT ONE..CIRCLED DIGIT
ZERO

Review Note: The term "Aspirational" will be changed to Limited_Use in the data files.

Table 2. Data File List

Reference File Name(s) Contents

[idmod] IdentifierStatus.txt
IdentifierType.txt

Identifier Type and Status:
Provides the list of
additions and restrictions
recommended for building
a profile of identifiers for
environments where
security is at issue.

[confusables] confusables.txt Visually Confusable
Characters: Provides a
mapping for visual
confusables for use in
detecting possible security

problems. The usage of the
file is described in Section
4, Confusable Detection.

[confusablesSummary] confusablesSummary.txt A summary view of the
confusables: Groups each
set of confusables together,
listing them first on a line
starting with #, then
individually with names and
code points. See Section 4,
Confusable Detection

[intentional] intentional.txt Intentional Confusable
Mappings: A selection of
characters whose glyphs in
any particular typeface
would probably be
designed to be identical in
shape when using a
harmonized typeface
design.

Migration

Beginning with version 6.3.0, the version numbering of this document has been
changed to indicate the version of the UCD that the data is based on. For versions up
to and including 6.3.0, the following table shows the correspondence between the
versions of this document and UCD versions that they were based on.

Table 3. Version Correspondence

Version Release
Date

Data File Directory UCD
Version

UCD
Date

Version
1

2006-08-15 /Public/security
/revision-02/

5.1.0 2008-04

draft
only

2006-08-11 /Public/security
/revision-03/

n/a n/a

Version
2

2010-08-05 /Public/security
/revision-04/

6.0.0 2010-10

Version 2012-07-23 /Public/security 6.1.0 2012-01

3 /revision-05/

6.3.0 2013-11-11 /Public/security/6.3.0/ 6.3.0 2013-09

If an update version of this standard is required between the associated UCD versions,
the version numbering will include an update number in the 3rd field. For example, if a
version of this document and its associated data is needed between UCD 6.3.0 and
UCD 7.0.0, then a version 6.3.1 could be used.

Migrating Persistent Data

Implementations must migrate their persistent data stores (such as database indexes)
whenever those implementations update to use the data files from a new version of this
specification.

Stability is never guaranteed between versions, although it is maintained where
feasible. In particular, an updated version of confusable mapping data may use a
mapping for a particular character that is different from the mapping used for that
character in an earlier version. Thus there may be cases where X → Y in Version N,
and X → Z in Version N+1, where Z may or may not have mapped to Y in Version N.
Even in cases where the logical data has not changed between versions, the order of
lines in the data files may have been changed.

The Identifier Status does not have stability guarantees (such as “Once a character is
Allowed, it will not become Restricted in future versions”), because the data is changing
over time as we find out more about character usage. Certain of the Type values, such
as Not_XID, are backward compatible but most may change as new data becomes
available. The identifier data may also not appear to be completely consistent when
just viewed from the perspective of script and general category. For example, it may
well be that one character out of a set of non-spacing marks in a script is Restricted,
while others are not. But that can be just a reflection of the fact that that character is
obsolete and the others are not.

For identifier lookup, the data is aimed more at flagging possibly questionable
characters, thus serving as one factor (among perhaps many, like using the "Safe
Browsing" service) in determining whether the user should be notified in some way. For
registration, flagged characters can result in a "soft no", that is, require the user to
appeal a denial with more information.

For dealing with characters whose status changes to Restricted, implementations can
use a grandfathering mechanism to maintain backwards compatibility.

Implementations should therefore have a strategy for migrating their persistent data
stores (such as database indexes) that use any of the confusable mapping data or
other data files.

Review Note: the examples need to be checked against the final data.

Version 10.0 Migration

As of Unicode 10.0, Type=Aspirational is now empty; for more information, see
[UAX31].

Version 9.0 Migration

There is an important data format change between versions 8.0 and 9.0. In particular,
the xidmodifications.txt file from Version 8.0 has been split into two files for Version 9.0:
IdentifierStatus.txt and IdentifierType.txt.

Version 9.0 Version 8.0

Field 1 of IdentifierStatus.txt Field 1 of xidmodifications.txt

Field 1 of IdentifierType.txt Field 2 of xidmodifications.txt

Multiple values are listed in field 1 of IdentifierType.txt. To convert to the old format of
xidmodifications.txt, use the last value of that field. For example, the following values
would correspond:

File Field Content

IdentifierType.txt 1 180A ; Limited_Use Exclusion Not_XID

xidmodifications.txt 2 180A ; Restricted ; Not_XID

Version 8.0 Migration

In Version 8.0, the following changes were made to the Identifier Status and Type:

Changed to the standard UCD formatting. For example, limited-use →
Limited_Use.

Usually this was simply changing the case and hyphen, but not-chars
changed to Not_Character.

Aligned the Identifier Type better with UAX 31 and Unicode properties

historic

→ Exclusion, where from Table 4, Candidate Characters for Exclusion
from Identifiers,

→ Obsolete, otherwise

limited-use

→ Limited_Use, where from Table 7, Limited Use Scripts,

→ Aspirational, where from Table 6, Aspirational Use Scripts (now
incorporated into Limited_Use)

→ Uncommon-Use, otherwise

obsolete

→ Deprecated, where matching the Unicode property

Version 7.0 Migration

Due to production problems, versions of the confusable mapping tables before 7.0 did
not maintain idempotency in all cases, so updating to version 8.0 is strongly advised.

Anyone using the skeleton mappings needs to rebuild any persistent uses of skeletons,
such as in database indexes.

The SL, SA, and ML mappings in 7.0 were significantly changed to address the
idempotency problem. However, the tables SL, SA, and ML were still problematic, and
discouraged from use in 7.0. They were thus removed from version 8.0.

All of the data necessary for an implementation to recreate the removed tables is
available in the remaining data (MA) plus the Unicode Character Database properties
(script, casing, etc.). Such a recreation would examine each of the equivalence classes
from the MA data, and filter out instances that did not fit the constraints (of script or
casing). For the target character, it would choose the most neutral character, typically a
symbol. However, the reasons for deprecating them still stand, so it is not
recommended that implementations recreate them.

Note also that as the Script_Extensions data is made more complete, it may cause
characters in the whole-script confusables data file to no longer match. For more
information, see Section 4 Confusable Detection.

Acknowledgments

Mark Davis and Michel Suignard authored the bulk of the text, under direction from the
Unicode Technical Committee. Steven Loomis and other people on the ICU team were
very helpful in developing the original proposal for this technical report. Shane Carr
analyzed the algorithms and supplied the source text for the rewrite of Sections 4 and 5
in version 10.

Thanks also to the following people for their feedback or contributions to this document
or earlier versions of it, or to the source data for confusables or idmod: Julie Allen,
Andrew Arnold, Vernon Cole, David Corbett (specal thanks for the many contributions),
Douglas Davidson, Rob Dawson, Alex Dejarnatt, Chris Fynn, Martin Dürst, Asmus
Freytag, Deborah Goldsmith, Paul Hoffman, Denis Jacquerye, Cibu Johny, Patrick L.
Jones, Peter Karlsson, Mike Kaplinskiy, Gervase Markham, Eric Muller, David
Patterson, Erik van der Poel, Roozbeh Pournader, Michael van Riper, Marcos Sanz,
Alexander Savenkov, Dominikus Scherkl, Manuel Strehl, Chris Weber, Ken Whistler,
and Waïl Yahyaoui. Thanks to Peter Peng for his assistance with font confusables.

References

[CLDR] Unicode Locales Project (Unicode Common Locale Data
Repository)
http://www.unicode.org/cldr/

[DCore] Derived Core Properties
http://www.unicode.org/Public/UCD/latest
/ucd/DerivedCoreProperties.txt

[DemoConf] http://unicode.org/cldr/utility/confusables.jsp

[DemoIDN] http://unicode.org/cldr/utility/idna.jsp

[DemoIDNChars] http://unicode.org/cldr/utility/list-
unicodeset.jsp?a=\p{age%3D3.2}-\p{cn}-\p{cs}-\p{co}&
abb=on&uts46+idna+idna2008

[FAQSec] Unicode FAQ on Security Issues
http://www.unicode.org/faq/security.html

[ICANN] ICANN Documents:
Internationalized Domain Names
http://www.icann.org/en/topics/idn/
The IDN Variant Issues Project
http://www.icann.org/en/topics/new-gtlds/idn-vip-
integrated-issues-23dec11-en.pdf
Maximal Starting Repertoire Version 2 (MSR-2)
https://www.icann.org/news/announcement-
2-2015-04-27-en

[ICU] International Components for Unicode
http://site.icu-project.org/

[IDNA2003] The IDNA2003 specification is defined by a cluster of IETF
RFCs:

IDNA [RFC3490]
Nameprep [RFC3491]
Punycode [RFC3492]
Stringprep [RFC3454].

[IDNA2008] The IDNA2008 specification is defined by a cluster of IETF
RFCs:

Internationalized Domain Names for Applications
(IDNA): Definitions and Document Framework
http://tools.ietf.org/html/rfc5890
Internationalized Domain Names in Applications (IDNA)
Protocol
http://tools.ietf.org/html/rfc5891
The Unicode Code Points and Internationalized Domain
Names for Applications (IDNA)
http://tools.ietf.org/html/rfc5892
Right-to-Left Scripts for Internationalized Domain
Names for Applications (IDNA)
http://tools.ietf.org/html/rfc5893

There are also informative documents:

Internationalized Domain Names for Applications
(IDNA): Background, Explanation, and Rationale
http://tools.ietf.org/html/rfc5894
The Unicode Code Points and Internationalized Domain
Names for Applications (IDNA) - Unicode 6.0
http://tools.ietf.org/html/rfc6452

[IDN-FAQ] http://www.unicode.org/faq/idn.html

[EAI] https://tools.ietf.org/html/rfc6531

[Feedback] To suggest additions or changes to confusables or identifier
restriction data, please see:
http://unicode.org/reports/tr39/suggestions.html

For issues in the text, please see:
Reporting Errors and Requesting Information Online
http://www.unicode.org/reporting.html

[Reports] Unicode Technical Reports
http://www.unicode.org/reports/
For information on the status and development process for
technical reports, and for a list of technical reports.

[RFC3454] P. Hoffman, M. Blanchet. "Preparation of Internationalized
Strings ("stringprep")", RFC 3454, December 2002.
http://ietf.org/rfc/rfc3454.txt

[RFC3490] Faltstrom, P., Hoffman, P. and A. Costello,
"Internationalizing Domain Names in Applications (IDNA)",
RFC 3490, March 2003.
http://ietf.org/rfc/rfc3490.txt

[RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
Profile for Internationalized Domain Names (IDN)", RFC
3491, March 2003.
http://ietf.org/rfc/rfc3491.txt

[RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
for Internationalized Domain Names in Applications (IDNA)",
RFC 3492, March 2003.
http://ietf.org/rfc/rfc3492.txt

[Security-FAQ] http://www.unicode.org/faq/security.html

[UCD] Unicode Character Database.
http://www.unicode.org/ucd/
For an overview of the Unicode Character Database and a list
of its associated files.

[UCDFormat] UCD File Format
http://www.unicode.org/reports/tr44/#Format_Conventions

[UAX15] UAX #15: Unicode Normalization Forms
http://www.unicode.org/reports/tr15/

[UAX24] UAX #24: Unicode Script Property
http://www.unicode.org/reports/tr24/

[UAX29] UAX #29: Unicode Text Segmentation
http://www.unicode.org/reports/tr29/

[UAX31] UAX #31: Unicode Identifier and Pattern Syntax
http://www.unicode.org/reports/tr31/

[Unicode] The Unicode Standard
For the latest version, see:
http://www.unicode.org/versions/latest/

[UTR36] UTR #36: Unicode Security Considerations
http://www.unicode.org/reports/tr36/

[UTS18] UTS #18: Unicode Regular Expressions
http://www.unicode.org/reports/tr18/

[UTS39] UTS #39: Unicode Security Mechanisms
http://www.unicode.org/reports/tr39/

[UTS46] Unicode IDNA Compatibility Processing
http://www.unicode.org/reports/tr46/

[Versions] Versions of the Unicode Standard
http://www.unicode.org/standard/versions/
For information on version numbering, and citing and
referencing the Unicode Standard, the Unicode Character
Database, and Unicode Technical Reports.

Modifications

The following summarizes modifications from the previous published revision of this
document.

Revision 14

General

Removed references to Aspirational scripts from [UAX31], because it has
been combined into Limited Use. Note that this will have an effect on the
results from Section 5.2 Restriction-Level Detection for the 5 affected
scripts.

Section 2 Conformance

Removed clauses C2.4, C2.5, C2.6. See section 4.1 for more information.

Section 3.1 General Security Profile for Identifiers

Clarified that Inclusion and Recommended characters remove Restricted
characters.

Section 4 Confusable Detection

Extensively reformulated text for clarity and precision.

Section 5 Detection Mechanisms

Extensively reformulated text for clarity and precision.

Previous revisions can be accessed with the "Previous Version" link in the header.

© 2017 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any
kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and consequential
damages in connection with or arising out of the use of the information or programs contained or accompanying this
technical report. The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

